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A microscopic field theory for crystallization in active systems is proposed which unifies the phase-

field-crystal model of freezing with the Toner—Tu theory for self-propelled particles. A wealth of

different active crystalline states are predicted and characterized. In particular, for increasing strength

of self-propulsion, a transition from a resting crystal to a traveling crystalline state is found where the

particles migrate collectively while keeping their crystalline order. Our predictions, which are verifiable in

experiments and in particle-resolved computer simulations, provide a starting point for the design of new

active materials.

DOI: 10.1103/PhysRevLett.110.055702 PACS numbers: 64.70.dm, 82.70.Dd, 87.18.Gh

Self-propelled particles [1] exhibit fascinating collective
phenomena like swarming, swirling, and laning which
have been intensely explored by theory, simulation, and
experiment, for recent reviews, see Refs. [2–4]. In marked
contrast to passive particles, self-propelled ‘‘active’’ parti-
cles have an internal motor of propulsion, dissipate energy,
and are therefore intrinsically in nonequilibrium. Examples
of active particles include living systems, like bacteria and
microbes [5], as well as man-made microswimmers, cata-
lytically driven colloids [6,7], and granular hoppers [8].

If, at high densities, the particle interaction dominates
the propulsion, crystallization in an active system is con-
ceivable. It is expected that such ‘‘active crystals’’ have
structural and dynamical properties largely different from
equilibrium crystals due to the intrinsic drive. In fact, there
is experimental evidence for active crystals, both from
observations of hexagonal structures for catalytically-
driven colloids [9] and honeycomb-like textures for flag-
ellated marine bacteria [10,11]. Moreover, recent computer
simulations have confirmed crystallization [12–15] and
proved that melting of active crystals differs from its
equilibrium counterpart. However, though field-theoretical
modeling of active systems has been widely applied to
orientational ordering phenomena [2,16], there is no such
theory for translational ordering of active crystals nor has a
systematic classification of active crystals been achieved.

Here, we present a microscopic field-theoretical
approach to crystallization in active systems and we pro-
pose a minimal model which has the necessary ingredients
for both, crystallization and activity. In doing so, we com-
bine the phase-field crystal model of freezing [17] with the
Toner—Tu model for active systems [18] using the concept
of dynamical density functional theory [19,20]. On the one
hand, the phase-field-crystal (PFC) model as originally
introduced by Elder and co-workers [17,21] describes
crystallization of passive particles on microscopic length
and diffusive time scales. When brought into connection
with dynamical density functional theory [22–25], the PFC

model represents, in principle, a microscopic theory for
crystallization, and it has been successfully applied to a
plethora of solidification phenomena [17,21,26–30]. On
the other hand, Toner and Tu [18] investigated the onset
of collective motion in self-propelled systems from a gen-
eral hydrodynamic point of view. Phenomenological cou-
pling parameters of this model can, in principle, be justified
by dynamical density functional theory [31], too, but it
does not describe crystallization.
In our PFC model for active systems, we find a wealth of

different crystallization phenomena. First, we identify two
different types of active crystals which we call ‘‘resting’’
and ‘‘traveling’’ depending on their averaged drift velocity.
A resting crystal possesses vanishing net particle flux,
whereas a traveling crystal is migrating with a nonzero
velocity while keeping its periodicity. Starting from a
disordered initial state, a traveling crystal is typically
formed by a coarse-graining process of domains. The
threshold in the driving strength upon which traveling
crystals are formed depends on the spontaneous local
orientational order (as prescribed by the coupling parame-
ters of the bare Toner—Tu model): if there is no such order,
the threshold is finite, while there is no such threshold in
the presence of spontaneous orientational order. We iden-
tify a transition from a hexagonal to a rhombic traveling
crystal if the drive is increased further as well as resting
and traveling lamellar phases with one-dimensional peri-
odic ordering. Finally, the occurrence of honeycomb-like
structures can be explained as well within our model. The
knowledge of and control over these crystalline states
provides an attractive starting point for the design of novel
active materials since active crystals possess unique struc-
tural, phononic, and rheological properties.
In the following, we first outline our model. Our dy-

namical equations are for the local one-particle density
field c 1ðr; tÞ, a conserved scalar order parameter field
describing the reduced density modulation around a fixed
averaged density �c [17,21], and for a vector field Pðr; tÞ
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characterizing local polar ordering. Activity enters into the
equations via a nonzero self-propulsion velocity v0. In
suitably scaled units of time, length, and energy, our basic
dynamic equations read

