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Abstract
Dense suspensions of self-propelled rod-like particles exhibit a fascinating variety of
non-equilibrium phenomena. By means of computer simulations of a minimal model for rigid
self-propelled colloidal rods with variable shape we explore the generic diagram of emerging
states over a large range of rod densities and aspect ratios. The dynamics is studied using a
simple numerical scheme for the overdamped noiseless frictional dynamics of a many-body
system in which steric forces are dominant over hydrodynamic ones. The different emergent
states are identified by various characteristic correlation functions and suitable order
parameter fields. At low density and aspect ratio, a disordered phase with no coherent motion
precedes a highly cooperative swarming state with giant number fluctuations at large aspect
ratio. Conversely, at high densities weakly anisometric particles show a distinct jamming
transition whereas slender particles form dynamic laning patterns. In between there is a large
window corresponding to strongly vortical, turbulent flow. The different dynamical states
should be verifiable in systems of swimming bacteria and artificial rod-like micro-swimmers.

(Some figures may appear in colour only in the online journal)

1. Introduction

Collections of swimming microorganisms and self-propelled
particles are able to form remarkable macroscopic pat-
terns [1–4] including swarms [5, 6] and complex vor-
tices [7–11]. The tendency for neighbouring particles to align
is strongly determined by their mutual interactions which
provide the key to understanding the emergent behaviours at
high particle density. In this regime, the interplay between
microscopic self-motility and anisotropic volume-exclusion
interactions leads to complex spatio-temporal behaviour [12,
13] that can be directly visualized in two spatial dimensions,
i.e. for particles moving in planar confinement.

Quasi-two-dimensional systems of self-propelled parti-
cles can be realized in a number of ways. Autonomously
navigating bacteria and other microbes can be confined to
free-standing thin films [9], between solid surfaces [14]
or a liquid-gas interface [8, 15]. On larger length scales,
active systems can be realized by polar granulates on a

vibrating surface [16–18] or pedestrians moving in complex
environments [19]. Last not least, colloidal dispersions
constitute ideal model systems not only for investigating
passive matter [20, 21] but also for active matter composed
of self-motile colloidal particles. Over the past decade, a
number of distinctly different realizations of active colloidal
particles have been proposed. These include Janus particles
driven by catalytic processes [22, 23] or thermophoretic [24]
gradients, particles propelled by artificial flagella [25] and
surface waves [26, 27] driven in an external magnetic field.
Rather than being spherical, most of these particles have
an anisotropic rod-like shape and the intrinsic alignment
of colliding particles is found to play a crucial role in
determining the spatio-temporal behaviour of active parti-
cles [28–30]. Confining systems to quasi-planar geometries
allows for a direct visualization of the particles by means of
real-space microscopy and provides fascinating opportunities
to study the single-particle and collective behaviour of
micro-swimmers.
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In this paper we use computer simulation to study a
simple model for suspensions of rigid, self-propelled rods
(SPRs) that interact via a Yukawa-segment potential [31,
32]. The potential allows for a realistic description of the
strong mutual short-range repulsion that prevents particles
from overlapping. Self-motility is imposed by introducing
a constant propulsion force along the main orientation axis
of each rod. Consequently, when two neighbouring active
rods collide they align, and the aligning force plays an
essential role in the formation of flocks of coherently
moving particles [30, 33]. In our study we focus on
the collective behaviour of dense suspensions of strongly
interacting particles and characterize the emergent states
by analysing different correlation functions as dynamical
diagnostics. In order to retain a generic framework we
consider the overdamped frictional dynamics of a many-body
system where the equations of motion arise from a simple
force balance between the Stokesian frictional force, the
collision force and the active force on each rod. Likewise,
the rod orientations propagate via a torque balance involving
the frictional and interaction torque acting on each particle.
Other forces due to many-body hydrodynamic interactions
or thermal fluctuations exerted by the embedding solvent,
for example, are neglected. This allows us to simplify the
microscopic equations of motion in such a way that the
rod aspect ratio and density constitute the main variational
parameters of the model. The microscopic self-propulsion
force can be appropriately scaled out and subsumed into an
(effective) Yukawa amplitude which only has a weak impact
on the emergent behaviour.

