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Abstract
A self-consistent microscopic approach to calculate non-equilibrium pair correlations in
strongly interacting driven binary mixtures is presented. The theory is derived from the
many-body Smoluchowski equation for interacting Brownian particles by employing
Kirkwood’s superposition approximation as a closure relation. It is shown that the pair
correlations can exhibit notable anisotropy and a strong tendency to laning in the driving
direction. Furthermore, there are strong indications that pair correlations are characterized by
a long-range decay along the drive. The theoretical results are in good quantitative agreement
with the complementary Brownian dynamics computer simulations.

(Some figures may appear in colour only in the online journal)

1. Introduction

It is a great theoretical challenge to predict structural and
dynamical correlations for a strongly interacting classical
system by using the interparticle interaction forces as the
only input. Most conventional approaches, such as liquid
integral equations [1], density functional [2, 3], or mode
coupling theory [4] focus on correlations in equilibrium. The
use of a microscopic theory for predicting correlations in
non-equilibrium regimes is, however, much more difficult—
only a few attempts have been made so far. The most
advanced theories were constructed for colloidal particles
which perform completely overdamped Brownian motion in
a solvent. Non-equilibrium states in colloidal dispersions can
be conveniently created by applying and controlling external
driving forces, and the trajectories of the individual particles
can be observed in real space [5, 6].

The dynamical density functional theory (DDFT) [7–9]
is one of the microscopic theories describing correlations
in Brownian systems out of equilibrium. However, DDFT
assumes that the pair correlations in non-equilibrium are
the same as those in an appropriate equilibrium reference
system. Therefore, DDFT does not make self-consistent
predictions for non-equilibrium pair correlations. One should

also mention successful generalizations of mode coupling
theory [10–13] to treat dynamical correlations in shear flows
(which represent a special non-equilibrium case). Recently,
mode coupling theory has also been applied to microrheology,
where a single particle is dragged through a suspension [14].
Finally, there is a systematic theory for the change of pair
correlations, based on the many-body Smoluchowski equation
and developed by Szamel and co-workers [15, 16], see
also [17].

Binary mixtures of oppositely driven colloidal particles or
ions represent an ideal model system to study non-equilibrium
phenomena in strongly interacting systems. When the
driving force is sufficiently strong, one can observe the
formation of lanes, which is considered as a prototype of a
non-equilibrium transition [18, 19]. Laning of driven colloids
has been confirmed in subsequent investigations [20–22]
and was found to occur—apart from colloids—in a variety
of other systems including complex plasmas [23], ions in
membranes [24], granulates [25, 26], pedestrians [27–29],
social insects [30] and bacteria as well as cells and artificial
microswimmers [31]. There have been attempts to describe
laning with a microscopic DDFT [32, 33], but such an
approach needs a phenomenological current term which could
only be grossly justified.
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In this paper, we present a self-consistent microscopic
approach for non-equilibrium pair correlation functions in
the steady state of driven binary mixtures. The theory
is based on the many-body Smoluchowski equation for
interacting Brownian particles [34], and employs Kirkwood’s
superposition approximation as a closure relation [35–37].
We solve the derived equations numerically for a 2D case
and demonstrate that the pair correlations can exhibit notable
anisotropy and a strong tendency to laning in the driving
direction. Furthermore, there are strong indications that pair
correlations are characterized by a long-range decay along
the drive. The theoretical results are in good quantitative
agreement with the complementary Brownian dynamics
computer simulations.

The paper is organized as follows. In section 2 we
describe the model. The theory and the simulation technique
are discussed in sections 3 and 4. Results for the pair
correlations are presented in section 5. Finally, in section 6
we briefly summarize the implications and outlook for future
work.

2. The model

We consider an equimolar binary mixture of species A and B,
consisting in total of 2N particles. The particle coordinates are
denoted with

{rA
1 , . . . , rA

N, rB
1 , . . . , rB

N} ≡ {r2N},

where the upper index indicates the species and the lower
index is its number. The interaction Vαβij between two particles

with coordinates rαi and rβj is described via a spherically
symmetric pair potential,

Vαβij ≡ V(|rαi − rβj |),

with α, β ∈ {A,B} and i, j ∈ {1, . . . ,N}. Our theoretical
equations derived below are in principle valid for V(|r|) of
arbitrary form (e.g., for hard-sphere, Yukawa, or soft-sphere
interactions), but in this paper we only present results for a
Gaussian soft core potential [38].

