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We show that hard spheres confined between two parallel hard plates pack denser with periodic

adaptive prismatic structures which are composed of alternating prisms of spheres. The internal structure

of the prisms adapts to the slit height which results in close packings for a range of plate separations, just

above the distance where three intersecting square layers fit exactly between the plates. The adaptive

prism phases are also observed in real-space experiments on confined sterically stabilized colloids and in

Monte Carlo simulations at finite pressure.
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How to pack the largest number of hard objects in a
given volume is a classic optimization problem in pure
geometry [1]. The close-packed structures obtained from
such optimizations are also pivotal in understanding the
basic physical mechanisms behind freezing [2,3] and glass
formation [4]. Moreover, close-packed structures are
highly relevant to numerous applications ranging from
packaging macroscopic bodies and granulates [5] to the
self-assembly of colloidal [6] and biological [7,8] soft
matter. For the case of hard spheres, Kepler conjectured
that the highest-packing density should be that of a peri-
odic face-centered-cubic (fcc) lattice composed of stacked
hexagonal layers; it took until 2005 for a strict mathemati-
cal proof [9]. More recent studies on close packing concern
either nonspherical hard objects [10] such as ellipsoids
[11,12], convex polyhedra [13,14] (in particular tetrahedra
[15]), and irregular nonconvex bodies [16] or hard spheres
confined in hard containers [17–19] or other complex
environments.

If hard spheres of diameter � are confined between two
hard parallel plates of distance H, as schematically illus-
trated in Fig. 1, the close-packed volume fraction� and its
associated structure depend on the ratio H=�. Typically,
the complexity of the observed phases increases tremen-
dously on confining the system. Parallel slices from the fcc
bulk crystal are only close packed for certain values of
H=�: A stack of n hexagonal (square) layers aligned with
the walls, denoted by n4 (nh), is best packed at the plate
separation Hn4 (Hnh) where the layers exactly fit between
the walls. Clearly, for the minimal plate distance H �
H14 ¼ �, packing by a hexagonal monolayer is optimal.
Increasing H=� up to H24, a buckled monolayer [20] and
then a rhombic bilayer [21] become close packed.

However, for H24 <H <H44, the close-packed struc-
tures are much more complex and still debated. Both,
prism phases with alternating parallel prismlike arrays
composed of hexagonal and square base [22,23] and mor-
phologies derived from the hexagonal-close-packed (hcp)
structure [24,25] were proposed as possible candidates.
For confined hard spheres, the knowledge and control

over the close-packed configuration is of central relevance
for at least two reasons. First, the hard sphere system away
from close-packing is of fundamental interest as a quasi-
two-dimensional statistical mechanics model. At low den-
sities, a hard sphere gas is stable, which will crystallize as
the density is increased beyond some threshold value. As
such, the model represents a classical route to understand
freezing between two and three spatial dimensions [26].
The associated fluid-solid transition will be strongly
affected by the close-packed structure. Second, the con-
fined hard sphere model is almost perfectly realized in
nature by mesoscopic sterically stabilized colloidal sus-
pensions [22,27] which can be confined between glass
plates providing a slitlike confinement. At high imposed
pressures, colloids will self-assemble into the close-packed
structures. It has been shown that this is the key for the

FIG. 1 (color online). Schematic illustration of hard spheres of
diameter � confined between two parallel hard plates of sepa-
ration H.
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controlled fabrication of nanosieves and of membranes
with desired morphology [28].

In this Letter, we explore the close-packed structures of
confined hard spheres by combining numerical optimiza-
tion, experiments and computer simulation. Using a sys-
tematic penalty optimization method, we find the whole
cascade of close-packed structures in the range of plate
distances H14 <H <H44. As an important building
block for close packing, an adaptive prism is identified
which adjusts its internal structure flexibly to the slit height
H=�. This prism has a base with a rhombic symmetry and
neighboring prismatic arrays are shifted relative to each
other. The resulting adaptive structure maximizes the pack-
ing fraction in the regime beyond H3h. We also propose a
further close-packing prism phase of square symmetry that
packs densest in the regime just beyond H4h and shows a
two-dimensional relative lateral shift between the prisms.
We confirm the stability of the new adaptive prismatic
structures both in real-space experiments on confined steri-
cally stabilized colloids and in Monte Carlo simulations at
finite pressure. In the following, we first describe the
results from the penalty method, then discuss real-space
data for confined colloidal samples and subsequently turn
to Monte Carlo simulation results. Details of the numerical
methods, experiments, and simulations are listed in the
Supplemental Material [29].

