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In the past decade, classical dynamical density functional theory (DDFT) has been developed and
widely applied to the Brownian dynamics of interacting colloidal particles. One of the possible
derivation routes of DDFT from the microscopic dynamics is via the Mori-Zwanzig-Forster projec-
tion operator technique with slowly varying variables such as the one-particle density. Here, we use
the projection operator approach to extend DDFT into various directions: first, we generalize DDFT
toward mixtures of n different species of spherical colloidal particles. We show that there are in
general nontrivial cross-coupling terms between the concentration fields and specify them explicitly
for colloidal mixtures with pairwise hydrodynamic interactions. Second, we treat the internal energy
density as an additional slow variable and derive formal expressions for an extended DDFT contain-
ing also the internal energy density. The latter approach can in principle be applied to colloidal dy-
namics in a nonzero temperature gradient. For the case without hydrodynamic interactions the diffu-
sion tensor is diagonal, while thermodiffusion – the dissipative cross-coupling term between internal
energy density and concentration – is nonzero in this limit. With finite hydrodynamic interactions also
cross-diffusion coefficients assume a finite value. We demonstrate that our results for the extended
DDFT contain the transport coefficients in the hydrodynamic limit (long wavelengths, low frequen-
cies) as a special case. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769101]

I. INTRODUCTION

While classical density functional theory has become a
quite popular tool to calculate static properties of inhomo-
geneous fluids,1–5 its generalization to dynamical, i.e., time-
dependent, properties is much less advanced.6 Most progress
has been achieved for completely overdamped Brownian par-
ticles, which are realized as colloidal suspensions.7, 8 In a sem-
inal paper of the year 1999, Marconi and Tarazona9, 10 have
derived a dynamical density functional theory (DDFT) from
the Langevin equations describing the motion of the individ-
ual particles. The resulting DDFT equation corresponds to the
field-theoretical model B for a single scalar order parame-
ter, where the current is proportional to the functional den-
sity derivative of the generalized equilibrium Helmholtz free-
energy functional (generalized Fick’s law). In 2004, Archer
and Evans11 have used the stochastically equivalent Smolu-
chowski picture to rederive this DDFT equation. In 2009, Es-
pañol and Löwen12 have employed the Mori-Zwanzig-Forster
projection operator technique (MZFT)13–19 as a third deriva-
tion route by using the one-particle density as the only slow
variable of the system.

Subsequently, DDFT has been generalized toward bi-
nary mixtures20–23 and anisotropic particles24–26 as well as
to the dynamics of freezing27, 28 and wetting.29 Moreover,
solvent-mediated hydrodynamic interactions between col-
loids, which are typically neglected in the modeling al-
though they are important for actual colloidal samples,
have been included into DDFT for the one-component
case.30–32 More recent generalizations concern particle self-

diffusion in complex environments,33, 34 externally imposed
flow fields,35, 36 colloidal sedimentation,37 and “active” self-
propelled particles.26, 38

In this paper, we follow the route via the MZFT in
order to derive an extended DDFT (EDDFT), which goes
beyond former DDFT in two respects. At first, we con-
sider a multicomponent mixture of n different species of
spherical, i.e., isotropic, colloidal particles. Hitherto, calcu-
lations for binary mixtures20–23 assumed a diagonal mobil-
ity matrix. Here, we show that there are in general nontriv-
ial cross-coupling terms between the concentration fields. We
specify these non-diagonal terms explicitly for colloidal mix-
tures with pairwise hydrodynamic interactions. Therefore, we
establish the basic dynamical equations to apply DDFT to
the dynamics of multicomponent colloidal systems includ-
ing their hydrodynamic interactions. This constitutes a clas-
sic colloid problem, which has been explored intensely over
several decades by using mode-coupling-like techniques,39–42

computer simulations,43, 44 and experiments.45, 46 Second, we
treat the internal energy density as an additional slow variable
and derive formal expressions for an EDDFT containing also
the internal energy density. This applies to situations, where a
nonzero temperature gradient is imposed leading to thermod-
iffusion, which is also known as the Ludwig-Soret effect.47–52

The derived equations also incorporate the reciprocal effect,
which is the so-called Dufour effect,53 where a concentration
gradient causes energy transport.

The MZFT is also the standard derivation route for mode-
coupling theory (MCT) describing the dynamics of liquids.
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MCT has been applied both to molecular54 and colloidal
liquids55–59 and is by now a pivotal theory for the glass tran-
sition. Here, we are using the same theoretical framework of
the MZFT to derive an EDDFT. Furthermore, we are using
this common basis to compare EDDFT and MCT. A possi-
ble connection between DDFT and MCT has already been
pointed out by Archer.60, 61

There is also a close connection of the MZFT with several
versions of the classical MCT close to phase transitions,62–65

which have been pioneered by Kawasaki. For example, for the
isotropic-nematic phase transition in liquid crystal side-chain
polymers a projection operator technique of MZFT-type66, 67

has been used to construct a MCT,68, 69 which was able to ex-
plain the experimental results obtained by two groups70–72 as
being due to a dynamic nonlinear coupling between order-
parameter variations and the strain tensor.

The use of MZFT to hydrodynamic condensed sys-
tems started with the work by Forster for nematic liquid
crystals15, 73 and has been applied in the following to a num-
ber of complex fluids with spontaneously broken continu-
ous symmetries,17 in particular to the superfluid phases of
3He74, 75 and, more recently, to uniaxial magnetic gels.76

These applications were based on a generalization of the use
of correlation functions in the hydrodynamic regime with ap-
plications to simple fluids77 and superfluid 4He.78 Thus, for
all extensions of DDFT to more variables the hydrodynamic
regime of long wavelengths and low frequencies emerges for
all condensed systems as a natural limit to check the results
obtained. Conversely, the EDDFT can be used to investigate
how far the range of hydrodynamic considerations can be ex-
tended to larger values of frequencies and wave vectors.

The paper is organized as follows: in Sec. II, we sum-
marize in detail the technical aspects of the projection oper-
ator technique we use in a coherent fashion. In Sec. III, we
present the results of the application of the MZFT to col-
loidal mixtures in detail including the internal energy density
as a variable. Finally, we summarize our results and present
a perspective for future generalizations of the present work in
Sec. IV.

II. MORI-ZWANZIG-FORSTER TECHNIQUE

The MZFT13–15 is described in detail in several
textbooks.16–19 Further below, we comprehensively summa-
rize the essential ideas that are relevant for this paper and ad-
just the notation to the problem at hand.

A. General formalism

For the purpose of this paper, it is most appropriate, but
in general not necessary, to consider a grand-canonical en-
semble of systems of N particles. The total ensemble �̂t with
Hamiltonian Ĥ (�̂t )79 involves as canonical variables the 6N
coordinates qi(t) and momenta pi(t) of the N particles. It can
be described by the total probability density ρ̂(t) ≡ ρ̂(�̂t ),
which is given by the solution of the Liouville-von Neumann
equation80

˙̂ρ = −L̂ρ̂ = − i

¯
[Ĥ , ρ̂], ρ̂(t) = e−L̂t ρ̂(0) (1)

with the Liouvillian L̂(�̂t ), the imaginary unit i, the reduced
Planck constant ¯ = h/(2π ), and the commutator [X, Y] = XY
− YX of X and Y. Alternatively, it is also possible to describe
the same system in terms of only a few relevant variables
âi(t) ≡ âi(�r, t) ≡ âi(�̂t ; �r)81 with i = 1, . . . , n, which we as-
sume to be real-valued in the following. The corresponding
relevant ensemble �t is associated with the relevant probabil-
ity density ρ(t) ≡ ρ(�̂t ). Using the relevant probability den-
sity ρ(t) and the grand-canonical trace Tr, which is given for
classical systems by

Tr =
∞∑

N=0

eβμN

N !h3N

∫
�̂t

d�̂t (2)

with the inverse thermal energy β = 1/(kBT), Boltzmann con-
stant kB, absolute temperature T, chemical potential μ, and
ensemble differential d�̂t = dq1dp1 · · · dq3N dp3N , the time-
dependent ensemble average

