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Vacancy diffusion in colloidal crystals as determined by dynamical density-functional theory
and the phase-field-crystal model
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A two-dimensional crystal of repulsive dipolar particles is studied in the vicinity of its melting transition
by using Brownian dynamics computer simulation, dynamical density-functional theory, and phase-field-crystal
modeling. A vacancy is created by taking out a particle from an equilibrated crystal, and the relaxation dynamics of
the vacancy is followed by monitoring the time-dependent one-particle density. We find that the vacancy is quickly
filled up by diffusive hopping of neighboring particles towards the vacancy center. We examine the temperature
dependence of the diffusion constant and find that it decreases with decreasing temperature in the simulations. This
trend is reproduced by the dynamical density-functional theory. Conversely, the phase-field-crystal calculations
predict the opposite trend. Therefore, the phase-field model needs a temperature-dependent expression for the
mobility to predict trends correctly.
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I. INTRODUCTION

Most of the mechanical properties of crystals depend
crucially on the presence of crystalline defects. For material
processing it is therefore of principal importance to understand
and control the defect concentration and dynamics. The nature
and dynamics of defects are much easier to classify for
crystalline sheets in two spatial dimensions. In this case,
it has been known for a long time that the formation and
unbinding of topological defects provides an efficient way
of melting according to the two-stage Kosterlitz-Thouless-
Nelson-Halperin-Young (KTNHY) scenario [1]. Defects can
also be accumulated near edges of crystalline sheets and
do occur for two-dimensional crystals on more complicated
manifolds [2,3].

Defects are highly dynamic: Whereas the structure of a
crystal is static over long time scales, defects undergo diffu-
sion in the crystalline background. The diffusive dynamics
of individual point defects were observed directly in two-
dimensional colloidal suspensions of charged microspheres
by video microscopy [4,5] and they were confirmed and
further analyzed by computer simulations [6]. The dynamics
of defects were also explored by real-space methods in a
two-dimensional crystal of weakly damped dust particles in
a plasma by Nosenko and coworkers [7–9]; see also Ref. [10].

Describing the defect dynamics by a microscopic theory
is still a formidable challenge, in particular close to melting.
Such a theory should contain the solid and fluid phases and
give a reliable picture of the defect concentration and its
dynamics. Recent progress in this respect has been made by
classical density-functional approaches of freezing [11–14].
For Brownian particles, the density-functional approach can
be generalized towards dynamics [15–17] and the dynamics
of solidification has been examined in two dimensions [18,19].
Similarly, a more coarse-grained phase-field-crystal model
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has been proposed to describe crystal growth [20–23] and
the defect structure and dynamics for various applications;
see, e.g., Refs. [24–34]. However, a systematic exploration of
defect dynamics by such a density-functional theory has not yet
been performed nor has the reliability of the phase-field-crystal
model been systematically checked as far as the trends of defect
dynamics are concerned.

Here, we study the dynamics of vacancies in a two-
dimensional colloidal crystal by using Brownian dynamics
computer simulations, dynamical density-functional theory,
and the phase-field-crystal approach and thereby test the ability
of the theoretical approaches to qualitatively reproduce the
observations made in the simulations. The model system
we use here is a two-dimensional suspension of dipolar
colloids. This system has been realized experimentally as
superparamagnetic particles at an air-water interface [35].
When exposing superparamagnetic particles to an external
magnetic field perpendicular to the plane, their induced
magnetic dipole moment leads to an effective repulsive
interaction whose amplitude can be tuned by the magnetic
field strength. At sufficiently high field strength, the system
crystallizes into a two-dimensional triangular (i.e., hexagonal)
crystal. This system has been studied extensively by computer
simulations and by the aforementioned dynamical density-
functional theory [18] and phase-field-crystal models [19].