Despite its simplicity, the model is capable of predicting
a wealth of different steady states that hitherto could not
be realized within a single framework. Amongst the various
states we identify an incoherent, disordered dynamical phase
at small particle aspect ratio and a cooperative swarming
state with giant number density fluctuations at larger rod
anisometry as found in a number of particle-resolved
models [28, 32–35]. At high densities and small aspect
ratios, we find a jammed phase with distinct local crystalline
order. This state is rather common for passive systems [36]
but less obvious for active systems. At large aspect ratio
and high density, stratified patterns emerge consisting of
lanes driven in opposite directions. These structures are
reminiscent of the laning patterns observed for mixtures
of passive particles (i.e. with no internal driving force)
driven in a macroscopic external field [37–40]. A similar
phenomenon was unveiled recently in mixtures of active and
passive rod-like particles [41]. For intermediate densities and
aspect ratios, we find distinct chaotic states characterized
by meso-scale turbulent flow patterns with a significant
vorticity in the velocity field [42]. This type of active
turbulence has been observed in microbial suspensions [8,
9, 42, 43]. Contrary to traditional turbulent flow observed at
high-Reynolds-number passive fluids the vortices that make
up the turbulent flow patterns have a uniform mesoscopic size
irrespective of the density or particle shape.

In principle, the full variety of different emergent states
advanced here should be verifiable for bacterial systems

and artificial rod-like colloidal or granular micro-swimmers.
In a recent study, the statistical properties of the turbulent
states as predicted from the SPR model have been
systematically compared with flow-field data of confined
bacterial systems [44]. It would be interesting to pursue
a more systematic comparison with bacterial systems and
assemblies of man-made micro-swimmers in order to verify
the full topology of the predicted phase diagram.

The remainder of this paper is organized as follows:
in section 2 we specify our model for self-propelled rods,
the corresponding equations of motion and the simulation
methodology. Numerical results on the non-equilibrium phase
diagram are presented and analysed in section 3. We conclude
in section 4 with a brief discussion of possible extensions
of the model and we highlight opportunities to observe the
predicted behaviour in experiment.

2. Frictional dynamics of a self-propelled-rod (SPR)
model

One of the simplest ways to envisage a suspension of
active mesogens is by considering a collection of rigid, self-
propelled rods each moving with a constant self-propulsion
force F directed along the main rod axis (see figure 1). Mutual
rod repulsion is implemented by discretizing each rod into n
spherical segments and imposing a repulsive Yukawa force
with characteristic decay length λ between the segments of
any two rods, such that λ defines the effective diameter of the
rod of length ` [31]. If two sufficiently long rods perform a
pair-collision, the interaction results in an effective nematic
(apolar) alignment while the centres-of-mass attain a certain
minimal distance due to the repulsive Yukawa forces. The
potential energy of a rod pair α and β with orientation unit
vectors {ûα, ûβ} and centre-of-mass distance 1rαβ , is given
by

Uαβ =
U0

n2

n∑
i=1

n∑
j=1

exp[−(rαβij /λ)]

rαβij

(1)

where U0 is the potential amplitude, λ the screening length,
and

rαβij = |1rαβ + (liûα − ljûβ)|, (2)

the distance between the ith segment of rod α and the jth
segment of rod β, with li ∈ [−(`− λ)/2, (`− λ)/2] denoting
the position of segment i along the symmetry axis of the rod
α. The screening length λ defines the effective diameter of the
segments such that we may introduce an aspect ratio a = `/λ
to quantify the effective anisometry of the SPR. The case
a = 1 corresponds to a single Yukawa point particle (n = 1).
For a > 1, the number of segments per rod is fixed as n = 3
for 1 < a ≤ 3 and n = b9a/8e for a > 3 with b·e denoting the
nearest integer.