@tc 1 ¼ r2 �F
�c 1

� v0r � P; (1)

@tP ¼ r2 �F
�P

�Dr

�F
�P

� v0rc 1: (2)

Here, Dr is a rotational diffusion coefficient. F is a free
energy functional of c 1 and P, gained from density func-
tional theory. Equations (1) and (2) are consistent with
phenomenological symmetry arguments and involve the
simplest nontrivial coupling between the two order pa-
rameter fields c 1 and P. They can also be derived from
microscopic dynamical density functional theory [32]
within an appropriate gradient and Taylor expansion of
the order parameter fields [20,33,34]. In the sequel, we
shall consider two spatial dimensions only.

We now further specify the free energy functional F to
F ¼ F pfc þF P where

F pfc ¼
Z

d2r

�
1

2
c ½"þ ð1þr2Þ2�c þ 1

4
c 4

�
(3)

is the traditional PFC functional [17,21] describing the
tendency of the material to form periodic structures.
Here, " sets the temperature [17,21], and the order para-
meter c corresponds to the total density c ¼ �c þ c 1.
The polarization-dependent part

F P ¼
Z

d2r

�
1

2
C1P

2 þ 1

4
C4ðP2Þ2

�
(4)

characterizes local orientational ordering related to the
active drive following the approach by Toner and Tu [18]
for neglected convection. The two coupling parameters C1

and C4 govern the local orientational ordering due to the
drive. IfC1 ¼ C4 ¼ 0, only gradients in the density c 1 can
induce local polar order P of the active driving. For C1 > 0
(C4 ¼ 0), diffusion tends to reduce the polar order gener-
ated by the density gradients. In the third case, C1 < 0 and
C4 > 0, a net local driving spontaneously emerges already
in the absence of density gradients.

Clearly, on the one hand, for vanishing self-propulsion
v0 ¼ 0, Eqs. (1) and (2) decouple and the density equation
reduces to the usual phase field crystal model [17,21]. On
the other hand, ifF pfc is neglected, the remaining terms are

contained in the model by Toner et al. [18,35], except for
the higher-order term in P that contributes to translational
diffusion. Summarizing, Eqs. (1)–(4) form a minimal
approach to characterize crystallization in actively driven
systems.

We numerically determined the phase diagram by
scanning the �c -" plane while keeping the parameters C1,
C4, and v0 fixed. As for any numerical result re-
ported subsequently, we for each set of parameter values

( �c , ", C1, C4, v0) started from random initial conditions
and then iterated Eqs. (1)–(4) forward in time. Numerical
measurements were carried out after equilibration, and a
systematic finite size study was performed to test the
validity of our results.
For the decoupled case v0 ¼ 0, the equilibrium phase

diagram [21] corresponding to the energy functional
Eq. (3) is shown in Fig. 1(a). For nonzero active drive
v0, we will first report on the case C1 > 0.
When we moderately increase v0 from zero for C1 > 0,

the phase boundaries undergo a temperature shift �" to
lower temperatures. An example is depicted in Fig. 1(b).
Comparison to Fig. 1(a) shows that switching on the active
drive melts crystals and lamellae close to the liquid phase
boundary. The patterns still remain at rest, however. For
this case, a linear stability analysis and derived amplitude
equations for c 1 and P predict �" / v2

0=C1, which was

also verified numerically. In this sense, self-propulsion
renormalizes the temperature corresponding to the motion
of the individual self-propelled particles when interpreted
in terms of a diffusion process [36,37].
We present an example snapshot of the resting crystal-

line phase in Fig. 2(a). The peaks of the density distribution
c 1 form a hexagonal lattice as dictated by the PFC
energy functional. P points down the density gradients.
Consequently, the polarization field forms ‘‘þ1’’-defects
centered at the density peaks. Since P describes the local
direction of active drive, density is convected out of the
peaks by the active propulsion v0. This mechanism coun-
teracts the density diffusion into the peaks described by the
PFC energy functional. Therefore, lower temperatures are