The system is brought into a non-equilibrium steady state
by applying an external driving force acting on individual
particles, Fαext,i. For all particles the absolute value of the force
is the same and equal to F, but species A and B are driven in
opposite directions,

Fαext,i =

{
+Fey forα = A,

−Fey forα = B,

where ey is the unit vector along the y-axis.
The trajectories rαi (t) of individual particles in the

Brownian dynamics regime are governed by the fully
overdamped Langevin equation [39],

ξ ṙαi = Fαi ({r2N})+ fαi (t), (1)

where ξ is a friction coefficient. Here, the total systematic
force Fαi is a superposition of the pair interactions and
the external force. The random force fαi (t) is Gaussian,

with zero mean and second moments governed by the
fluctuation-dissipation theorem [1],

fαi (t) = 0, (2)

fαi (t)f
β
j (t
′)Tr = 2ξkBTδijδαβδ(t − t′)1, (3)

where the bar denotes a noise average, T is the system
temperature, δij is the Kronecker symbol, δ(t) is the Dirac
delta function and 1 is the unity matrix.

In the following we employ the mean interparticle
distance a (to be defined later) as a suitable length scale
and the thermal energy kBT as an energy scale. We use the
Brownian time τB = a2/D0 as a time scale, with D0 = kBT/ξ
being the short-time self-diffusion coefficient. In these units,
the strength of the external force can be expressed in terms of
a dimensionless Péclet number

Pe =
Fa

kBT
.

For Pe = 0, the system is in equilibrium, in a completely
mixed state with isotropic fluid partial densities. Starting
from this mixed configuration, a finite drive Pe > 0 leads
to a non-equilibrium situation, where the system develops
towards an anisotropic steady state after a certain relaxation
period. Below we focus on the pair correlations in this
non-equilibrium steady state.

3. Theory

The essential quantities studied here are the partial pair
correlation functions in the steady state, which are defined as

gαβ(r, r′) =
4

ρ2

〈
N∑

i,j=1
i6=j ∨ α 6=β

δ(r− rαi (t))δ(r
′
− rβj (t))

〉
,

where ρ is the total number density (of both species), α, β ∈
{A,B} and 〈· · ·〉 denotes a time or configurational average
in the steady state. Since we are away from any freezing
transition and macroscopic pattern formation, we assume that
the steady state is homogeneous. Then translational invariance
implies that

gαβ(r, r′) = gαβ(r′ − r), (4)

while the spherical symmetry is naturally broken due to
the external drive. For the self-correlations there is spatial
inversion symmetry,

gαα(r) = gαα(−r). (5)

In symmetric mixtures, there is another underlying symmetry
upon the swap of the particle species: the equations of motion
remain invariant upon the transformation (F→−F, A↔ B),
which implies

gBB(r) = gAA(r), (6)

gBA(r) = gAB(−r). (7)

Hence, for our problem only two partial correlations are
independent in the steady state. This is obviously not so
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for asymmetric mixtures, such as, e.g., colloid–polymer
mixtures [40].

For a microscopic description we now introduce the
many-body probability density 9({r2N}, t). The quantity
9({r2N}, t) dr2N represents the probability of finding the
system at time t in the infinitesimal element dr2N around the
state {r2N}. In order to construct a theory for the anisotropic
steady state pair correlations we start from the Smoluchowski
equation, which is stochastically equivalent to the Langevin
equations [41] and reads as

∂9({r2N}, t)

∂t
= D0

N∑
i=1

∑
α=A,B

∇
α
i ·

[
∇
α
i 9 ({r2N}, t)

−
Fαi

kBT
9({r2N}, t)

]
, (8)

where ∇αi is the gradient operator with respect to rαi .
By integrating out a certain number of degrees of
freedom in equation (8) we obtain an equation for the
reduced probability density. This procedure yields a set
of hierarchical equations, which can be associated with
the Bogolyubov–Born–Green–Kirkwood–Yvon (BBGKY)
hierarchy (cf [1]). By retaining the coordinates of two
particles—either of the same or of different species—and
taking into account that in the steady state the partial time
derivative vanishes, we obtain the following equations for
self- and cross-correlations, respectively:

kBT
(
1A

1 +1
A
2

)
gAA(rA

2 − rA
1 )

= − 2∇
A
1 [(∇

A
1 VAA

12 )gAA(rA
2 − rA

1 )]