We focus on the dynamical regime relevant to
microorganisms and artificial self-motile colloidal mesogens
and we assume the motion of the SPRs to be overdamped
due to solvent friction (in the zero Reynolds number limit).
Since we are interested in the collision-dominated dynamics

2



J. Phys.: Condens. Matter 24 (2012) 464130 H H Wensink and H Löwen

Figure 1. Coarse-grained representation of a pair of rod-like
micro-swimmers with n = 5 repulsive Yukawa segments and aspect
ratio a = `/λ. Self-propulsion is provided by a constant force F
acting along the main rod axis indicated by the orientational unit
vector û. The total rod pair potential is obtained by a sum over all
Yukawa segment pairs with distance rij and is a function of the
centre-of-mass distance vector 1r and orientations (equation (1)).

in dense suspensions, we disregard any thermal and intrinsic
fluctuations in the swimming direction of the SPRs [4]. These
fluctuation will be briefly discussed in section 3.4. Owing
to their typical size of several microns, thermal fluctuations
exerted by the solvent are deemed small for most bacterial
and colloidal micro-swimmers which typically operate in
the regime of large Péclet number where self-propulsion
dominates Brownian motion [4, 42]. In the absence of noise
the resulting equations of motion for the centre-of-mass rα(t)
and orientation ûα(t) of each SPR are entirely deterministic
and can be written compactly as

fT · ∂trα = −∇rαU + Fûα, (3)

fR · ∂tûα = −∇ûαU. (4)

Here, F is a constant self-motility force acting along
the longitudinal axis of each rod (figure 1), U =
(1/2)

∑
β,α:β 6=αUαβ the total potential energy, ∇û denotes the

gradient on the unit circle, and

fT = f0
[
f‖ûαûα + f⊥(I− ûαûα)

]
, (5)

fR = f0 fRI, (6)

are the translational and rotational friction tensors (I is the
two-dimensional (2D) unit tensor) with a Stokesian friction
coefficient f0. The dimensionless geometric factors {f‖, f⊥, fR}
depend solely on the aspect ratio a, and we adopt the standard
expressions for rod-like macromolecules, as given in [45]

2π
f‖
= ln a− 0.207+ 0.980a−1

− 0.133a−2, (7)

4π
f⊥
= ln a+ 0.839+ 0.185a−1

+ 0.233a−2, (8)

πa2

3fR
= ln a− 0.662+ 0.917a−1

− 0.050a−2. (9)

It is expedient to multiply equation (3) with the inverse matrix
f−1
T :

∂trα = v0ûα − f−1
T ·∇rαU, (10)

where

v0 =
F

f0f‖
, (11)

defines the self-propulsion velocity of a non-interacting SPR.

In our simulations, we have adopted characteristic units
such that λ = 1,F = 1, and f0 = 1, which means that distance
is measured in units of λ, velocity in units of F/f0, time
in units of τ0 = λf0/F, and energy in units of Fλ. Upon
rescaling to dimensionless coordinates, three relevant system
parameters remain: the dimensionless Yukawa amplitude
Ũ0 = U0/(Fλ), which determines the hardness of the rod
interactions relative to their characteristic propulsion energy,
the aspect ratio a, and the effective volume fraction of the
system

φ =
N

A

[
λ(`− λ)+

πλ2

4

]
, (12)

where the term between brackets denotes the 2D volume
Arod of a spherocylindrical rod. For steeply repulsive Yukawa
interactions, the general dynamical behaviour resembles that
of hard rods and only weakly depends on the Yukawa
amplitude, and we fix Ũ0 = 250. The remaining quantities,
the rod shape a and volume fraction φ constitute the main
steering parameters for our investigations. We simulate the
evolution of the SPR coordinates as a function of time τ =
t/τ0 in a square box of length L with periodic boundary
conditions at volume fractions in the range 0.05 < φ < 0.9.
The simulations are carried out using a time discretization
1τ = 0.002ρ−1/2, where ρ = Nλ2/A with typically N = 104