〈X(0)〉t = Tr(ρ(t)X(0)) = Tr(ρ(0)X(t)) (3)

of an arbitrary variable X(t) can be defined. The averaged rel-
evant variables ai(t) ≡ ai(�r, t)82 are given by

ai(t) = 〈âi(0)〉t = Tr(ρ(t)âi(0)) = Tr(ρ̂(t)âi(0)). (4)

For a given thermodynamic functional like the generalized
Helmholtz free-energy functional F , their thermodynamic
conjugates a

�

i (t) ≡ a
�

i (�r, t) can be obtained by functional
differentiation:83

a
�

i = δF
δai

. (5)

A possible representation for the generalized Helmholtz free-
energy functional is

F = Tr(ρĤ ) + 1

β
Tr(ρ ln(ρ)). (6)

The generalized Helmholtz free-energy functional F[�a]84 de-
pends functionally on the averaged relevant variables ai(t) and
is related to the grand-canonical functional �[�a�], that de-
pends functionally on the thermodynamic conjugates a

�

i (t),
by the Legendre transformation

�[�a�] = F[�a] − a
�

i ai . (7)

A map from the total ensemble �̂t onto the relevant en-
semble �t is constituted by a suitable projection operator
P̂t = 1 − Q̂t . This projection operator can be written as16

P̂tX = Tr(ρ(t)X) + (âi − ai(t)) Tr

(
∂ρ(t)

∂ai(t)
X

)
. (8)

It projects onto a space that is spanned by the linearly
independent85 variables âi(t) and the unity id.

The MZFT consists in the application of this operator
in order to obtain transport equations for the relevant vari-
ables âi(t), that are equivalent to the Liouville-von Neumann
equations

˙̂ai = L̂âi = i

¯
[Ĥ , âi], âi(t) = eL̂t âi(0), (9)

by projecting out all irrelevant variables. These transport
equations are given, for example, in Ref. 16 in its general
form.
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The dynamics of the reduced relevant variables 
âi(t)
= âi(t) − ai(t) is given by the (exact) generalized Langevin
equations16, 17


 ˙̂ai(t) = �ij (t)
âj (t) +
∫ t

0
dt ′ Kij (t, t ′)
âj (t ′) + F̂i(t)

(10)
with the frequency matrix

�ij (t) = ∂

∂aj (t)
Tr(ρ(t) ˙̂ai), (11)

the memory matrix

Kij (t, t ′) = Tr

(
∂ρ(t ′)
∂aj (t ′)

L̂ Q̂t ′ Ĝ(t ′, t) ˙̂ai

)

− ȧk(t ′) Tr

(
∂2ρ(t ′)

∂aj (t ′)∂ak(t ′)
Ĝ(t ′, t) ˙̂ai

)
, (12)

and the noise

F̂i(t) = Q̂0 Ĝ(0, t) ˙̂ai. (13)

Here, Ĝ(t ′, t) is the time-ordered exponential operator

Ĝ(t ′, t) = T− exp

(∫ t

t ′
dt ′′ L̂Q̂t ′′

)
, (14)

where the time-ordering operator T− orders operators from
left to right as time increases.

Furthermore, the dynamics of the averaged relevant vari-
ables ai(t) is described by the averaged Langevin equations16

ȧi(t) = Tr(ρ(t) ˙̂ai) +
∫ t

0
dt ′ Tr(ρ(t ′)L̂ Q̂t ′ Ĝ(t ′, t) ˙̂ai) + Fi(t)

(15)
with the averaged noise Fi(t) = Tr(ρ(0)F̂i(t)).

The frequency matrix �ij(t) takes the instantaneous re-
versible contributions to the dynamics of the relevant vari-
ables into account. In linearized form, it is an equal-time
commutator of field operators. Whenever the chosen relevant
variables âi(t) have the same time-reversal behavior, the fre-
quency matrix vanishes. The memory matrix Kij(t, t′), on the
other hand, comprises the non-instantaneous reversible con-
tributions and all dissipative contributions to the dynamics of
the relevant variables. The important finding that the memory
matrix can also include (non-instantaneous) reversible contri-
butions was first shown by Forster.15, 17, 73

B. Special generalized probability density

The transport equations for the relevant variables and
their correlation functions are given in this section for the
specific case of the generalized grand canonical probability
density

ρ(t) = 1

�(t)
e−βĤeff(t) (16)

with the grand-canonical partition sum �(t) and the effective
Hamiltonian

Ĥeff(t) = Ĥ − a
�

i (t)âi . (17)

For this particular choice, the projection operator (8) is spec-
ified as the Robertson projector (see Refs. 12, 16, and 86)87

P̂tX = Tr(ρ(t)X) + (âi − ai(t)) χ−1
ij (t) Tr

(
∂ρ(t)

∂a
�

j (t)
X

)
(18)

with the symmetric non-equilibrium susceptibility matrix

χij (t) = δai(t)

δa
�

j (t)
= β Tr(ρ(t)(âi − ai(t))Êt (âj − aj (t))),

(19)

the derivative88

∂ρ(t)

∂a
�

i (t)
= β Êt (âi − ai(t))ρ(t), (20)

and the operator

ÊtX =
∫ 1

0
dλ e−λβĤeff(t)XeλβĤeff(t). (21)

This operator can be omitted for a classical system: ÊtX = X.

1. Non-equilibrium dynamics

The particular choice (16) of ρ(t) leads to the exact trans-
port equations16

ȧi(t) = −Bij (t)a�

j (t) −
∫ t

0
dt ′ Rij (t, t ′)a�

j (t ′) (22)

with the antisymmetric drift matrix

Bij (t) = i

¯
Tr(ρ(t)[âi , âj ]) = −Bji(t) (23)

and the retardation matrix

Rij (t, t ′) = β Tr(ρ(t ′)(Q̂t ′ Ĝ(t ′, t) ˙̂ai)(Êt ′ ˙̂aj )). (24)

Notice that these transport equations are applicable also far
from thermodynamic equilibrium.

2. Equilibrium correlations

In thermodynamic equilibrium, the transport equations
for equilibrium time correlation functions (so-called Kubo
functions17)

Cij (t) = 〈

â

eq
i (t)

∣∣
â
eq
j (0)

〉
eq (25)

with the equilibrium fluctuations 
â
eq
i (t) = âi(t) − a

eq
i have

no noise term. Here, the letters “eq” denote equilibrium quan-
tities and Mori’s scalar product is given by

〈X|Y 〉eq = Tr(ρeqXÊeqY ) (26)

with the equilibrium probability density

ρeq = 1

�eq
e−βĤ (27)

and the operator

ÊeqX =
∫ 1

0
dλ e−λβĤ X eλβĤ . (28)
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On the basis of Mori’s scalar product (26), the equilibrium av-
erage 〈X〉eq = 〈X| id〉eq = Tr(ρeqX) is defined. In the follow-
ing, we present transport equations for the time correlation
functions Cij(t). These transport equations are at first given in
position-time space (�r, t) and later analyzed in the context of
linear response theory in Fourier-Laplace space (�k, z).

a. Position-time space: In the linear regime near equi-
librium, the dynamics of the time correlation functions Cij(t)
can be derived from Eq. (22) by linearization. The resulting
transport equations are given by16, 17

Ċij (t) = �
eq
ik Ckj (t) +

∫ t

0
dt ′ Keq

ik (t − t ′)Ckj (t ′) (29)

with the equilibrium frequency matrix

�
eq
ij = −B

eq
ik χ

eq−1
kj (30)

and the equilibrium memory matrix

K
eq
ij (t) = −R

eq
ik (t) χ

eq−1
kj . (31)

These equilibrium matrices depend on the equilibrium drift
matrix89

B
eq
ij = i

¯
〈[âi , âj ]〉eq = −β

〈

 ˙̂aeq

i

∣∣
â
eq
j

〉
eq, (32)

on the equilibrium retardation matrix90

R
eq
ij (t) = β

〈
Q̂eqĜeq(t) ˙̂ai

∣∣ ˙̂aj

〉
eq, (33)

and on the static equilibrium susceptibility matrix

χ
eq
ij = β

〈

â

eq
i

∣∣
â
eq
j

〉
eq. (34)

Here, the equilibrium projector P̂eq = 1 − Q̂eq is given by

P̂eqX = 〈X〉eq + β
â
eq
i χ

eq−1
ij

〈

â

eq
j

∣∣X〉
eq (35)

and the equilibrium exponential operator is

Ĝeq(t) = eL̂Q̂
eqt . (36)

Notice that the linearized transport equation (29) can be used
to determine the equilibrium frequency matrix �

eq
ij and the

equilibrium memory matrix K
eq
ij (t) exactly. It is thus possi-

ble to calculate these matrices by the evaluation of equilib-
rium correlation functions obtained from experiments or mi-
croscopic simulations.

b. Fourier-Laplace space: In Fourier-Laplace space (see
the Appendix) the dynamical equation (29) obtain the simpler
form17

(
zδik − �

eq
ik − K̃

eq
ik (z)

)
C̃kj (z) = Cij (0) = χ

eq
ij

β
(37)

with the obvious solution

C̃ij (z) = β−1(z1 − �eq − K̃eq(z))−1
ik χ

eq
kj . (38)

Notice that C̃ij (z), Cij(0), �
eq
ij , K̃

eq
ij (z), and χ

eq
ij are given in

Fourier space, although their wave-vector dependence is not

denoted explicitly here. Furthermore, X(t) denotes a time-
dependent quantity, X̃(ω) its Fourier transform, and X̃(z) its
Laplace transform in this paragraph.