Out of a perfectly triangular crystal, some particles are
removed and the relaxation of the resulting defect and its
mobility are extracted by monitoring the one-particle density
as a function of time. We confirm by simulation that the defect
mobility is increasing with increasing temperature, as was
already observed for charged particles by Lı́bal et al. [6]. This
behavior is qualitatively and semiquantitatively reproduced
in dynamical density-functional theory based on a static
Ramakrishnan-Yussouff-like density functional [36,37]. The
phase-field-crystal model, on the other hand, fails to predict
the trend of the temperature dependence of the mobilities. This
is mainly attributed to the constant kinetic prefactor involved
in the phase-field-crystal approach. For predicting the trend,
a temperature-dependent corrective mobility is needed for the
phase-field-crystal model.
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This paper is organized as follows: in Sec. II, we briefly
propose the different approaches used in this paper. Results
are presented in Sec. III and we conclude in Sec. IV.

II. THEORETICAL MODELS

Dynamical density-functional theory (DDFT) and the more
coarse-grained phase-field-crystal model describe the over-
damped Brownian dynamics in terms of a continuity equation
for the deterministic, time-dependent, and ensemble-averaged
one-particle density ρ(r,t). Note that in many applications
of the phase-field-crystal model ρ(r,t) is interpreted as a
fluctuating density field that changes for different realizations
of the dynamical evolution even under the same initial
conditions. Here, we do not take this approach but regard
ρ(r,t) as a purely deterministic quantity. For a more thorough
discussion of the physical interpretation of ρ(r,t) in the
phase-field-crystal model, see Refs. [19,38].

The temporal evolution of the density field according to
dynamical density-functional theory [15,39] is given by

ρ̇(r,t) = D

kBT
∇ ·

[
ρ(r,t)∇ δF [ρ(r,t)]

δρ(r,t)

]
, (1)

with D being the single-particle diffusion constant and
kBT being the thermal energy. The Helmholtz free energy
functional F [ρ(r)] is provided by classical density-functional
theory [11]. In the crystal, the driving current ρ∇(δF/δρ)
obviously assumes the hexagonal symmetry of the underlying
crystal. In the interstitial regions, this current is small since the
density itself is small.

Note that Eq. (1) can be derived from first principles [15,39],
i.e., from the microscopic Langevin equations of motion or
from the Smoluchowski equation for the time evolution of
their respective probability distribution (for a review, see
Ref. [19]). Here, we apply the same approximation to the
density-functional theory of Ramakrishnan and Yussouff [40]
already introduced in Refs. [18,19]. Equation (1) then reads

ρ̇(r,t) = D

{
∇2ρ(r,t) + (kBT )−1∇ · [ρ(r,t)∇V (r,t)]

−∇ ·
[
ρ(r,t)∇

∫
dr′ρ(r′)c(2)

0 (|r − r′|; ρ)

] }
, (2)

where V (r,t) is the time-dependent external potential. Fex(ρ)
and c

(2)
0 (r; ρ) are the excess free energy and the direct

correlation function of the reference fluid of density ρ,
respectively.

In this work we consider a two-dimensional (2D) system
of magnetic dipoles that are oriented perpendicular to the 2D
plane. The pair potential of two dipoles in the plane is given by

u(r) = u0/r3 , (3)

where u0 is the interaction strength. The thermodynamics
and structure depend only on one dimensionless coupling
parameter � = u0ρ

3/2/kBT , where ρ is the average
one-particle density and kBT is the thermal energy.

The two-particle direct correlation function of the fluid
c

(2)
0 (r) [41] has been obtained for a large range of coupling

constants 0 < � � 62.5 from liquid-state integral equation
theory as previously described [19,37,42].

In order to measure the diffusion of defects, Eq. (1) is
numerically solved on a rectangular periodic box of a fine
grid with ∼64 grid points per nearest-neighbor distance a. A
finite difference method with variable time step is applied.
The convolution integrals are solved using the method of fast
Fourier transform.

For the more coarse-grained phase-field-crystal model, we
employ the two different versions termed PFC1 and PFC2
(phase-field-crystal model versions 1 and 2) in Ref. [19].
The PFC1 model constitutes an approximation of dynamical
density-functional theory, as introduced above. The last term
in Eq. (2) is replaced by its gradient expansion. The dynamical
equation then reads

ρ̇(r,t) = D∇2ρ(r,t) + D∇ · {ρ(r,t)∇[(kBT )−1V (r,t)

−α(Ĉ0 − Ĉ2∇2 + Ĉ4∇4)ρ(r,t)]} . (4)

The parameters Ĉ0, Ĉ2, and Ĉ4 are the fit parameters of a
parabola to the first maximum of the Fourier transform of
the two-particle correlation function ĉ

(2)
0 (k). The coefficient

α = 1.15 is artificially introduced to match the melting points
of PFC and DDFT.