rods per simulation. Initial configurations, generated from a
rectangular lattice of aligned rods with û pointing randomly
up or down are allowed to relax during an interval τ = 1000
before statistics are gathered over an interval τ = 20L with
L = (N/ρ)1/2 the dimension of the simulation box (in units of
λ). Velocity vector fields v(r, t) are constructed by measuring
the average centre-of-mass velocity within sub-cells centred
around the position r. To this end we project the particle
positions onto a 2D cubic grid {(i, j) | 1 ≤ i, j ≤ G} and
measure the average velocity v(t; i, j) in each bin (i, j) at
a given time t. In order to test for finite size effects, we
consider two different system sizes: small systems with N =
1 × 104 particles and large systems with N = 4 × 104

particles at the same filling fraction φ. The coarse-graining
parameter G is chosen adaptively such as to ensure that
each bin represents the average velocity of about 10 SPRs.
Generally, we observe that the dynamical structure and order
parameters of the emergent states are robust with respect to
changes in the particle number N, provided N is at least of
O(104).
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Figure 2. Schematic non-equilibrium phase diagram of the 2D SPR model at variable aspect ratio a and effective filling fraction φ. Values
exceeding unity are, in principle, possible due to the softness of the Yukawa interactions. The area relevant to self-motile bacteria is
highlighted in red. A number of distinctly different dynamical states are discernible as indicated by the coarse-grained maps of the velocity
field v(r, t) (upper panels) at time t and the corresponding scalar vorticity field ω̃(r, t) = [∇ × v(r, t)] · êz (lower panels) expressed in units
of τ−1

0 .

3. Results

3.1. Non-equilibrium phase diagram for the SPR model

Upon varying the effective volume filling fraction φ and
the rod aspect ratio a a number of qualitatively different
dynamical phases emerge. A schematic non-equilibrium
phase diagram, shown in figure 2, illustrates the importance of
the SPR anisometry in determining the stationary dynamical
state of the system. The low-density regime is generally
characterized by disordered motion with little or no dynamical
coherence. Beyond a certain threshold density cooperative
motion becomes manifest and translates into dynamical states
whose structure depends on the intrinsic ‘aligning force’ of
the SPRs. Short rods generally jam at high packing fractions
whilst very long rods (a > 13) exhibit swarming behaviour
with large spatio-temporal density fluctuations. The swarming
and laning phases adjoin a large region of bio-nematic and
turbulent flow characterized by vortices and extended nematic
jet-like structures [42, 46].

Generally, the transitions from the dilute phase to regimes
with strong cooperative motion can be localized by the
2D Onsager overlap density [47], defined as the density
corresponding to a single rod occupying an average area equal
to its excluded area Aex = (2/π)(`−λ)2+(π/4)λ2. The latter
expression can be derived from the rod dimensions in figure 1
by assuming a pair of spherocylindrical rods with isotropic
orientations. By combining terms one arrives at the following
expression for the overlap density:

φ∗ =
Arod

Aex
=

1+ 4(a− 1)/π

1+ 8(a− 1)2/π2 . (13)

In figure 2 we have plotted φ∗ to mark the crossover from
incoherent to cooperative turbulent and swarming motion. The
overlap density thus demarcates the region where many-body
rod collisions (exceeding the pair level) become important and
various non-trivial emergent states arise. In the sections below
we shall present a more detailed overview of the dynamical
states and the crossovers indicated in figure 2.

3.2. Short rods: active jamming

For small aspect ratios (a < 3) a distinct transition towards
a jammed state is observed upon increasing density. This
behaviour is hinted at by the average SPR velocity for which
we may probe both parallel and transverse contributions via

v‖ =
1
N

〈
N∑
α=1

ûαûα(t) · vα(t)

〉
,

v⊥ =
1
N

〈
N∑
α=1

(
I− ûαûα(t)

)
· vα(t)