FIG. 1 (color online). Phase diagrams (‘‘rcryst’’: resting
crystals; ‘‘rlam’’: resting lamellae; ‘‘tcryst’’: traveling crystals;
‘‘tlam’’: traveling lamellae). (a) For C1 ¼ 0, v0 ¼ 0 the
equilibrium phase field crystal model is recovered. Equilibrium
phase boundaries given by the energy functional are indicated
for the liquid–hexagonal (dashed line) and hexagonal–lamellar
(dash-dotted line) transitions. (b) For C1 ¼ 0:2, v0 ¼ 0:35 the
structures are still at rest, but the phase boundaries are shifted by
a value �". (c) For C1 ¼ 0:2, v0 ¼ 0:7 the structures are
traveling and phase boundary lines are omitted for clarity. The
black stars in the bottom left of panels (b) and (c) mark the
intersection points with the curve in Fig. 3. In all cases C4 ¼ 0,
Dr ¼ 0:5.
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necessary for the patterns to form in the presence of an
active drive, corresponding to the temperature shift �" in
Fig. 1(b). In the resting crystalline and lamellar case, both
tendencies balance each other so that the averaged net
particle flux vanishes.

With increasing active drive, the density peaks start to
travel above a critical value v0;c. Such a state is illustrated

in Fig. 2(b). The centers of the density peaks are now
shifted with respect to centers of the ‘‘þ1’’-defects in the
polarization field. This reduced symmetry induces active
propulsion: a net orientation of the polarization field
emerges when averaged over the area of a single density
peak. The consequence is an active convection of each
density peak, originating from the PFC density modula-
tion. These results are in agreement with a linear stability
analysis of Eqs. (1) and (2) which predicts that propagating
modes appear above a threshold value v0;c.

With further increasing v0, the hexagonal pattern is
deformed to a rhombic one. In the end, we observe a nearly
quadratic structure as depicted in Fig. 2(c). This structural
hexagonal–rhombic–quadratic transition appears to be
smooth and continuous. Finally, we observe that the
traveling crystal can be melted into a traveling lamellar
state if v0 is increased to still higher values. This traveling

crystalline–lamellar transition occurs rather abruptly and is
also evident when we compare the two phase diagrams in
Figs. 1(b) and 1(c). There, with increasing v0, the traveling
lamellar regions grow into the traveling crystalline regions.
An example snapshot of such traveling lamellae is shown
in Fig. 2(d).
To quantify the scenario further, we tracked themotion of

each density peak. We determined the individual peak
velocities vi, where i ¼ 1; . . . ; Np andNp denotes the num-

ber of peaks. Samples of up to 1000 density peaks were
investigated. The sample-averaged peak velocity magni-

tude follows as vm ¼ PNp

i¼1 kvik=Np. In addition, we calcu-

lated the degree of polar orientational order of the

normalized peak velocities pv ¼ kðPNp

i¼1 vi=kvikÞk=Np.

This order parameter detects whether the peaks move
coherently (collectively) into the same direction.
For C1 > 0, Fig. 3 clearly illustrates the existence of a

threshold value v0;c at which propagation starts. As indi-

cated in the inset, we observed a regular swinging motion
of the hexagonal crystal peaks close to the threshold. With
increasing values of active drive, we subsequently find the
states illustrated in Figs. 2(a)–2(d). The averaged peak
velocity magnitude vm monotonically increases, except
for an abrupt drop at the traveling quadratic–lamellar
transition. We can obtain a traveling quadratic crystal

FIG. 2 (color online). Snapshots of the order parameter fields
for the different phases observed with increasing active drive v0

at ð �c ; "; C1; C4Þ ¼ ð�0:4;�0:98; 0:2; 0Þ: (a) resting hexagonal,
v0 ¼ 0:1, (b) traveling hexagonal, v0 ¼ 0:5, (c) traveling qua-
dratic, v0 ¼ 1, (d) traveling lamellar, v0 ¼ 1:9. Brighter color
corresponds to higher densities c 1. Thin bright needles illustrate
the polarization field P pointing from the thick to the thin ends.
In panels (b)—(d) the predominant direction of motion is
indicated by the bright arrows. Only a fraction of the numerical
calculation box is shown.