−
ρ

2

∑
i=1,2

∇
A
i

∫
drA

3 (∇
A
i VAA

i3 )gAAA(rA
1 , rA

2 , rA
3 )

−
ρ

2

∑
i=1,2

∇
A
i

∫
drB

1 (∇
A
i VAB

i1 )gAAB(rA
1 , rA

2 , rB
1 ) (9)

and

kBT(1A
1 +1

B
1 )gAB(rB

1 − rA
1 )

= − 2∇
A
1 [(∇

A
1 VAB

11 )gAB(rB
1 − rA

1 )]

−
ρ

2

∑
α=A,B

∇
α
1

∫
drA

2 (∇
α
1 VαA

12 )gAAB(rA
1 , rA

2 , rB
1 )

−
ρ

2

∑
α=A,B

∇
α
1

∫
drB

2 (∇
α
1 VαB

12 )gABB(rA
1 , rB

1 , rB
2 )

+ Fey(∇
B
1 −∇

A
1 )gAB(rB

1 − rA
1 ), (10)

where 1αi is the Laplace operator with respect to rαi . These
equations are exact but not closed, since they involve the
triplet correlation functions defined via

gαβγ (r, r′, r′′)

=
8

ρ3

〈
N∑

i,j,k=1
i6=j ∨ α 6=β
i6=k ∨ α 6=γ
j6=k ∨ β 6=γ

δ(r− rαi )δ(r
′
− rβj )δ(r

′′
− rγk )

〉
,

where α, β, γ ∈ {A,B}. The non-equilibrium triplet correla-
tions are in general not known; even in equilibrium they are
highly nontrivial [42].

Here we propose a closure relation based on the tra-
ditional Kirkwood superposition approximation (KSA) [37]
which becomes asymptotically exact for low densities [43].
For our non-equilibrium situation, we supplement this closure
with a symmetrization postulate borrowed from the study of
polymeric liquids [36]. The symmetrized Kirkwood closure
reads

gαβγ (r1, r2, r3) ≈ ḡαβ(r2 − r1)ḡαγ (r3 − r1)ḡβγ (r3 − r2),

(11)

where the bar denotes a symmetrized pair correlation,

ḡαβ(r) = 1
2 (gαβ(r)+ gβα(r)). (12)

The symmetrization allows us to preserve the principal
inversion symmetry of self-correlations. This operation
(degenerate in equilibrium mixtures) becomes nontrivial in
the driven regime, when cross-correlations are no longer
symmetric, see equation (7).

The resulting closed but approximate equations for the
two independent steady state correlations gAA(r) and gAB(r)
then read

kBT1gAA = −∇ [(∇V) gAA]

−
ρ

2
∇ [(KAA ∗ gAA) gAA]

−
ρ

2
∇[(K̄AB ∗ ḡAB)gAA], (13)

kBT1gAB = −∇ [(∇V)gAB]

−
ρ

2
∇ [(KAA ∗ ḡAB) ḡAB]

−
ρ

2
∇[(K̄AB ∗ gAA)ḡAB]

+ eyF∇gAB, (14)

where Kαβ ≡ Kαβ(r)= (∇V(|r|))gαβ(r) and K̄αβ ≡ K̄αβ(r)=
(∇V(|r|))ḡαβ(r) are auxiliary functions, ∇ and 1 are the
operators with respect to the relative coordinate r, and ∗
denotes the convolution of the functions f1(r) and f2(r),(

f1 ∗ f2
)
(r) ≡

∫
dr′ f1(r′)f2(r− r′).

The two coupled nonlinear integro-differential equa-
tions (13) and (14) cannot be solved analytically for F 6=
0 and finite ρ. We have therefore employed a Picard and
Krasnoselskij fixed point iteration scheme (see, e.g., [44–46])
to solve them numerically, where analytical solutions in the
limit ρ → 0 were used as inputs for the fixed point iterations.
Results obtained with this numerical procedure for a 2D
problem are discussed in section 5.

4. Computer simulations

We have performed Brownian dynamics computer simula-
tions to verify the proposed theory. In this paper, the results
are limited to a 2D case, which is sufficient for the basic
comparative analysis of pair correlations.