〉
,

(14)

where the brackets 〈· · ·〉 denote a time average. The results
are depicted in figure 3. In general, the average parallel
velocity decreases monotonically with density as the particles
get progressively hindered in their motion due to mutual rod
collisions. For small a the parallel mobility drops rapidly for
larger φ, indicating a severe slowing down of the collective
dynamics. This behaviour is more clearly reflected in the
mean-square displacement (figure 4) where a sharp drop in the
mobility (over nearly two orders of magnitude) at φ = 0.84
marks the onset of jamming. Throughout the density range
the motion is observed to be sub-ballistic at long times with
〈r2
〉 ∼ τ 1.75±0.1. Despite the high packing fraction the SPRs

do not become fully caged on the timescale investigated due
to the presence of remnant collective motion as evident from
the velocity field in figure 4. This behaviour is different from
the active jamming recently studied in a model system of
soft active spheres where a much sharper transition from
fluid-type to arrested dynamics was observed [48]. The
jamming point depends strongly on particle anisometry as
indicated in figure 2 with a marked shift towards higher
volume fractions upon increasing a. From a structural point
of view the jamming transition is accompanied by a crossover
towards orientationally and positionally ordered structures,
as evident from the marked degree of local crystalline order
at large filling fractions. The velocity maps reveal small
pockets of locally enhanced particle mobility which bear

4



J. Phys.: Condens. Matter 24 (2012) 464130 H H Wensink and H Löwen

Figure 3. Evolution of the average SPR velocity as a function of filling fraction φ for a number of particle aspect ratios. The figure shows
the average velocity component v‖ along the main rod orientation (a) and the average perpendicular component v⊥ (b), both expressed in
units of the velocity v0 of a free SPR.

Figure 4. Mean-square displacement of the centre-of-mass for SPRs with aspect ratio a = 3. The snapshots depict velocity fields (upper
panels) and the SPR coordinates (lower panels) for two different bulk filling fractions corresponding to a fluid state with turbulent signatures
at φ = 0.70 and a jammed state at φ = 0.97. Colour coding is used to indicate the orientation uy = û · êy of each rod.

some resemblance to dynamical heterogeneities commonly
observed in glassy systems of passive thermalized colloids
or granulates [49]. An intriguing avenue for future research
could be to make a systematic comparison of the jamming and
freezing transition for slightly anisometric SPRs with active
and passive particle dynamics. A detailed account of freezing
of self-motile spherical Yukawa particles has recently been
reported in [50].

3.3. Intermediate aspect ratio: vortical states and turbulence

The maximum in the transverse SPR velocities depicted
in figure 3(b) suggest that the SPRs exhibit some degree
of collective swirling motion at moderate densities even at
small aspect ratios. This type of motion becomes much more
manifest at larger a where distinct vortical patterns arise akin
to turbulent flow. The kinetic energy associated with local
vortical motion can be measured from the enstrophy per unit
area [51–53], which is defined as:

� = 1
2 〈|ω̃(r, t)|2〉, (15)

where the overbar denotes a spatial average. For slender rods
(a ≥ 3) the mean enstrophy exhibits a pronounced maximum

as a function of the volume fraction φ (figure 5(a)). This
maximum signals the density at which vortical motion is
maximal. In a bacterial suspension this extremum would
correspond to the optimal concentration for fluid mixing. The
range of aspect ratios over which turbulence flow is stable
corresponds well with the typical aspect ratios of bacterial cell
bodies, e.g. a ∼ 3 for Escherichia coli and a ∼ 6 for Bacillus
subtilis (cf figure 2).

The typical size of the vortices that make up the turbulent
flow patterns can be extracted from the equal-time velocity
autocorrelation function (VACF) gv(r) = 〈v(0, t) · v(r, t)〉.
This quantity can be obtained from the microscopic SPR
coordinates {rα, vα} via:

gv(r) =
〈
∑
α

∑
β 6=α δ(r − |rα − rβ |)(vα · vβ − 〈v〉2)〉

〈
∑
α

∑
β 6=α δ(r − |rα − rβ |)(〈v2〉 − 〈v〉2)〉

. (16)

The decay of the VACFs in figure 5(b) reveals a typical vortex
size of about ∼5`, an estimate that seems rather insensitive to
the bulk density and aspect ratio. Monotonically decreasing
velocity correlations correspond to bio-nematic-type states
where large-scale nematic jets and vortices coexist [42]
whereas negative correlations (cf the curves for a = 7 and φ >
0.8) represent more pronounced vortical motion reminiscent
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Figure 5. (a) Enstrophy � (in units τ−2
0 ) versus filling fraction for a number of aspect ratios a in the turbulent regime. The maxima

correspond to the densities where mixing due to vortical motion is the most efficient. (b) Spatial velocity autocorrelation function for a
number of bulk volume fractions in the turbulent flow regime for two different aspect ratios a.