FIG. 3 (color online). Sample-averaged magnitude vm of the
crystal peak velocities (left scale) and polar order parameter pv

of the crystal peak velocity vectors (right scale) as a function of
v0 for ð �c ; "; C1; C4Þ ¼ ð�0:4;�0:98; 0:2; 0Þ. At the threshold
collective, crystalline motion sets in. Thick arrows mark the
positions where the snapshots of Fig. 2 were taken; black stars
indicate the intersection points with the phase diagrams in
Figs. 1(b) and 1(c). The region above threshold where regular
swinging motion could be observed is marked in gray. When a
surrounding background fluid can be set into motion, hydro-
dynamic interactions can increase the nonzero values of vm

(dash-dotted line). Inset: peak trajectories illustrating a state of
regular swinging motion in a hexagonal crystal; different colors
correspond to different peaks; only trajectories of a horizontal
row of density peaks are shown that started at the bottom and
were traveling to the top of the picture while tracking was
performed.
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from superimposing perpendicularly oriented traveling

lamellae. Their intersections form peaks that travel
ffiffiffi
2

p
times faster than each single lamella by itself, which
explains the magnitude of the drop in the vm-curve. The
lamellae in our case appear from the phase field crystal
functional and in this sense are different from the prop-
agating stripe patterns observed before [38]. However, the
propagation mechanism is in both cases convection due to
self-propulsion [39].

When a surrounding background fluid, up to now
considered as overdamped and at rest, can be set into
motion, hydrodynamic interactions [40] between the peaks
increase the nonzero values of vm as indicated in Fig. 3
[32]. Furthermore, ordered collective motion generally
becomes less stable [41], which here is reflected by an
earlier appearance of the lamellar structures. In contrast,
the threshold value v0;c remains unaltered.

Furthermore, we observe in Fig. 3 that the polar peak
velocity order parameter pv jumps to a value close to one at
the threshold and then further increases. This indicates that
after equilibration of the sample the density peaks migrate
coherently into the same direction and the crystal travels as
a single object. However, at each value of v0, this collec-
tive motion has to first develop from the disordered initial
state. The latter process occurs through a coarse-graining
dynamics from domains of different directions of collec-
tive motion, as qualitatively illustrated in Fig. 4.

Finally, if we set C1 < 0 and C4 > 0, a net polar direc-
tion P of self-propulsion spontaneously occurs as in the
Toner—Tu model [18,35]. For this scenario, we never
observed a finite threshold value of v0. Propagating
structures evolved for all tested nonzero values of v0.
Again, a hexagonal–rhombic–quadratic–lamellar transi-
tion sequence was observed with increasing v0.
Furthermore, we note that our equations of motion are
invariant under the transformation �c ! � �c , c 1!�c 1,
P ! �P. Consequently, our analysis equally applies for
active honeycomb textures when �c > 0. Such textures
were observed for flagellated marine bacteria [10,11].

In summary, we extended the phase field crystal model
[17,21] to active systems by combining it with the
approach of Toner et al. [18,35]. As a result, the active
drive favors the liquid and lamellar states in the PFC phase
diagram and induces a wealth of new active crystalline
states of hexagonal, honeycomb, rhombic, and quadratic
texture. The global motion of all these structured states
is either ‘‘resting’’ or ‘‘traveling’’. The transition from
‘‘resting’’ to ‘‘traveling’’ involves a complex intermediate
swinging motion. When prepared from an initially disor-
dered state, traveling crystals emerge through coarse-
graining from a multidomain texture.
Our model can be extended from two to three spatial

dimensions where more crystalline lattice structures
become stable [25] and to binary mixtures of driven and
undriven particles promising a rich variety of mixed active
crystals. In principle, our predictions are verifiable in
experiments on self-propelled particles and in particle-
resolved computer simulations at high density [13–15].
Very recently, traveling crystals have in fact been found
in such simulations [42]. Since the new traveling crystal-
line structures show a nontrivial dynamical response, they
may serve as a building block for a new class of active
matter with unusual rheological, phononic, and possibly,
also photonic properties.
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