The second, more coarse-grained model termed PFC2 in
Ref. [19], which is frequently used in the phase-field-crystal
literature, can be obtained from dynamical density-functional
theory by assuming a constant mobility, ρ(r,t) = ρ in front of
the functional derivative in Eq. (1) and a gradient expansion.
The model equation then reads

φ̇(r,t) = Dρ∇2
[
φ(r,t) − 1

2φ(r,t)2 + 1
3φ(r,t)3

+ (kBT )−1V (r,t) − αρ(Ĉ0 − Ĉ2∇2 + Ĉ4∇4)φ(r,t)
]
,

(5)

with φ(r,t) = [ρ(r,t) − ρ]/ρ the dimensionless density
modulation.

The equation of motion is solved using the finite difference
method with a semi-implicit time integration [43].

III. SETUP AND RESULTS

In the following subsections we qualitatively compare
the temperature dependence of defect diffusion as obtained
by computational Brownian dynamics simulations and as
predicted by the dynamical density-functional theory and the
phase-field-crystal model 2 (PFC2).

A. Brownian dynamics computer simulation

As a reference for the theoretical models we use Brownian
dynamics (BD) computer simulations [44] to quantify the
diffusion of vacancies for different coupling strengths �

(well above the melting point at �m ≈ 12 [45]). Following
Lı́bal et al. [6], we equilibrate a perfectly hexagonal crystal
of N = 2500 particles in a rectangular, almost square box,
employing periodic boundary conditions while keeping one
particle tagged at the origin (see Fig. 1). Subsequently, the
particle at the origin is removed and the diffusion of the defect
is followed over time. In this setup the vacancy concentration
is typically relatively small (of the order 10−3). The position
of the defect is determined by a Voronoi construction: The
vacancy appears as one of several configurations of multiple
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Simulation Theory

FIG. 1. (Color online) Sketch of the setups in the simulation
(left) and theory (right): In the computer simulation we remove one
particle out of a perfectly hexagonal lattice and follow the position
of the vacancy over time. In dynamical density-functional theory
and the phase-field crystal model we study a quasi-one-dimensional
relaxation of a depleted central density peak (gray) being replenished
by influx of probability density from surrounding density peaks.

particles with more or less than six neighbors (see Fig. 2). The
center of mass of these particles is considered as the position
of the vacancy.

As was already observed for Yukawa particles in 2D
by Lı́bal et al. [6], we also find that the defect undergoes
diffusion and that the diffusion constant increases with in-
creasing temperature, corresponding to a decreasing coupling
strength � (Fig. 3). The diffusion constant of the vacancy DV

ranges between 18.9(ρτB)−1, for � = 16.6, and 9(ρτB)−1, for
� = 28.8.

B. Theory

In dynamical density-functional theory and in the phase-
field-crystal models, crystals appear as strongly modulated
density fields that have the symmetry of the corresponding
crystal [18,19]. These density fields are mechanically and
thermodynamically stable at low temperature or high coupling
strength [37]. In an equilibrium density field, the integrated
density field over one Wigner-Seitz cell is equal to the
probability of finding a particle at the corresponding lattice
site. In the approximation to the density-functional theory
by Ramakrishnan and Yussouff for magnetic dipoles in 2D
described above, this number is very close to 1. A number
smaller than 1 can be interpreted as a finite probability of
finding a vacancy, and a number larger than 1 can be interpreted
as a finite probability of finding an interstitial.

FIG. 2. (a) A vacancy typically appears as one of four different
configurations of particles with 5, 7 or 8 neighbors, indicated in light,
dark grey and black, respectively. (b) A typical trajectory of a vacancy
(similar to results presented in Ref. [6]).

FIG. 3. The mean square displacement for � = 16.6 (black
dashed line), � = 21.12 (black dotted line), � = 24 (black dash-
dotted line), and � = 28.8 (black continuous line) obtained from
Brownian Dynamics computer simulations. The grey continuous lines
are linear fits. Inset: the vacancy diffusion constant DV, calculated
from the slope of the mean square displacement, as a function of �.