Figure 6. Maps of the vorticity field ω̃(r, t) = [∇ × v(r, t)] · êz expressed in units of τ−1
0 showing large-scale turbulent flow for SPRs at

intermediate aspect ratios: (a) φ = 0.72, a = 5 and (b) φ = 0.90, a = 7. The snapshots are based on N = 4× 104 SPRs. The lateral box
dimensions are 103` (a) and 78` (b).

of fully developed meso-scale turbulent flow [44]. Typical
vorticity snapshots are shown in figure 6.

In order to make a connection with classical 2D turbu-
lence in high-Reynolds-number fluids we have calculated the
energy spectrum which can be obtained as a Fourier transform
of the VACF:

E(k) =
k

2π

∫
dr exp[−ik · r]〈v(0, t) · v(r, t)〉. (17)

An alternative definition reads 〈v2
〉 = 2

∫
∞

0 dk E(k) where
E(k) reflects the accumulation of kinetic energy over different
length scales. The results in figure 7 suggest asymptotic
power-law scaling regimes for intermediate k-values with a
power-law exponent close to the characteristic k−5/3-decay
predicted by the Kolmogorov–Kraichnan scaling theory [54,
55] for (passive) 2D turbulence in the inertial regime. In
the present case, however, inertia is absent on the particle
scale because the SPR motion is completely overdamped, but
it is possible that the self-propulsion establishes ‘effective’
collective inertial effects on larger scales which could explain
the observed k−5/3 decay. Contrary to regular turbulent flow
where energy is injected on the macroscopic scale, active
turbulence is characterized by forcing on the microscopic
scale. In general, the transport of kinetic energy towards
smaller k becomes significantly damped on larger length
scales [15] as highlighted by the low-k plateau in the power

Figure 7. Power spectra of the kinetic energy for turbulent flow of
SPRs with a = 7 (k` = 2π/`). Universal scaling behaviour (with
scaling exponent −5/3) is observed in the intermediate range of
wavenumbers k.

spectra in figure 7. Indications for an upward enstrophy
cascade with spectral scaling E(k) ∝ k−3 at length scales
smaller then the injection scale have recently been reported
from hydrodynamic theory of active fluids [56]. We refer

6
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Figure 8. Spatial autocorrelation functions of the vertical velocity component gvy(r) (equation (16)) at various filling fractions φ for SPRs
with a = 16. Particle snapshots of the stationary states at (a) φ = 0.05 (disordered, incoherent motion), (b) φ = 0.21 (swarming), (c)
φ = 0.32 (initial stage of lane formation), and (d) φ = 0.42 (fully developed laning state). The lateral box dimension corresponds to 38`.
Colour coding is used to indicate the orientation uy = û · êy of each rod.

Figure 9. Number fluctuations 1N2
= 〈(NL − 〈NL〉)

2
〉 as a function of the average particle number 〈NL〉 (see text) in a system of

N = 1× 104 SPRs. (a) Typical results for the different emergent states: the power-law scaling 1N ∝ 〈NL〉
γ reveals giant number

fluctuations (γ ∼ 1) for the swarming case while fluctuations are strongly suppressed (γ < 0.5) in the dense states (jammed, turbulent and
laning). (b) Density-dependence of the number fluctuations for SPRs with a = 9. The arrow locates the density where a crossover from
swarming to turbulent flow can be expected upon increasing φ.

the reader to [44] for a more detailed discussion comparing
meso-scale turbulence in active suspensions and regular
high-Reynolds-number turbulent flow.