The simulations with 2N = 50 000 particles were
performed in a quadratic box with periodic boundary

3
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Figure 1. Equilibrium pair distribution functions of the Gaussian particle fluid. The pair interaction potential is given by equation (15) and
the results shown are for (a) V0 = 50kBT , σ 2

= 0.3a2 and (b) V0 = 300kBT , σ 2
= 0.1a2. The solid lines represent results obtained from

Brownian dynamics simulations and the dashed lines are theoretical results calculated from our microscopic theory. The distance is in units
of the mean interparticle distance a.

Figure 2. Contour plots of the self-correlation function, gAA(x, y), for (a) Pe = 4 and (b) Pe = 32. The left panel shows theoretical results
(numerical solution of equations (13) and (14)) and the right panel represents Brownian dynamics simulations. The interaction parameters
are V0 = 300kBT and σ 2

= 0.1a2.

conditions. We used a simple first-order forward time
algorithm [47, 48] to solve equation (1) for all particles. The
mean interparticle distance a (which sets the Brownian time
τB) was identified as a = ρ−1/2, where ρ = 2N/A0 is the
total number density expressed via the simulation area A0.
We used a finite time step 1t which was carefully adjusted
to the magnitude Pe of the driving force. For equilibrium
simulations we set 1t = 10−3τB, while in non-equilibrium
simulations with Pe > 1 a reduced time step of 1t =
10−3τB/Pe was employed to give reliable trajectories. Starting

from an initial equilibrium configuration, the external force
was instantaneously switched on and the system relaxed to the
steady state in about 50τB. Afterwards, statistics were taken
over a time period of 50τB which turned out to be sufficient to
accumulate spatially resolved data for the anisotropic steady
state pair correlations.

5. Results

In the following we present results obtained for a Gaussian
interaction potential. The use of this interaction, which
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Figure 3. Contour plots of the cross-correlation function, gAB(x, y), for the same parameters as in figure 2.

has been previously employed for Brownian dynamics
simulations [49, 50], significantly simplifies the numerical
treatment. The potential reads

V(|r|) = V0e−|r|
2/σ 2

, (15)

where V0 is the potential amplitude and σ quantifies the
interaction range. We have used combinations V0 = 50kBT
and σ 2

= 0.3a2, or V0 = 300kBT and σ 2
= 0.1a2, both

ensuring states far away from the freezing transition [38].
First, we tested the KSA in equilibrium. Pair correlations

in this case are spherically symmetric and species-
independent, so that in figure 1 we plot the pair correlation
function g(r) = gAA(r) ≡ gAB(r). One can see that there is
a good agreement between theory and simulation for the
two selected combinations of parameters. Such agreement is
expected, since the system is weakly correlated—as indicated
by a modest amplitude in the first peak of g(r)—and, hence,
the Kirkwood superposition should generally work well (see,
e.g., [35] for 2D Yukawa interactions).

For Pe > 0 we fix the parameters of the interaction
potential at V0 = 300kBT and σ 2

= 0.1a2. In equilibrium,
this set of parameters ensures that particles do not cluster
(in either simulations or theory, see figure 1(b)). Moreover,
the maximum repulsive force obtained from the Gaussian
potential in this case is at least one order of magnitude larger

than any considered driving force, so that clustering or leaping
of oppositely driven particles in a non-equilibrium regime is
inhibited as well.

The non-equilibrium self-correlation functions gAA(x, y)
obtained for Pe = 4 and 32 are presented in figure 2. Both
theoretical and simulation data are shown in contour plots
over the (x, y)-plane. First, the correlations are anisotropic
and the anisotropy clearly increases with the driving
force. For larger Pe, the probability that particle pairs are
aligned along the drive is dramatically enhanced. Second,
there is a good agreement between simulation and theory.
Similar conclusions can be drawn about the cross-correlation
functions gAB(x, y) which are shown in figure 3. In this case,
however, the up–down symmetry in the y-direction—evident
in gAA(x, y)—is no longer preserved; intuitively, it is clear
that there must be fewer B-particles in the wake of a driven
A-particle than in the front. The overall agreement between
theory and simulation is good, even at large Pe, although
quantitative deviations become apparent.