The Fourier transformed equilibrium frequency matrix
�

eq
ij and the Fourier-Laplace transformed equilibrium mem-

ory matrix K̃
eq
ij (z) in Eqs. (37) and (38) are given by

�
eq
ij = −B

eq
ik χ

eq−1
kj , K̃

eq
ij (z) = −R̃

eq
ik (z) χ

eq−1
kj (39)

with the Fourier transformed equilibrium drift matrix

B
eq
ij = i

π

∫
R
dω χ̃ ′′

ij (ω), (40)

the Fourier-Laplace transformed equilibrium retardation
matrix91

R̃
eq
ij (z) = β

〈

 ˙̂aeq

i

∣∣Q̂eq
(
z + L̂eq

Q̂
)−1Q̂eq

∣∣
 ˙̂aeq
j

〉
eq (41)

with the equilibrium self-adjoined reduced Liouvillian L̂eq
Q̂

= Q̂eqL̂Q̂eq,92 and the Fourier transformed static equilibrium
susceptibility matrix

χ
eq
ij = lim

ε→0+
χ̃ij (z)

∣∣
z=ε

= 1

π

∫
R
dω

χ̃ ′′
ij (ω)

ω
. (42)

Here, the dynamic susceptibility matrix

χ̃ij (z) = 1

π

∫
R
dω

χ̃ ′′
ij (ω)

ω − iz
(43)

and the absorptive response function

χ ′′
ij (t − t ′) = 1

2¯
〈[âi(t), âj (t ′)]〉eq (44)

have been introduced. As usual in the context of linear re-
sponse theory, the absorptive response function appears as a
contribution in the complex response function

χ̃ij (ω) = χ̃ ′
ij (ω) + i χ̃ ′′

ij (ω) (45)

with the reactive part χ̃ ′
ij (ω) and the absorptive part χ̃ ′′

ij (ω),
whose non-diagonal elements are not necessarily real-valued.
The reactive response function χ̃ ′

ij (ω) and the absorptive re-
sponse function χ̃ ′′

ij (ω) are dependent and related to each other
by the Kramers-Kronig (dispersion) relations

χ̃ ′
ij (ω) = 1

π
P
∫
R
dω′ χ̃ ′′

ij (ω′)

ω′ − ω
,

χ̃ ′′
ij (ω) = − 1

π
P
∫
R
dω′ χ̃ ′

ij (ω′)

ω′ − ω
.

(46)

Also the time correlation functions Cij(t) can be expressed in
terms of the absorptive response function:

Ċij (t) = 2

iβ
χ ′′

ij (t). (47)

Hence, their Laplace transforms C̃ij (z) are given by

C̃ij (z) = 1

iπβ

∫
R
dω

χ̃ ′′
ij (ω)

ω(ω − iz)
. (48)
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C. Slow variables

If the relevant variables vary sufficiently slowly with time
so that there is a clear separation of time scales between the
slowly relaxing relevant variables and the fast relaxing irrel-
evant variables, the transport equations (22) and (29) can be
simplified by neglecting contributions of order O( ˙̂a3

i ). Using
the expansion19

eQ̂t L̂t = eL̂t + O( ˙̂ai), (49)

the retardation matrix (24) can be approximated by16

Rij (t, t ′) = β Tr(ρ(t)(eL̂(t−t ′)Q̂t
˙̂ai)(Êt

˙̂aj ))+ O
(

˙̂a3
k

)
. (50)

1. Non-equilibrium dynamics

The approximation (50) results in the simplified trans-
port equations for slow variables16

ȧi(t) = −Bij (t)a�

j (t) − βDij (t)a�

j (t). (51)

This Markovian approximation is also applicable far from
thermodynamic equilibrium, but it is not appropriate, if ef-
fects related to “long time tails” (like the glass transition92)
are investigated.16 The transport coefficients are given by the
drift matrix Bij(t) and the mobility matrix Dij(t). The mobility
matrix is given by the Green-Kubo-type expression

Dij (t) =
∫ ∞

0
dt ′ Tr(ρ(t)(eL̂t ′Q̂t

˙̂ai)(Êt
˙̂aj )). (52)

In the classical limit, this expression simplifies to12, 19

Dij (t) =
∫ ∞

0
dt ′ Tr

(
ρ(t)(Q̂t

˙̂aj )eL̂t ′(Q̂t
˙̂ai)

)
, (53)

where a redundant Q̂t has been inserted in front of ˙̂aj in or-
der to symmetrize the expression. Further redundant operators
Q̂t could be inserted in the exponential function in Eq. (53) by
replacing the Liouvillian L̂ by the self-adjoint reduced Liou-
villian L̂Q̂

t = Q̂t L̂Q̂t . Notice that the transport equation (51)
in combination with the approximation (53) is exact up to the
third order in ˙̂ai .

2. Equilibrium correlations

With the same approximation, the transport equation (29)
for the equilibrium time correlation functions Cij(t) becomes

Ċij (t) = �
eq
ik Ckj (t) + �

eq
ik Ckj (t). (54)

Here, we introduced the transport matrix

�
eq
ij = −βD

eq
ik χ

eq−1
kj (55)

with the mobility matrix

D
eq
ij =

∫ ∞

0
dt ′

〈

 ˙̂aeq

i

∣∣Q̂eqeL̂t ′Q̂eq
∣∣
 ˙̂aeq

j

〉
eq. (56)

D. Conserved quantities

An important example for slowly relaxing variables is lo-
cal densities of conserved quantities. The transport equations
of such conserved quantities âi(�r, t) can be written as conser-
vation laws

˙̂ai + �∇�r · �̂J (i) = 0 (57)

with local currents �̂J (i)(�r, t) corresponding to âi(�r, t).
Analogous conservation laws hold for the averaged vari-
ables ai(�r, t) with the averaged local currents �J (i)(�r, t)
= Tr(ρ(t) �̂J (i)(�r, 0)): ȧi + �∇�r · �J (i) = 0.

1. Non-equilibrium dynamics

Since only classical systems with slow variables are con-
sidered in the following, dynamical equations for the time-
evolution of the averaged relevant variables ai(�r, t) can be
derived from Eqs. (15), (51), (53), and (57). These are the
general classical extended DDFT equations

ȧi(�r, t) = −�∇�r ·Tr(ρ(t) �̂J (i)(�r, 0))

+
n∑

j=1

�∇�r ·
∫
R3
d3r ′ βD(ij )(�r, �r ′, t) �∇�r ′a

�

j (�r ′, t) (58)

with the diffusion tensor

D
(ij )
kl (�r, �r ′, t) =

∫ ∞

0
dt ′ Tr(ρ(t)(Q̂t Ĵ

(j )
l (�r ′, 0))eL̂t ′(Q̂t Ĵ

(i)
k (�r, 0))).