In our numerical calculations, we consider periodic
structures with up to 12 particles per unit cell thereby
covering all hitherto proposed structures [29]. To max-
imize the packing fraction �, we optimized the cell shape
and the particle coordinates of these structures. However,
investigating the dense packing of hard spheres accommo-
dates a constrained optimization: the free volume must be
minimized under the constraint of nonoverlapping spheres.
To circumvent the discontinuous, constrained optimiza-
tion, we employed the penalty method [30] in our numeri-
cal calculations. By adding a penalty term in case the
spheres intersect which depends continuously on the over-
lap volume, we obtained a continuous and unconstrained
penalty function which can be minimized in the classic
way to predict the optimal particle coordinates. The pen-
alty method offers the flexibility to use a relatively broad
range of candidate crystalline lattices and has recently been
shown to allow a very efficient handling of packing prob-
lems [31].

The resulting volume fractions of the densest packed
phases are shown in Fig. 2 as a function of H=� in the
regime between the hexagonal monolayer 14 (H=� ¼ 1)

and the triangular tetralayer 44 (H=� ¼ ffiffiffi

6
p þ 1). For

H14 <H <H24 the classic sequence [20,21,32] 14 !
B ! 2h ! 2R ! 24 is confirmed. Here, B is a buckled
hexagonal layer with rectangular symmetry and the 2R
crystal consists of two staggered rhombic layers.

For H24 <H <H44, there is a much more complex
cascade of close-packed structures. In the transition regime

FIG. 2 (color online). Packing fraction � versus dimensionless
height H=�. The best-packing phases are indicated by symbols
on the top axis of the middle panel and their packing fractions
are shown as the full lines. Dashed and dotted lines denote the
nonclose packed nh [fcc(100)], n4 [fcc(111)], nhcpl, nP4, and
nPh. The top and bottom panel show enlargements of the
regions where the new prism phases were found. Side views
(middle panel) and top views (top and bottom panels) show the
structure of these phases, where white lines denote bonds be-
tween touching particles.
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n4 ! ðnþ 1Þh for n ¼ 2, 3, on the one hand, we recover
all of the phases found previously. Here, we obtain the
sequence 24!2P4!2hcpl!2hcp?!2hcpl!2Ph!
3h and 34 ! 3P4 ! 3hcpl ! 2Ph ! 3h, where the
following phases are encountered: The 2n-layered phases
nP4 and nPh consist of alternating prismlike dense-
packed n-layered arrays of spheres with triangular (4 )
and square (h) basis shapes ([22,23,27]). Moreover, the
2n-layered phases nhcp? [33] and nhcp-like with rectan-
gular symmetry (see Refs. [24,25]) are found. For n ¼ 3,
however, the nhcp-like phase is only close packed in a tiny
regime, whereas nhcp? is not found at all (see Fig. 2).

In the range 3h ! 34 , the new adaptive prism phase
2PA is predicted to be close packed. Representative intra-
layer touching bonds are indicated by white lines in Fig. 2
(upper and lower panel) to underline the symmetry of the
corresponding prismatic structure. The 2PA phase adapts
its internal structure flexibly to an increase of the slit width
H. In fact, the symmetry of its prism blocks is rhombic
which spans the whole range between the square symmetry
of the underlying phase 3h and the triangular base (see
white lines in Fig. 2, upper panel). Likewise, we noticed
the stability of the 3Pl

h prism phase with square basis

shape (cf. Fig. 2, lower panel) in the transition regime
4h ! 44 whose prisms exhibit a longitudinal shift (i.e.,
in the lengthwise direction of the prisms) in addition to the
usual shift perpendicular to the lengthwise direction of the
prisms. Finally, the other densest packed phases are multi-
layered rhombic phases 3R and 4R as well as a square
prism phase 4Ph, see Fig. 2.

To verify our theoretical results, we performed real-space
experiments with nanometer-sized colloids. We employed
Polystyrene particles with diameters � in the range from
245 to 800 nm (Ikerlat Polymers) to study certain H=�
values. We created a confining wedge cell with a very small
opening angle (10�4 rad) and slit height H < 6 �m (see
Ref. [29]). The varying slight height inherent to the wedge
geometry allows many transitions between different crys-
tals in the same cell. Finally, after the sample was dried, we
detached the Polystyrene covering plate. Some particles
stuck to the covering plate during its removal resulting in
holes in the top layer of particles, which allowed us to study
the structure in the layers below. We recorded Scanning
ElectronMicroscope (SEM) images from the top facets and
side edges by cleaving the samples or by focused ion beam
milling following the crystal planes.