For more detailed comparison between theory and
simulation, in figure 4 we show the longitudinal distributions,
gαβ(0, y), plotted along the driving field. Again, we can
see that the qualitative features seen in the simulations are
generally well reproduced by the theory. Interestingly, the
cross-correlations gAB(0, y) exhibit a long-range depletion tail
of B-particles (in the wake of the A-particle). The oscillations

5



J. Phys.: Condens. Matter 24 (2012) 464115 M Kohl et al

Figure 4. Longitudinal self- and cross-correlation functions, gAA(0, y) (left panel) and gAB(0, y) (right panel), respectively, plotted for (a)
Pe = 4, (b) Pe = 16, and (c) Pe = 32. The arrows indicate the direction of the driving force (for the particle at the center).

occurring in the tail of the theoretical curve can possibly be
attributed to the symmetrization used in the KSA.

Finally, we studied a long-range behavior of the
correlations at a rather strong drive (Pe = 24, 36, 44). For this
purpose, in the simulations we calculated one-dimensional
slice cuts of the correlation functions with a very high amount
of statistics. Figure 5 illustrates how the correlations decay
towards unity. The (nearly) linear curves seen in the double
logarithmic plots suggest that the pair correlations themselves
exhibit inverse-power-law tails ∝y−p at large distances, with
p between 1 and 2. Similar behavior of pair correlations
upon differential motion of species is well known, e.g., from
microrheology, where the motion of a probe particle through
a compressible fluid induces a dipolar asymptote [51] (see
also [52–54]). We note, however, that in the latter case
power-law decay at large distances is predicted for Pe � 1,
while for Pe� 1 exponential decay is expected again.

6. Discussion and outlook

In this paper we proposed a self-consistent approach to
calculate non-equilibrium pair correlations in driven binary
mixtures. The approach is obviously not limited to symmetric
mixtures: our principal aim here was to demonstrate that
the proposed microscopic theory adequately represents the

onset and development of laning, and the symmetry was
only utilized in order to minimize the number of degrees of
freedom and, hence, to simplify the numerical treatment of
the problem. What is even more important, the theory could
also be applied to time-dependent driving forces, which would
allow us to tackle the fundamental problem of banding in
oscillating fields [5, 55–57].

The direct comparison between theory and simulations
shows that all equilibrium results as well as self-correlations
gAA(r) in non-equilibrium regimes agree very well. On
the other hand, the cross-correlations gAB(r)—which exhibit
strong asymmetry—reveal significant deviations, as one can
see in the right panel of figure 4. We suppose that these
deviations reflect disadvantages of the symmetrized KSA
employed in our theory: artificial ‘downstream’ oscillations
might well be caused by the enforced symmetry in
three-particle distributions, due to mirroring of ‘upstream’
oscillations. Therefore we believe that for sufficiently strong
driving forces, where the symmetry in gAB(r) naturally
increases due to the growth of long lanes, the agreement
between theory and simulations should improve as well.

We note that in this paper we only considered steady
states at relatively small forces, due to complications arising
in the numerical analysis. In future, we plan to investigate
the role of stronger forces and implement numerics on much

6
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Figure 5. Double logarithmic plots of gAA(0, y)− 1 (left panel) and 1− gAB(0,−y) (right panel) for (a) Pe = 24, (b) Pe = 36 and (c)
Pe = 44.

larger lattices (in order to suppress boundary effects in
the employed Fourier methods; such undesired effects can
strongly influence the long-distance tails of the correlation
functions).

In fact, the asymptotic behavior of the correlation
functions at large distances is of fundamental importance,
because it could shed light on many important issues
of self-organization in driven systems. In particular, the
inverse-power-law decay of gαβ(r) towards 1.0 could be
indicative of (approaching) divergence in the structure factors
Sαβ(k), associated with diverging correlations along the
driving field (e.g., the decay ∝ r−p of pair correlations could
in principle result in a divergence when p < 2 in the 2D
case or p < 3 in the 3D case—depending on the angle).
The existence (or nonexistence) of such a divergence could
help us to clarify the long-standing issue of whether the
laning can indeed be considered as a non-equilibrium phase
transition (occurring at a certain critical field) or it is merely
a structural crossover [58]. Thus, the asymptotic behavior
of pair correlations undoubtedly requires separate careful
investigations.

Finally, we would like to point out that the laning is a
topological process. For instance, if we consider a pair of
lanes of one species separated by a lane of another species,
then their mutual development could be very different in 2D
and 3D systems: if the separating lane is infinite the other two

lanes will never merge in the former case, while in the latter
case merging is not inhibited. Therefore, the development of
laning, the very existence of a hypothetical phase transition
and, of course, its order [5, 58] could be primarily affected by
the dimensionality of the experimental setup.
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