Whereas we have addressed the short-time relaxation
dynamics of crystals in a previous paper [18], we are here
concerned with the long-time dynamics of vacancies. For
ease of computation and to assess larger time scales, we
thus start with a slightly different setup than the setup in the
computer simulations: Instead of introducing a vacancy with
probability 1 at the center of a large two-dimensional crystal,
which constitutes a problem of cylindrical symmetry, we study
the relaxation dynamics of the quasi-one-dimensional setup
sketched in Fig. 1: Our reference state is an equilibrium
crystalline density field in a periodic rectangular box of dimen-
sions Lx × Ly = 2a × 64(

√
3/2)a, where a is the equilibrium

lattice constant. At time t = 0 we reduce the integrated density
of all density peaks lying on an infinite row of neighboring
crystal sites along the x axis by a small amount of only 3%,
thus rendering the problem quasi-one-dimensional (see Fig. 1).
Specifically, low-amplitude Gaussians with the same center
positions and similar width as the equilibrated density peaks
were subtracted from the density field. Thus, the integrated
density of each altered peak is smaller by a few percent than
its equilibrium value. The temporal behavior of this setup is
expected to be qualitatively similar to that of a cylindrical setup
at late times, i.e., once the vacancy has diffused a large distance
from its initial position.1 Strictly speaking, the long-time
diffusion constant D should be calculated from the self-part
of a van Hove function in the presence of interactions (e.g., by
using the test-particle approach to the DDFT [47]). For a low
vacancy density, however, the collective and self-dynamics are
expected to be similar such that we have avoided the significant
additional effort to implement the test-particle approach.

The outcome of the dynamical density-functional theory
is summarized in Fig. 4 and based on the x-averaged density

1Ideally one could have started with an initial density profile which
describes an ideal single vacancy, but this causes strong numerical
problems in the ideal-gas entropy term.
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VAN TEEFFELEN, ACHIM, AND LÖWEN PHYSICAL REVIEW E 87, 022306 (2013)

FIG. 4. Results of the dynamical density-functional theory:
(a) the initial, equilibrium, x-averaged density profiles ρ0

x (y,t) for
two different values of �, � = 40 and � = 62.5, the former being
close to the melting point at � = 36, (b) the difference of the density
profile at time t and the profile at time 0 measured at the positions of
the peaks in panel (a), such that a set of discrete data set is obtained
which is in monotonic in y, (c) the variance σ 2(t) of a Gauss function
fitted to panel (b) as a function of time, and (d) the effective diffusion
constant calculated as D = σ 2

V/(2t).

field

ρx(y,t) ≡ L−1
x

∫
dx ρ(r,t). (6)

Figure 4(a) displays the equilibrium-averaged density field
ρx(y) = ρx(y,t = 0), i.e., before the introduction of vacancies,
for two different coupling strengths, � = 40 and � = 62.5,
that are close to and far from the freezing transition at �f ≈ 36,
respectively.2 The higher coupling strength corresponds to
higher and more pronounced density peaks. Removing a
fraction of 0.03 particles from the row of peaks at y = 0
leads to restoring density current from neighboring particle
rows towards the origin. This is represented by the difference
between the x-averaged density fields of the perturbed and the
unperturbed systems at their original y positions [Fig. 4(b)]:

	ρx = ρ0
x (y) − ρx(y,t) . (7)

For small initial perturbations and at long times the envelope
of 	ρx approaches a Gaussian function, which broadens over
time. The variance σ 2

V(t) is plotted in Fig. 4(c). As expected,
σ 2

V(t) shows a linear dependence of t at long times. The
long-time slope translates into a diffusion constant given by
Dv = σ 2

V/(2t) [Fig. 4(d)]. In agreement with the Brownian
dynamics simulations the diffusion constant is higher for low

2We note that while there are large differences between the freezing
point �f in DFT and the melting point �m in BD, investigating the
fluid-solid transition is beyond the scope of this work. Here we simply
quenched the system deep enough into the solid state so that the details
of the equilibrium melting process do not matter much.