(59)
If the variables âi(t) are real and have definite time-reversal
signatures, one can show that D

(ij )
kl (�r, �r ′, t) is symmetric:17

D
(ij )
kl (�r, �r ′, t) = D

(ji)
lk (�r, �r ′, t). This statement is known as On-

sager’s principle.93

The EDDFT equation (58) can be interpreted as gener-
alized drift-diffusion equations, where the first term on the
right-hand-side of Eq. (58) is associated with drift and the
second term is associated with diffusion. Notice that the
drift term, which is not present in traditional DDFT,9–12, 26

is closely related to the current �̂J (i)(�r, t), while the diffusion

term is related to the time autocorrelation of �̂J (i)(�r, t).

2. Equilibrium correlations

The assumption of conserved quantities can also be used
to rearrange the transport equation (54) for the equilibrium
time correlation functions Cij (�r, �r ′, t) into

Ċij (�r, �r ′, t) =
n∑

k=1

�∇�r ·
∫
R3
d3r ′′ L(ik)

eq (�r, �r ′′)Ckj (�r ′′, �r ′, t) (60)

with the total transport matrix

L(ij )
eq (�r, �r ′) = �(ij )

eq (�r, �r ′) + �(ij )
eq (�r, �r ′). (61)

This matrix includes the contributions

�(ij )
eq (�r, �r ′) = −

n∑
k=1

∫
R3
d3r ′′ B(ik)

eq (�r, �r ′′) χ
eq−1
kj (�r ′′, �r ′) (62)
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and

�(ij )
eq (�r, �r ′) =

n∑
k=1

∫
R3
d3r ′′ βD(ik)

eq (�r, �r ′′) �∇�r ′′χ
eq−1
kj (�r ′′, �r ′)

(63)

with the equilibrium drift tensor

B(ij )
eq (�r, �r ′) = β

〈 �̂J (i)(�r, 0)
∣∣
â

eq
j (�r ′, 0)

〉
eq (64)

and the equilibrium diffusion tensor

D(ij )
eq (�r, �r ′) =

∫ ∞

0
dt ′ 〈 �̂J (i)(�r, 0)|Q̂eqeL̂t ′Q̂eq| �̂J (j )(�r ′, 0)〉eq. (65)

III. COLLOIDAL MIXTURES

So far, our considerations hold for arbitrary many-
particle systems that are described by the Liouville-von Neu-
mann equation (1). We now focus on colloidal systems, where
Nc big and slow (colloidal) particles are suspended in a sol-
vent consisting of N0 
 Nc much smaller and faster (atomic
or molecular) particles so that there is a clear separation of
time scales between the slow overdamped Brownian dynam-
ics of the colloidal particles and the fast underdamped Newto-
nian dynamics of the solvent particles. This separation of time
scales allows us to concentrate only on the colloidal particles,
while the particles of the solvent do not have to be treated ex-
plicitly. In particular, we consider a mixture of Nc = ∑n

i=1 Ni

isotropic colloidal particles of n different species in the fol-
lowing, where Ni is the total number of particles of species
i ∈ {1, . . . , n}.94 These colloidal particles are assumed to
be suspended in a molecular solvent consisting of N0 small
isotropic particles of the same type.

The MZFT is now used to derive an EDDFT equation
for mixtures of colloidal particles. When �r (i)

k (t) denotes the
position, �p(i)

k (t) the momentum, and mi the mass of the kth
particle of species i, where i = 0 corresponds to the molecules
of the molecular solvent and i > 0 corresponds to the colloidal
particles, the Hamiltonian of the system is given by

Ĥ (�̂t , t) =
n∑

i=0

Ni∑
k=1

Ĥ
(i)
k (�̂t , t) (66)

with

Ĥ
(i)
k (�̂t , t) = �p(i)2

k

2mi

+ U
(i)
1

(�r (i)
k , t

)

+ 1

2

n∑
j=0

Nj∑
l=1

(1 − δklδij )U (ij )
2

(�r (i)
k − �r (j )

l

)
. (67)

U
(i)
1 (�r (i)

k , t) is the external potential acting on the particles of
species i, U

(ij )
2 (�r (i)

k − �r (j )
l ) is the pair-interaction potential for

two particles of species i and j, respectively, and �̂t is the to-
tal ensemble introduced in the beginning of Sec. II. To assure
that the MZFT as described in Sec. II is applicable, the exter-
nal potential is assumed to vary sufficiently slowly with time
(see Ref. 79). The Liouvillian L̂(�̂t , t) corresponding to the

Hamiltonian (66) of the considered system is

L̂ =
n∑

i=0

Ni∑
k=1

( �∇�p(i)
k
Ĥ

)· �∇�r (i)
k

− ( �∇�r (i)
k

Ĥ
)· �∇ �p(i)

k
. (68)

A. Relevant variables

As relevant variables âi(�r, t) of the colloidal mixture, we
choose the n concentrations

ĉi(�r, t) =
Ni∑

k=1

δ
(�r − �r (i)

k (t)
)

(69)

with i ∈ {1, . . . , n} and the internal energy density

ε̂(�r, t) =
n∑

i=0

Ni∑
k=1

Ĥ
(i)
k (�̂t , t)δ

(�r − �r (i)
k (t)

)
. (70)

Their averages are denoted as ci(�r, t) = Tr(ρ(0)ĉi(�r, t)) and
ε(�r, t) = Tr(ρ(0)ε̂(�r, t)) in the following.

By considering only the n concentrations â1(�r, t)
= ĉ1(�r, t), . . . , ân(�r, t) = ĉn(�r, t) and the internal energy
density ân+1(�r, t) = ε̂(�r, t) as relevant variables, we assume
that the momentum variables �p(i)

k (t) relax much faster to local
thermodynamic equilibrium than the position variables �r (i)

k (t)
so that the momentum density can be neglected as a further
dynamic variable on the characteristic time scale of the con-
centrations and of the internal energy density. By this choice
of relevant variables, we further assume that the concentration
ĉ0(�r, t) of the molecular solvent relaxes much faster than the
concentrations ĉi(�r, t), i > 0, of the colloidal particles.

The concentrations ĉi(�r, t) and the internal energy den-
sity ε̂(�r, t) are even under parity and time reversal. Further-
more, they are locally conserved, if there are no sources and
sinks of particles and energy in the system.

The corresponding currents follow from the Liouville
equations ˙̂ai + {Ĥ , âi} = 0 [see Eq. (9)] by comparison with
Eq. (57).95 They are the particle number current

�̂J ci (�r, t) =
Ni∑

k=1

�p(i)
k

mi

δ
(�r − �r (i)

k

)
(71)

and the internal energy current

�̂J ε(�r, t) =
n∑

i=0

Ni∑
k=1

�p(i)
k

mi

Ĥ
(i)
k δ

(�r − �r (i)
k

)

− 1

4

n∑ Ni∑ Nj∑
i,j=0 k=1 l=1

(k,i) �= (l,j )

( �∇�r (ij )
kl

U
(ij )
2

(�r (ij )
kl

))

·
( �p(i)

k

mi

+ �p(j )
l

mj

)

× �r (ij )
kl

∫ 1

0
dλ δ

(�r − �r (i)
k + λ�r (ij )

kl

)
(72)

with the dyadic product ⊗ and the notation �r (ij )
kl = �r (i)

k − �r (j )
l ,

where all �r (i)
k , �r (ij )

kl , �p(i)
k , and Ĥ

(i)
k in Eqs. (71) and (72) are to

be taken at time t.
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Since �̂J ci (�r, t) and �̂J ε(�r, t) are of odd order in

the momentum �p(i)
k (t), the averages Tr(ρ(t) �̂J ci ) = 0 and

Tr(ρ(t) �̂J ε) = 0 vanish. This leads to the important invariance

properties Q̂t
�̂J ci = �̂J ci and Q̂t

�̂J ε = �̂J ε [see Eq. (8)].

B. Transport equations

Since the concentration fields ci(�r, t) and the internal en-
ergy density ε(�r, t) are locally conserved, the EDDFT equa-
tion (58) and the corresponding transport equation (60), re-
spectively, can be applied. Due to the invariance of ĉi(�r, t) and
ε̂(�r, t) under time-reversal, the frequency matrix and therefore
also the first term on the right-hand-side of Eq. (58) vanish.