For small aspect ratios the vortical motion slowly dies out
upon lowering the density in favour of incoherent, disordered
motion. The crossover roughly takes place at the overlap
density φ∗ (equation (13)) which thus delimits the low-density
boundary of turbulent flow. At larger aspect ratios the scenario
is different. Here, density fluctuations become stronger and
stronger upon lowering the density, and eventually cause the
homogeneous vortical flow to break up into isolated polar
swarms of SPRs separated by regions which are almost
completely devoid of particles (see also figure 8(b)). In the
high-density regime a sharp transition towards laning-type
flow occurs due to a sudden ‘stretching’ of the vortices into
stratified patterns. Both of these states will be described in
more detail in the next section.

3.4. Long rods: swarming and lane formation

At low to moderate density, slender rods with a > 10 tend
to form large compact flocks (figure 8(b)) which strongly
resemble of the cooperative structures observed in large
groups of organisms, e.g. schools of fish, flocks of birds [57,
58]. The dynamical swarming state is accompanied by
anomalously large (‘giant’) number fluctuations as routinely
found in active system [16–18, 30, 41, 59–61]. The results in
figure 9(a) are obtained by measuring the fluctuation 1N2

=

〈(NL − 〈NL〉)
2
〉 of the average number of SPRs 〈NL〉 =

NL2/A present in a square sub-compartment of linear size L.
From the power-law behaviour 1N ∝ 〈NL〉

γ we can extract
an exponent γ = 0.9 ± 0.2 which is much larger than the
value γ = 0.5 one would expect for a system in thermal
equilibrium. The number fluctuations are much weaker for
the incoherent state although the anomalous exponent (γ ∼
0.6) hints at some degree of clustering taking place even

7
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at low densities [16] (cf figure 8(a)). For the dense states,
fluctuations are strongly suppressed (γ ∼ 0.3), which implies
that the turbulent and laning flow can be regarded as nearly
incompressible. The transition from swarming to turbulence
at smaller aspect ratios can be located from a steep decrease
in the density fluctuations at lower packing fractions as
indicated in figure 9(b). The arrow thus locates a smooth
crossover from strongly fluctuating flocking-type flow to
homogeneous vortical flow where density fluctuations are
strongly suppressed due to packing effects.

At larger volume fractions distinct laning patterns emerge
that consist of cooperative stratified motion (figures 8(c)–(d)).
The transition from flocking to laning as a function of
the volume fraction can be localized from the equal-time
VACF for the velocity components along the lane directions
(in this case the vertical y-component). The characteristic
decay of the VACF gvy(r), shown in figure 8, allows a
distinction between the disordered state at low densities
where rod clusters are small and velocity correlations decay
rapidly and the emergence of large cooperative flocks with
velocity correlations spanning several dozens of rod lengths.
A marked divergence of the correlation length occurs around
φ ≈ 0.4 where the flocks start to span the entire system
and self-organize into lanes moving in opposite directions.
The same effect occurs if a is increased at fixed density
and the crossover from turbulence to laning can be inferred
from a sudden increase of the velocity correlation length.
We remark that the preferred direction of the lanes along
the y-axis is due to a small bias imparted by the squared
simulation box and the periodic boundary conditions applied
in both Cartesian directions. Similar laning patterns may
appear along the horizontal axis if a different orientation of
the rectangular lattice is used as a starting configuration. Other
laning directions (e.g. along the diagonal) are favoured only
transiently before collective redirection takes place along one
of the easy axes of the simulation box. The considerable
enstropy of the swarming state (figure 5) does not reflect
homogeneous vortical flow but rather the curved trajectories
of the isolated swarms which move with considerable speed
owing to the strong local alignment and the low friction
associated with slender rods (cf figure 3(a)). In the laning
state the vorticity is strongly localized in the boundaries
between adjacent layers moving in opposite directions. Here,
the collective friction is even smaller than in the swarms and
the average SPR velocity is close to the maximum swimming
speed of a single SPR.