Concentrating on the regime 3h ! 34 , we found evi-
dence of the adaptive 2PA phase. Also, the 3Pl

h phase has

been observed for larger plate separation distances. As an
example, SEM images of 2PA and 3Pl

h are shown in Fig. 3

along with a simulation snapshot for comparison.
Experiments on colloidal systems, such as ours, are

necessarily performed at finite pressure. In order to inves-
tigate the stability of the new prism phases away from close
packing, we performed Monte Carlo simulations at a fixed

lateral pressure Pl ¼ �H�1@F=@A, where F is the free
energy and A denotes the area of the system. This definition
of pressure is such that it approaches the bulk pressure asH
increases. The discovery of new crystal phases in this and
previous theoretical works at infinite pressure after the
previous simulation work that addressed the stability at
finite pressure begs the question how stable these phases
are at a high, but finite pressure [34]. We simulated the
system at a high pressure Pl�

3=kBT ¼ 40, for which
the system would equilibrate within a reasonable time
(for comparison the bulk crystallization pressure is
P�3=kBT ¼ 11:56 [35]). The success of cell theory—
effectively a single-particle theory—at high densities
indicates that phase behavior at high pressures can be
accurately modeled using relatively small systems. Our
variable-shape simulation box contained m�m� n par-
ticles, where n is the number of layers and 4 � m � 8 [29].
In Fig. 4, we compare finite-pressure simulation data to
theoretical results at infinite pressure. We clearly see that
the packing fractions in both cases feature a qualitatively
similar course. However, some phases vanish for finite
pressure as this regime is dominated by broadened stability
regimes of n4 and nh phases. In detail, the 2R, 3R,
2hcp?, 3hcpl, 2P4, and 3P4 phases are not found for
the finite pressure and accuracy H=�� 0:025 chosen in
the simulations. As can be further seen, the adaptive prism
phase 2PA and 3Pl

h found in this Letter are stable at this

pressure and, therefore, also at all higher pressures.
These simulations help explain the absence of the trian-

gular prism phase in the experiments (see Ref. [27]).

(a)

(c) (d)

(b)

FIG. 3 (color online). SEM micrographs of the prism phase
found in this work: 2PA (a) and 3Pl

h (c),(d). A few particles were

removed from the top layer upon detachment of the covering
plate allowing access to the structure in the layer below. A
simulation snapshot, where a particle was also removed (after
the simulation), is shown in (b). White lines indicate the sym-
metry of each phase (a),(c) as well as the structure of the prism
arrays in the side view of 3Pl

h (d).
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We also performed simulations with the triangular prism
phases as initial configuration. At the values for H where
the triangular prism phase has the highest density of all
possible phases, the nP4 phase appears to consist of n only
slightly distorted hexagonal layers. At finite pressure, the
small distortions can quickly disappear and a regular tri-
angular crystal can be formed. This is a typical scenario for
crystal-crystal transitions for hard particles, where the
close-packed crystal phase transforms into a higher-
symmetry crystal with a slightly lower density, but a
greater entropy, as the pressure is decreased sufficiently.
At larger values of H than those investigated here, the
triangular prisms are significantly enhanced and do not
transform so easily to triangular crystals (cf. Ref. [23]).
Preliminary simulations show that indeed stable triangular
prism phases can be found for larger values for H (see
Ref. [29]).

In conclusion, we explored the close-packed structures
of hard spheres confined between hard plates in a broad
range of plate separations by combining theory, experi-
ment, and simulation. We identified adaptive prism phases
with rhombic symmetry which pack densest in certain
ranges of the slit width. An adaptive prism phase optimizes
packing by adjusting its base symmetry flexibly to the slit
width. Also, we showed a high persistence of these adap-
tive prism phases at finite, but large pressure, using experi-
ments and simulations. We anticipate that the adaptive
prism phase will play a key role for even higher plate
distances, H=�> 3:5, as ideal interpolating close-packed
building blocks.

The adaptive prism phases found here offer new oppor-
tunities for several applications. For example, the reported

structures possess pronounced symmetry directions whose
alignment can be internally controlled by the slit height
instead of using external fields (e.g., electric fields,
cf. Ref. [36]). As a consequence, these phases can serve
as switchable materials. Furthermore, we expect an
unusual and anisotropic dynamical response of the multi-
layered prism phases upon shear [37] with possibly molten
grain boundaries which can be exploited to tune the rheo-
logical properties of thin crystalline sheets. Finally, by
varyingH, it is possible to tune the whole complex cascade
of close-packed structures. This may be of importance to
fabricate nanosieves or porous membranes [28] in a con-
trolled way.
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