1. Non-equilibrium dynamics

Application of Eq. (58) results in the following extended
DDFT equations for colloidal mixtures:

ċi(�r, t) =
n∑

j=1

�∇�r ·
∫
R3
d3r ′ βD(ij )(�r, �r ′, t) �∇�r ′c

�

j (�r ′, t)

+ �∇�r ·
∫
R3
d3r ′ βD(iε)(�r, �r ′, t) �∇�r ′ε�(�r ′, t), (73)

ε̇(�r, t) =
n∑

j=1

�∇�r ·
∫
R3
d3r ′ βD(εj )(�r, �r ′, t) �∇�r ′c

�

j (�r ′, t)

+ �∇�r ·
∫
R3
d3r ′ βD(εε)(�r, �r ′, t) �∇�r ′ε�(�r ′, t). (74)

Let us briefly comment on the thermodynamic conjugate
quantities appearing in Eqs. (73) and (74). The thermody-
namic conjugate of a concentration ci(�r, t) is the associ-
ated chemical potential, denoted in the present context by
c
�

i (�r, t). In the literature, this quantity is sometimes also
called μci

(�r, t). For the thermodynamic conjugate associated
with the internal energy density, the situation is somewhat
more delicate. This question will be discussed in detail in
a forthcoming paper incorporating the entropy density into
EDDFT.96 It turns out that the internal energy density as a
variable and the energy conservation law can be taken care
of by assuming that the local formulation of the first law of
thermodynamics is valid. In this case, there is a relation be-
tween the internal energy density, the entropy density, and the
other variables. Thus one of these variables can be expressed
by a linear combination of the other variables and their ther-
modynamic conjugates. Frequently this is done by satisfying
energy conservation by requirements on the structure of the
reversible and irreversible parts of the internal energy current.
Such a program has been carried out in the past for the hydro-
dynamic regime (compare, for example, Ref. 97 for a com-
prehensive description of this approach).

The diffusion tensors D(ij )(�r, �r ′, t), D(iε)(�r, �r ′, t)
= (D(εi)(�r, �r ′, t))T, and D(εε)(�r, �r ′, t) in the EDDFT equa-
tions (73) and (74) are given by

D
(ij )
kl (�r, �r ′, t) =

∫ ∞

0
dt ′ Tr

(
ρ(t)Ĵ ci

k (�r, t ′)Ĵ cj

l (�r ′, 0)
)
, (75)

D
(iε)
kl (�r, �r ′, t) =

∫ ∞

0
dt ′ Tr

(
ρ(t)Ĵ ci

k (�r, t ′)Ĵ ε
l (�r ′, 0)

)
, (76)

D
(εε)
kl (�r, �r ′, t) =

∫ ∞

0
dt ′ Tr

(
ρ(t)Ĵ ε

k (�r, t ′)Ĵ ε
l (�r ′, 0)

)
. (77)

They are associated with particle diffusion (D(ij)), (inverse)
thermodiffusion (D(iε ): Ludwig-Soret effect, D(ε i): Dufour ef-
fect), and heat conduction (D(εε )), respectively. From a hydro-
dynamic point of view, Eqs. (75)–(77) can be interpreted as
generalized diffusion tensors that reduce to the corresponding
diffusion constants in the hydrodynamic limit (see Sec. III E 2
for details). The EDDFT equations (73) and (74) in combina-
tion with the diffusion tensors (75)–(77) constitute the main
result of this paper.

2. Equilibrium correlations

If the transport equation (60) is applied, one obtains dy-
namical equations for the time correlation functions

Cij (�r, �r ′, t) = 〈

ĉ

eq
i (�r, t)∣∣
ĉ

eq
j (�r ′, 0)

〉
eq, (78)

Ciε(�r, �r ′, t) = 〈

ĉ

eq
i (�r, t)∣∣
ε̂eq(�r ′, 0)

〉
eq, (79)

Cεε(�r, �r ′, t) = 〈

ε̂eq(�r, t)∣∣
ε̂eq(�r ′, 0)

〉
eq. (80)

These dynamical equations are given by

Ċij (�r, �r ′, t) =
n∑

k=1

�∇�r ·
∫
R3
d3r ′′ L(ik)

eq (�r, �r ′′)Ckj (�r ′′, �r ′, t)

+ �∇�r ·
∫
R3
d3r ′′ L(iε)

eq (�r, �r ′′)Cεj (�r ′′, �r ′, t), (81)

Ċiε(�r, �r ′, t) =
n∑

k=1

�∇�r ·
∫
R3
d3r ′′ L(ik)

eq (�r, �r ′′)Ckε(�r ′′, �r ′, t)

+ �∇�r ·
∫
R3
d3r ′′ L(iε)

eq (�r, �r ′′)Cεε(�r ′′, �r ′, t), (82)

Ċεε(�r, �r ′, t) =
n∑

k=1

�∇�r ·
∫
R3
d3r ′′ L(εk)

eq (�r, �r ′′)Ckε(�r ′′, �r ′, t)

+ �∇�r ·
∫
R3
d3r ′′ L(εε)

eq (�r, �r ′′)Cεε(�r ′′, �r ′, t) (83)

with the total transport matrices

L(ij )
eq (�r, �r ′) = �(ij )

eq (�r, �r ′) + �(ij )
eq (�r, �r ′), (84)

L(iε)
eq (�r, �r ′) = �(iε)

eq (�r, �r ′) + �(iε)
eq (�r, �r ′), (85)

L(εε)
eq (�r, �r ′) = �(εε)

eq (�r, �r ′) + �(εε)
eq (�r, �r ′) (86)
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consisting of the contributions

�(ij )
eq (�r, �r ′) = −

n∑
k=1

∫
R3
d3r ′′ B(ik)

eq (�r, �r ′′) χ
eq−1
kj (�r ′′, �r ′)

−
∫
R3
d3r ′′ B(iε)

eq (�r, �r ′′) χ
eq−1
εj (�r ′′, �r ′), (87)

�(iε)
eq (�r, �r ′) = −

n∑
k=1

∫
R3
d3r ′′ B(ik)

eq (�r, �r ′′) χ
eq−1
kε (�r ′′, �r ′)

−
∫
R3
d3r ′′ B(iε)

eq (�r, �r ′′) χ eq−1
εε (�r ′′, �r ′), (88)

�(εε)
eq (�r, �r ′) = −

n∑
k=1

∫
R3
d3r ′′ B(εk)

eq (�r, �r ′′) χ
eq−1
kε (�r ′′, �r ′)

−
∫
R3
d3r ′′ B(εε)

eq (�r, �r ′′) χ eq−1
εε (�r ′′, �r ′) (89)

and

�(ij )
eq (�r, �r ′) =

n∑
k=1

∫
R3
d3r ′′ βD(ik)

eq (�r, �r ′′) �∇�r ′′χ
eq−1
kj (�r ′′, �r ′)

+
∫
R3
d3r ′′ βD(iε)

eq (�r, �r ′′) �∇�r ′′χ
eq−1
εj (�r ′′, �r ′), (90)

�(iε)
eq (�r, �r ′) =

n∑
k=1

∫
R3
d3r ′′ βD(ik)

eq (�r, �r ′′) �∇�r ′′χ
eq−1
kε (�r ′′, �r ′)

+
∫
R3
d3r ′′ βD(iε)

eq (�r, �r ′′) �∇�r ′′χ eq−1
εε (�r ′′, �r ′), (91)

�(εε)
eq (�r, �r ′) =

n∑
k=1

∫
R3
d3r ′′ βD(εk)

eq (�r, �r ′′) �∇�r ′′χ
eq−1
kε (�r ′′, �r ′)

+
∫
R3
d3r ′′ βD(εε)

eq (�r, �r ′′) �∇�r ′′χ eq−1
εε (�r ′′, �r ′). (92)

Equations (87)–(92) in turn depend on the equilibrium drift
tensors

B(ij )
eq (�r, �r ′) = β

〈 �̂J ci (�r, 0)
∣∣
ĉ

eq
j (�r ′, 0)

〉
eq,

(93)

B(iε)
eq (�r, �r ′) = β

〈 �̂J ci (�r, 0)
∣∣
ε̂eq(�r ′, 0)

〉
eq,

(94)

B(εε)
eq (�r, �r ′) = β

〈 �̂J ε(�r, 0)
∣∣
ε̂eq(�r ′, 0)

〉
eq,

(95)

on the equilibrium diffusion tensors

D(ij )
eq (�r, �r ′) =

∫ ∞

0
dt ′

〈 �̂J ci (�r, 0)
∣∣ �̂J cj (�r ′, t ′)