The laned flow patterns remain stable throughout the
sampled time interval and no sign of break-up is observed
over time even for large systems. We have verified the stability
of the lanes against small fluctuations of the rod orientations
that could be induced by thermal motion of the embedding
medium or by some internal source, e.g. bacterial flagella. The
rotational fluctuations are represented by a Gaussian white
noise contribution 1û to the equation of rotational motion of
each rod α (cf equation (4)):

∂tûα = −f−1
R ·∇ûαU +1ûα. (18)

The stochastic term has zero mean 〈1ûiα〉 = 0 and
correlations 〈1ûiα(t)1ûjβ(t′)〉 = 2D∗Rδijδαβδ(t − t′) (with

i = x, y) in terms of some effective rotational diffusion
rate D∗R. Although ‘run-and-tumble’ motion as commonly
observed in bacterial systems (notably E. coli [4]) is strictly
non-Brownian at short times [62], its long-time behaviour
is well captured by a rotational diffusion process with a
diffusion constant much larger than the Stokes–Einstein
value DR = kBT/f0fR (where kBT is the thermal energy) for
passive Brownian rods. The strength of the tumbling motion
is conveniently expressed in terms of the dimensionless
tumbling parameter `D∗R/v0, which is the ratio of the
translation time a free SPR needs to swim over a distance
` and the typical tumbling time 1/D∗R. Typical values for E.
coli and other swimming bacteria are `D∗R/v0 ∼ 0.01 [4]. In
the dense regime, the particle velocities are dominated by
rod–rod collisions rather than thermal fluctuations and the
intrinsic rotational diffusivity of the SPRs does not incur any
qualitative change to the laning structures. In general, we
assume that the spatio-temporal states and the topology of
the phase diagram are robust against weak fluctuations in
the swimming direction of the SPRs. We remark that similar
laning states have been encountered in binary mixtures of
SPRs with different self-motility at finite temperature [41].
In case of mixtures of active particles or macroscopically
driven passive particles the laning instabilities can usually be
rationalized from the disparity between the species mobility
which favours segregated flow if the mobility ratio exceeds
a certain threshold [37, 41]. In our case, however, such an
intrinsic driving force is absent since all particles have equal
microscopic mobility. We remark that banded and chaotic
patterns of cooperative motion have been predicted recently
in continuum descriptions of polar active particles [63–65] as
well as in modified Vicsek models [33] which include nematic
alignment [30] or density-dependent local mobility [66]. It
would be intriguing to see if the laning patterns observed
here can be reproduced from these models by means of
a full account of the short-wavelength volume-exclusion
correlations that are prevalent in dense systems of rigid SPRs.

4. Conclusions

We have studied the collective dynamical behaviour of a
simple two-dimensional model of self-propelled rigid rods
(SPRs) by means of numerical simulation. Depending on
the rod shape and density, the SPR model exhibits a wealth
of different emergent dynamical states including swarming,
turbulence, laning and jamming. Although many of these
states have been encountered in various setups, most notably
(mixtures of) spherical particles in different external fields, the
SPR model is able to generate these dynamical states upon
variation of only two basic system parameters; the particle
shape and density. The present approach may therefore serve
as a benchmark to characterize the collective properties
of different classes of self-motile organisms and artificial
micro-swimmers of various shapes. As for the turbulent state,
it was recently shown that the SPR model is capable of
reproducing the velocity statistics obtained from experiments
on strongly confined B. subtilis suspensions [44]. Future
experiments on dense systems of self-propelled particles
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with low and high particle anisometry will hopefully allow
for similar comparisons for the jammed and laned state,
respectively.

Future efforts could be aimed at extending the
SPR model and the associated equations of motion
by accounting for effects that could be relevant to
concentrated bacterial systems. These include details of the
self-propulsion mechanism and the associated many-body
hydrodynamic interactions mediated by the solvent, particle
flexibility and body forces transmitted by chemical gradients
(chemotaxis) [42, 67]. The influence of stochastic forces
could be incorporated if one wishes to assess the effect of
translational and rotational noise (bacterial tumbling) in more
detail. It is also desirable to explore the SPR model in three
spatial dimensions, for instance, to study the phenomenology
of fully developed three-dimensional meso-scale active
turbulent flow which has been unexplored so far. Finally, it
would be challenging to construct microscopic theories that
are capable of linking the particle anisometry to the various
emergent states observed in this study. Dynamical density
functional theory for anisotropic particles [12, 32, 68, 69]
could provide a promising avenue for this.
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