FIG. 5. Results of the PFC2 model: The mean square displace-
ment σ 2

V for � = 40 (black dashed line), � = 55 (black dash-dotted
line), and � = 62.5 (black continuous line). The grey continuous
lines are linear fits to the curves. Inset: the vacancy diffusion constant
DV, calculated from the slope of the mean square displacement as a
function of �.

coupling constant of � = 40 [Dv ≈ 7(ρτB)−1] than for the
high coupling constant of � = 62.5 [Dv ≈ 4(ρτB)−1].

The same setup is studied in the PFC1 and PFC2 models.
The temporal evolution σ 2

V(t) of the width of the Gaussian en-
velope function describing the relaxing density field is shown
for the PFC2 model in Fig. 5. After a fast transient relaxation
process its dependence is linear in time. Remarkably, the
corresponding slope DV presented in the inset of Fig. 5 is
increasing for increasing �, in contrast to what has been found
before in simulation and DDFT.

The diffusion constant DV increases linearly with �

from 27(ρτB)−1, corresponding to � = 40 to 33(ρτB)−1 and
35.7(ρτB)−1 for �, equal to 55 and 62.5. The PFC1 model
gives the same incorrect trend as the PFC2 models. Again,
after a transient process the system reaches a state where
the relaxation towards equilibrium is getting diffusive but
the slope increases with increasing �. The physical reason
for the incorrect trend in both variants of PFC models is
that the PFC has a smoothened density profile and there-
fore allows for a quick diffusive current of particles from
one lattice site to another. In DDFT, on the other hand,
the full density profile is kept and the density decays to
very small values in the interstitial region between the density
peaks. Thus, particle currents between lattice sites are strongly
reduced. For increasing coupling �, the interstitial density
drops even further down and therefore reduces vacancy
diffusion more. This effect is not contained in both PFC
models. Here rather the only remaining trend is set by the
increasing interactions, which lead to larger interparticle forces
and therefore accelerate the dynamics of vacancy diffusion.
Therefore, to account for the correct defect dynamics, the
temperature dependence of the mobility prefactor in the PFC
models needs a proper fitting to reference data. Though
this reduces the predictive power of the PFC model, it may
still be useful for a fast explorative numerical study for
various dynamical effects in solids, provided this fitting is
a priori.
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IV. CONCLUSIONS

In conclusion, we have used dynamical density-functional
theory, phase-field-crystal theory, and particle-resolved Brow-
nian dynamics computer simulations to calculate the diffusion
of defects in a two-dimensional crystal of repulsive dipoles.
The typical diffusion coefficient of defect motion is expected
to decrease with increasing system temperature as confirmed
by the simulation data. This trend is reproduced in the
dynamical density-functional theory but not in the phase-field-
crystal calculations. These findings show that the PFC model
requires a fitting of the kinetic mobilities as a function of the
thermodynamic parameters if a realistic description of trends
is required to predict material properties. Given the fact that
the efficiency of the PFC model is in general achieved by
an optimal fitting procedure, also for structural predictions
[48], such a phenomenological input of the mobility is an
acceptable fact. However, it shows that clearly the dynamical
density-functional theory is more appropriate to predict the
microscopic time evolution as a first-principle theory for
Brownian systems.

Future work should address the dynamics of dipolar
mixtures of colloidal particles with different dipole moments
[49], where an equilibrium density functional for a binary
mixture [50] is needed. These mixtures show more complex

possibilities of mixed crystals as a function of the asymmetry
in their dipole moments [51]. In this case one will expect
different diffusion coefficients for different defects topologies.
Moreover, one should do a similar calculation for hard discs,
for which a very accurate functional based on fundamental
measure theory [52] was proposed recently [53]. A similar
comparison can be performed in three dimensions, e.g., for
hard spheres, where the phase-field-crystal model has been
tested against density-functional theory recently [48]. Finally
it would be interesting to consider particles with orientational
degrees of freedom which form liquid crystals with interesting
defect structures. In fact, phase-field-crystal models for liquid
crystals have been developed [54,55] and applied [56] to
freezing recently, which opens the way to describe defect
dynamics in liquid crystalline states. An alternative to the usual
phase field crystal model is the vacancy PFC model [46]. For
the future, it would be interesting to explore defect dynamics
within this variant of PFC model.
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