〉
eq, (96)

D(iε)
eq (�r, �r ′) =

∫ ∞

0
dt ′

〈 �̂J ci (�r, 0)
∣∣ �̂J ε(�r ′, t ′)

〉
eq, (97)

D(εε)
eq (�r, �r ′) =

∫ ∞

0
dt ′

〈 �̂J ε(�r, 0)
∣∣ �̂J ε(�r ′, t ′)

〉
eq, (98)

and on the static equilibrium susceptibility matrices

χ
eq
ij (�r, �r ′) = β

〈

ĉ

eq
i (�r, 0)

∣∣
ĉ
eq
j (�r ′, 0)

〉
eq, (99)

χ
eq
iε (�r, �r ′) = β

〈

ĉ

eq
i (�r, 0)

∣∣
ε̂eq(�r ′, 0)
〉
eq, (100)

χ eq
εε (�r, �r ′) = β〈
ε̂eq(�r, 0)|
ε̂eq(�r ′, 0)〉eq (101)

with the equilibrium fluctuations 
ĉ
eq
i (�r, t) = ĉi(�r, t)

− c
eq
i (�r) and 
ε̂eq(�r, t) = ε̂(�r, t) − εeq(�r).

C. Approximation of the diffusion tensors

For an application of the EDDFT equations (73) and (74)
to a particular system, suitable expressions for the diffusion
tensors (75)–(77) are needed. A possibility to determine these
diffusion tensors is the implementation of particle-resolved
computer simulations.98 Alternatively, analytical approxima-
tions for the diffusion tensors D(ij )(�r, �r ′, t), D(iε)(�r, �r ′, t), and
D(εε)(�r, �r ′, t) can be applied. Such approximate expressions
are given in the following.

1. No hydrodynamic interactions

As first approximation, it is assumed that the considered
system is sufficiently close to local thermodynamic equilib-
rium so that the relevant probability density ρ(t) can be ap-
proximated by the equilibrium probability density ρeq [see
Eq. (27)] in Eqs. (75)–(77). Second, we assume that the po-
sition variables relax much more slowly to local thermody-
namic equilibrium than the momentum variables and that the
external potential is approximately constant on microscopic
length scales. Third, we suppose that the position and mo-
mentum variables are statistically independent. Furthermore,
the considered suspension shall be sufficiently dilute so that
hydrodynamic interactions between the colloidal particles can
be neglected and the momenta of different particles are uncor-
related. Finally, we assume orientational isotropy for the mo-
mentum variables, i.e., 〈 �p ⊗ �p〉eq = 1

3 1〈 �p · �p〉eq and neglect

the pair-interaction potential U
(ij )
2 (�r (i)

k − �r (j )
l ) in Eqs. (67) and

(72).
With these assumptions, the diffusion tensors (75)–(77)

can be approximated by

D
(ij )
NH (�r, �r ′, t) = D

(i)
0 1 δij δ(�r − �r ′)ci(�r, t), (102)

D
(iε)
NH (�r, �r ′, t) = κ

(i)
S 1 δ(�r − �r ′)ci(�r, t), (103)

D
(εε)
NH (�r, �r ′, t) =

n∑
i=0

κ
(i)
H 1 δ(�r − �r ′)ci(�r, t) (104)

with the transport coefficients

D
(i)
0 = 1

3

∫ ∞

0
dt ′ 〈�vi(t

′)· �vi(0)〉eq, (105)
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κ
(i)
S = 1

3

∫ ∞

0
dt ′ 〈�vi(t

′)· �vi(0)Ĥi(0)〉eq, (106)

κ
(i)
H = 1

3

∫ ∞

0
dt ′ 〈�vi(t

′)· �vi(0)Ĥi(t
′)Ĥi(0)〉eq, (107)

where �vi(t) = �p(i)(t)/mi is the velocity of a colloidal particle
of species i and Ĥi(t) is its energy. These coefficients are asso-
ciated with particle diffusion, thermodiffusion, and heat con-
duction, respectively. Notice that the diffusion tensor (102)
is diagonal and that all diffusive cross-couplings in Eq. (73)
vanish, if there are no hydrodynamic interactions between the
colloidal particles.

2. Hydrodynamic interactions

A better approximation for the diffusion tensor (75),
that takes also diffusive cross-couplings into account, can be
derived, if hydrodynamic interactions between the colloidal
particles are taken into account. In order to do so, the deriva-
tion of the DDFT equation for a one-component suspen-
sion of colloidal particles with hydrodynamic interactions in
Refs. 30 and 31 is generalized and compared with Eq. (73).
This derivation starts from the Smoluchowski equation18

Ṗ (�rN, t) +
n∑

i=1

Ni∑
k=1

�∇�r (i)
k
· �J (i)

P,k(�rN, t) = 0 (108)

with the N-particle probability density P (�rN, t), where �rN

= (�r (1)
1 , . . . , �r (n)

Nn
) are the positions of all particles, the prob-

ability currents

�J (i)
P,k(�rN, t) = −

n∑
j=1

Nj∑
l=1

D(ij )
kl (�rN ) �f (j )

l (�rN, t), (109)

and the force densities

�f (j )
l (�rN, t) = �∇�r (j )

l
P (�rN, t) + P (�rN, t) �∇�r (j )

l
(βU (�rN, t)).

(110)
Here, D(ij )

kl (�rN ) is a short-time diffusion tensor and U (�rN, t)
denotes the total potential energy of the system. If the consid-
ered suspension is not too dense so that the particle distances
are sufficiently large, the hydrodynamic interactions can be
approximated on the two-particle level and higher order hy-
drodynamic interactions are negligible.

In case of only hydrodynamic pair-interactions, the short-
time diffusion tensors D(ij )

kl (�rN ) can be written in the exact
form18, 99

D(ij )
kl (�rN ) = D

(i)
0 δij δkl 1 + D

(i)
0 δij δkl

n∑
q=1

Nq∑
p=1

(1 − δkpδiq)

× h(iq)
s

(�r (iq)
kp

) + (1 − δij δkl)D
(j )
0 h(ij )

c

(�r (ij )
kl

)
(111)

with the self- and cross-interaction functions

h(ij )
λ (�r) = A

(ij )
λ (r) r̂ ⊗ r̂ + B

(ij )
λ (r)(1 − r̂ ⊗ r̂) (112)

with λ = s for “self” and λ = c for “cross,” respectively, and
the notation r = ‖�r‖ and r̂ = �r/r for an arbitrary vector �r .
The self- and cross-interaction functions depend on the four

mobility functions A
(ij )
λ (r) and B

(ij )
λ (r) with λ ∈ {s, c}. With

the method of reflections,18, 99 these mobility functions can be
determined up to arbitrary order as an expansion in the in-
verse inter-particle distances. Up to fourth order, the mobility
functions are given by100

A(ij )
s (r) = O(r−4), (113)

B(ij )
s (r) = O(r−4), (114)

A(ij )
c (r) = 3

2

Rj

r
− 1

2

R2
i Rj + R3

j

r3
+ O(r−4), (115)

B(ij )
c (r) = 3

4

Rj

r
+ 1

4

R2
i Rj + R3

j

r3
+ O(r−4), (116)

where Ri denotes the radius of a colloidal particle of species
i. Notice that Eqs. (111) and (112) together with the fourth-
order approximations (113)–(116) of the mobility functions
constitute a generalized Rotne-Prager approximation for
mixtures.18, 101

The generalization of the derivation in Refs. 30 and 31
leads to the following approximation of the diffusion tensor
(75) for hydrodynamic pair-interactions:

D
(ij )
HI (�r, �r ′, t) = D

(i)
0 δij δ(�r − �r ′)

(
1ci(�r, t) + c(i)

s (�r, t))
+D

(j )
0 h(ij )

c (�r − �r ′)cij (�r, �r ′, t). (117)

Here, we introduced the functions

c(i)
s (�r, t) =

n∑
j=1

∫
R3
d3r ′ h(ij )

s (�r − �r ′)cij (�r, �r ′, t) (118)

and the two-particle concentrations

cij (�r, �r ′, t) = Tr(ρ(0)ĉij (�r, �r ′, t)) (119)

with the corresponding variables

ĉij (�r, �r ′, t) =
Ni∑
k=1

Nj∑
l=1
l �=k

δ
(�r − �r (i)

k (t)
)
δ
(�r ′ − �r (j )

l (t)
)
. (120)

The two-particle variables ĉij (�r, �r ′, t) are assumed to relax
much faster to local thermodynamic equilibrium than ĉi(�r, t)
and ε̂(�r, t).

Notice that Eq. (108) is the simplest Smoluchowski equa-
tion that describes colloidal mixtures with hydrodynamic in-
teractions appropriately. We chose this equation, since a cor-
responding DDFT equation can be derived from it so that by
comparison with our EDDFT equation (73) the expression
(117) for the diffusion tensor (75) could be obtained without
a direct microscopic derivation starting from the microscopic
expression (75). In general, also contributions from exter-
nal forces appear in the Smoluchowski equation, but they do
not influence the result (117). There exist also more general
Smoluchowski equations that take, for example, also temper-
ature gradients into account, but to the best of our knowledge
it is in general not possible to derive corresponding DDFT
equations from these more complicated Smoluchowski equa-
tions. It is therefore not possible to derive relations analogous
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to Eq. (117) for the diffusion tensors (76) and (77) by a direct
generalization of the derivation presented in this section.

D. Approximation of the generalized Helmholtz
free-energy functional

In order to determine the generalized Helmholtz free-
energy functional F[c1, . . . , cn, T ], which is needed in the
EDDFT equations (73) and (74), it is always possible to
expand this functional with respect to ci(�r, t), T (�r, t), and
their gradients taking general symmetry considerations into
account.97 Notice that F here depends on the absolute tem-
perature T (�r, t) instead of the internal energy density ε(�r, t).
A connection between T (�r, t) and ε(�r, t) can be established
by the local formulation of the first law of thermodynamics.96

If the internal energy density can be neglected so that
only an approximation for the functional F[c1, . . . , cn] is
needed, static density functional theory can be applied to de-
rive such an approximation on a microscopic basis. The up to
now most accurate approximation for F[c1, . . . , cn] was de-
rived in the framework of fundamental measure theory (see
Ref. 102 for a review).

E. Special cases of the EDDFT equations

The EDDFT equations (73) and (74) contain several spe-
cial cases that are known from the literature or that are rele-
vant for particular applications. Two of these special cases are
addressed in this section. The first one is an isothermal binary
mixture, where only two concentrations are present and the in-
ternal energy density can be neglected. As a second example,
the hydrodynamic limit of the EDDFT equations is discussed.

1. Isothermal binary mixture

If the considered mixture consists only of n = 2 different
species of colloidal particles and the internal energy density
can be assumed to be constant, the EDDFT equations (73) and
(74) can be simplified to

ċ1(�r, t) = βD
(1)
0

�∇�r ·
(
1c1(�r, t) + c(1)

s (�r, t)) �∇�r c
�

1(�r, t)

+βD
(1)
0

�∇�r ·
∫
R3
d3r ′ h(11)

c (�r−�r ′)c11(�r, �r ′, t) �∇�r ′c
�

1(�r ′, t)

+βD
(2)
0

�∇�r ·
∫
R3
d3r ′ h(12)

c (�r−�r ′)c12(�r, �r ′, t) �∇�r ′c
�

2(�r ′, t),

(121)

ċ2(�r, t) = βD
(2)
0

�∇�r ·
(
1c2(�r, t) + c(2)

s (�r, t)) �∇�r c
�

2(�r, t)

+βD
(1)
0

�∇�r ·
∫
R3
d3r ′ h(21)

c (�r−�r ′)c21(�r, �r ′, t) �∇�r ′c
�

1(�r ′, t)

+βD
(2)
0

�∇�r ·
∫
R3
d3r ′ h(22)

c (�r−�r ′)c22(�r, �r ′, t) �∇�r ′c
�

2(�r ′, t).

(122)

Here, the short-time diffusion coefficients (105) can be ex-
pressed by

D
(i)
0 = 1

β6πηRi

(123)

with the dynamic (shear) viscosity η of the molecular solvent.
Hydrodynamic interactions between the colloidal particles are
still taken into account by Eqs. (73) and (74). In the fourth-
order approximation (113)–(116), the functions c(i)

s (�r, t) = 0
vanish (0 denotes the zero matrix) and the cross-interaction
functions h(ij )

c (�r) are

h(ij )
c (�r) = 3

4

Rj

‖�r‖
(

1 + �r ⊗�r
‖�r‖2

)
+ 1

4

R2
i Rj + R3

j

‖�r‖3

(
1 − 3

�r ⊗�r
‖�r‖2

)
.

(124)
As closure relations for the two-particle concentrations
cij (�r, �r ′, t) in the dynamical equation (121), the (exact) gener-
alized Ornstein-Zernike equation for mixtures or simple ana-
lytical approximations that are known from the literature can
be applied.30, 31

2. The hydrodynamic limit

The derived EDDFT equations (73) and (74) with the
space- and time-dependent diffusion tensors (75)–(77) consti-
tute an extension of the corresponding hydrodynamic equa-
tions to larger wave vectors �k and frequencies ω. In the hy-
drodynamic limit (�k → �0, ω → 0), the EDDFT equations
become

ċi(�r, t) =
n∑

j=1

βD
(ij )
0 ��r c

�

j (�r, t) + βD
(iε)
0 ��r ε�(�r, t), (125)

ε̇(�r, t) =
n∑

j=1

βD
(εj )
0 ��r c

�

j (�r, t) + βD
(εε)
0 ��r ε�(�r, t) (126)

with the constant diffusion coefficients

D
(ij )
0 = 1

3

∫
R3
d3r

∫ ∞

0
dt Tr

(
ρ(0) �̂J ci (�r, t)· �̂J cj (�0, 0)

)
, (127)

D
(iε)
0 = 1

3

∫
R3
d3r

∫ ∞

0
dt Tr

(
ρ(0) �̂J ci (�r, t)· �̂J ε(�0, 0)

)
, (128)

D
(εε)
0 = 1

3

∫
R3
d3r

∫ ∞

0
dt Tr

(
ρ(0) �̂J ε(�r, t)· �̂J ε(�0, 0)

)
(129)

and D
(εi)
0 = D

(iε)
0 . The hydrodynamic limit of the transport

equations (81)–(83) for the time correlation functions (78)-
(80) can be obtained analogously.

F. Relation of EDDFT and MCT

The MCT of glass transitions54, 92 is a classical theory
for the dynamics of liquids near the glass transition. Origi-
nally, MCT was constructed for the underdamped dynamics
of atomic and molecular systems,92 but it can also be derived
for the overdamped dynamics of colloidal systems.55–59 Like
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EDDFT, also MCT can be derived from the MZFT. This al-
lows a comparison of these two theories on a common funda-
mental basis. In the following, we summarize the derivation
of MCT and discuss its relation to DDFT and EDDFT.

1. MCT for atomic and molecular systems

The traditional form of MCT applies to a one-component
system of equal spherical atoms or molecules of mass m. This
system is characterized by a one-particle density field ĉ(�r, t)
following the conservation law ˙̂c(�r, t) + �∇�r · �̂J c(�r, t) = 0

with the density current �̂J c(�r, t). In order to derive MCT,
we switch to the Fourier-Laplace space and utilize Eq. (37),
where we omit the letters “eq” denoting equilibrium quanti-
ties and the tilde˜denoting quantities in the Fourier-Laplace
space for reasons of clarity in this section. Near the glass
transition, two variables are taken into account as relevant
variables. These are the density field ĉ(�k, z) and the lon-

gitudinal component ĵL(�k, z) = �k/k · �̂J c(�k, z) of the density

current �̂J c(�k, z). The transversal component of the density
current, on the other hand, does not couple to density fluctu-
ations and can therefore be neglected. While this was not the
case in the context of EDDFT, here also the current associated
with the density field has to be regarded as a relevant variable,
since there is no separation of time scales between these vari-
ables near the glass transition.92 We further define the con-
centration time autocorrelation function (dynamic structure
factor) Cc(�k, z) = 〈
ĉ(�k, z)|
ĉ(�k, 0)〉 and the current time
autocorrelation function C j(�k, z) = 〈
ĵL(�k, z)|
ĵL(�k, 0)〉
corresponding to the chosen relevant variables. With these
definitions, application of Eq. (37) leads directly to a dynam-
ical equation for the normalized density time autocorrelation
function φc(�k, z) = Cc(�k, z)/Cc(�k, 0). This dynamical equa-
tion is the MCT equation92

φc(�k, z) =
(

z + �2
m(�k)

z − K j(�k, z)

)−1

(130)

with the frequency �m(�k) that must not be confused with
the (vanishing) frequency matrix in Eq. (37). This frequency
is given by �2

m(�k) = C j(�k, 0)�k2/Cc(�k, 0) and C j(�k, 0)
= 1/(βm). Furthermore, the current memory func-
tion K j(�k, z) in Eq. (130) is defined as K j(�k, z)
= −〈
 ˙̂

jL(�k, 0)|Q̂(z + L̂Q̂)−1Q̂|
 ˙̂
jL(�k, 0)〉/Cc(�k, 0).

2. MCT for colloidal systems

In case of a system of spherical colloidal particles that
are suspended in a molecular solvent, a simpler MCT equa-
tion but with the same long-time behavior as Eq. (130) can be
derived. This colloidal system is characterized by the short-
time diffusion coefficient D0 and concentration field ĉ(�k, z)
of the colloidal particles. A similar derivation as before, but
now with the appropriate Smoluchowski operator L̂S instead
of the Liouvillian L̂, leads to the MCT equation for colloidal
systems55, 57, 58

φc(�k, z) =
(

z + �2
D(�k)

1 − K j(�k, z)

)−1

(131)

with �2
D(�k) = D0�k2/Cc(�k, 0). Notice that Eq. (131) is only of

first order in z, while Eq. (130) is of second order.

3. Comparison of EDDFT and MCT

Although the derivation of MCT was only presented for
the simple special case of a one-component system here, more
general formulations of MCT exist that are like EDDFT, for
example, also applicable to (colloidal) mixtures.92 Even the
incorporation of the internal energy density into MCT has al-
ready been discussed103 in the literature. EDDFT and MCT
are therefore two different general theories with overlapping
fields of application. A possible relation of DDFT and MCT
has been mentioned by Archer,60, 61 but was not yet rigorously
proven. Archer showed that under certain approximations the
traditional DDFT equation9–11 can be rearranged into a trans-
port equation for the density time autocorrelation function,
which matches the standard form (131) of MCT for colloidal
systems. However, his derivation, which suggests that MCT
can be derived from DDFT, is not rigorous, since it involves
a reinterpretation of the one-particle density field as a tempo-
rally coarse-grained density field.

In contrast, our derivation of the EDDFT presented in this
paper allows to compare both theories from a fundamental
point of view. The derivation of EDDFT and MCT on the ba-
sis of the MZFT is illustrated in Fig. 1. A comparison of the
derivations of these theories makes clear that there are actu-
ally strong differences between EDDFT and MCT and that a
rigorous derivation of one theory from the other is not pos-
sible. An obvious and important difference between EDDFT
and MCT results from the different approximations made in
their derivations. While the derivation of EDDFT involves a
Markovian approximation when slow variables are assumed
(see Sec. II C 1), the MCT equations are non-Markovian—
a feature that becomes indeed relevant near the glass transi-
tion. A more detailed comparison reveals that EDDFT and
MCT are rather complementary but not replaceable theories.
While EDDFT has proven that it is successfully applicable
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FIG. 1. Illustration of the derivation of EDDFT and MCT using the MZFT.
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to describe weakly correlated systems with low concentra-
tions, it cannot be applied to the glassy dynamics of systems at
very high densities, since the Markovian approximation in the
derivation of the EDDFT equation can only be justified, if ef-
fects associated with long time tails can be neglected.16 To the
contrary, the derivation of MCT does not involve a Markovian
approximation and has proven to be a useful analytical tool
for the description of strongly correlated systems with high
concentrations, where long time tails have to be taken into
account.92 However, its derivation involves strong approxi-
mations, too, so that MCT fails when it is applied to weakly
correlated dilute suspensions.

IV. CONCLUSIONS

In this paper we have generalized classical dynamical
density functional theory using the Mori-Zwanzig-Forster
projection operator technique by adding concentration fields
and the internal energy density as variables. The resulting ex-
tended dynamical density functional theory was compared to
its hydrodynamic limit and to mode-coupling theory reveal-
ing that EDDFT and MCT are complementary theories with
different fields of application. Our EDDFT framework shows
that the MZFT is a flexible framework to incorporate thermal
gradients (and other possible slow fields).

We emphasize that, in principle, our EDDFT
equations (73) and (74) treat concentration and temper-
ature gradients on arbitrary length scales even down to
microscopic length scales of the average distance between
the colloidal particles. The essential input for our EDDFT
equations is functional derivatives, which can be obtained
from equilibrium correlations, and diffusion tensors, which
can be obtained from dynamical correlations. An important
challenge for the future is to apply this concept to actual
temperature gradients in order to predict the Soret coefficient.

Guided by the application of the MZFT to various hydro-
dynamic systems including those with macroscopic degrees
of freedom associated with spontaneously broken continuous
symmetries,15, 74, 75 it will also be interesting to see to what
extent one can generalize hydrodynamic considerations77, 78

using correlation functions to larger wave vectors and
frequencies.

A future generalization of the EDDFT equations should
also take anisotropic colloidal particles with macroscopic de-
grees of freedom into account so that colloidal liquid crys-
tals can be addressed.26 It will be important to compare
such an approach to the results obtained previously for col-
loidal liquid crystals using a parametrization of the den-
sity with spherically symmetric, dipolar, and quadrupolar
contributions.8, 104–106 Also the incorporation of the entropy
density107 as a further variable would be an important task for
the future.

Another challenge for the future is the potential use of the
MZFT for systems driven far from thermodynamic equilib-
rium for which a generalized thermodynamic potential108–111

is not known. To address this question appears to be partic-
ularly important for active systems, which have increasingly
come into focus over the last few years.112–116

Recently, a similar approach using the MZFT for the one-
particle density and the internal energy density was put for-
ward by Español.117 This approach is based on an entropy
functional formalism and provides explicit expressions for
hard spheres. However, mixtures and hydrodynamic interac-
tions are not treated explicitly in this approach.117
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APPENDIX: INTEGRAL TRANSFORMATIONS

Since there are different definitions of the Fourier- and
Laplace transformations in the literature, here we summa-
rize the definitions that have been used in the context of the
work presented. In addition, two useful relations between the
Fourier- and Laplace transformation are given.

1. Fourier transformation

The Fourier transformation of a space- and time-
dependent function X(�r, t) is given by

X̃(�k, ω) =
∫
R3
d3r

∫
R
dt X(�r, t)e−i(�k·�r−ωt),

X(�r, t) = 1

(2π )4

∫
R3

d3k

∫
R
dω X̃(�k, ω)ei(�k·�r−ωt)

(A1)

with �k ∈ R3 and ω ∈ R.

2. Laplace transformation

The Laplace transformation of a time-dependent function
X(t) is given by

X̃(z) =
∫ ∞

0
dt X(t)e−zt ,

X(t) = 1

2π i

∫ c+i∞

c−i∞
dz X̃(z)ezt

(A2)

with z ∈ C and the real part R(z) > 0. The expression for the
inverse Laplace transformation is known as Bromwich inte-
gral and contains a constant c > z0, where z0 is the conver-
gence abscissa of X̃(z).

3. Useful relations

The Fourier transformed function X̃(ω) and the Laplace
transformed function X̃(z) can directly be transformed into
each other. With the residue theorem, the following map from
X̃(ω) to X̃(z) can be proven:

X̃(z) = 1

2π i

∫
R
dω

X̃(ω)

ω − iz
. (A3)

A complementary map from X̃(z) to X̃(ω) is given by

X̃(ω) = lim
ε→0+

(
X̃(z)

∣∣
z=−iω+ε

− X̃(z)
∣∣
z=−iω−ε

)
. (A4)
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It follows directly from the (special) Sokhotski-Plemelj
theorem17, 118

lim
ε→0+

1

x ∓ iε
= P

1

x
± iπ δ(x), (A5)

where P denotes the Cauchy principal value.
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