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Abstract
If a binary colloidal mixture is oppositely driven by an external field, a transition towards a
laned state occurs at sufficiently large drives, where particles driven alike form elongated
structures (‘lanes’) characterized by a large correlation length ξ along the drive. Here we
perform extensive Brownian dynamics computer simulations on a two-dimensional equimolar
binary Yukawa system driven by a constant force that acts oppositely on the two species. We
systematically address finite-size effects on lane formation by exploring large systems up to
262 144 particles under various boundary conditions. It is found that the correlation length ξ
along the field depends exponentially on the driving force (or Peclet number). Conversely, in a
finite system, ξ reaches a fraction of the system size at a driving force which is logarithmic in
the system size, implying massive finite-size corrections. For a fixed finite drive, ξ does not
diverge in the thermodynamic limit. Therefore, though laning has a signature as a sharp
transition in a finite system, it is a smooth crossover in the thermodynamic limit.

(Some figures may appear in colour only in the online journal)

1. Introduction

In equilibrium, there is a fundamental difference between a
sharp phase transition which exhibits a jump in a certain
derivative of the free energy with respect to a thermodynamic
variable [1] and a continuous crossover where no such
discontinuity exists in the thermodynamic limit. This is
much less clear for nonequilibrium phase transitions since
a free energy does not exist in general there. Here, in
many situations, an order parameter can still be defined in
the steady state and hysteresis behaviour typically serves
as a criterion to discriminate between discontinuous and
continuous behaviour. Another approach is to focus on the
divergence of a correlation length in order to reveal a critical
point in nonequilibrium [2].

While it is by now well understood how the order of an
equilibrium phase transition is controllable by the interparticle
interactions [3–5], the question of which key parameters
determine the existence and order of nonequilibrium phase
transitions is much less understood due to the multitude of
parameters characterizing the nature of the dynamics [6–9].

Lane formation in a binary mixture of Brownian
particles which are driven by a constant external force
depending on the particle species [10] represents a prototype

of a nonequilibrium transition in a continuous (i.e. off-
lattice) system [11]. Previous Brownian dynamics computer
simulations have strongly supported the scenario that for
increasing driving force the system undergoes a transition
from a mixed steady state towards a steady state where
macroscopic lanes are formed. Such a laning transition has
been found in Brownian dynamics computer simulations of
models for oppositely driven repulsive mixtures [10, 12–16]
in two and three spatial dimensions. The laning behaviour was
later quantitatively confirmed both in complex plasmas [17]
and in oppositely charged colloidal mixtures driven by an
electric field [18, 19]. Moreover, lane formation occurs
in driven granular matter [20, 21] as well as in active
matter composed of autonomously moving agents such as
pedestrians [22, 23], social insects [24], bacteria and cells [25,
26], and artificial colloidal microswimmers [27].

In two spatial dimensions, it was found from relatively
small system sizes [10] that a suitable order parameter which
detects laning exhibits a significant hysteresis—if the driving
force is increased and subsequently decreased—which signals
a discontinuous nonequilibrium phase transition. This is in
contrast to three dimensions, where the analogous model does
not exhibit hysteretic behaviour [28–30].
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Figure 1. Sketched calculation of `i. We consider a stripe around a
particle of type α and measure the distance to the closest
complementary particle of type ᾱ within this stripe.

Here, we revisit the question whether the transition
towards lane formation is discontinuous or has a smooth
crossover in a two-dimensional system by using a large-scale
Brownian dynamics computer simulation for a repulsive
Yukawa mixture. The mixture is driven by a constant external
force F which acts oppositely on the two species. We study
systematically finite-size effects by exploring large systems
up to 262 114 particles under various boundary conditions. In
particular we consider the behaviour of a correlation length
ξ along the drive which characterizes the length of the lanes.
Therefore, though laning has a signature as a sharp transition
in a finite system, as found in previous simulations [10], it is
a smooth crossover in the thermodynamic limit. We further
explore the influence of the boundary conditions on the laning
behaviour by studying both periodic and shifted boundary
conditions. As typical, for phase transition in nonequilib-
rium [31–33], a strong influence of the boundary conditions
on the structuring in the steady state is found, which, however,
does not affect the exponential dependency of ξ on F.

This paper is organized as follows: in section 2 we
propose the model and the simulation technique. Results are
discussed in section 3. Finally, section 4 contains conclusions
and a discussion of possible future work.

2. The model

In our Brownian dynamics computer simulations [34],
we consider an equimolar binary mixture of N particles
interacting via the screened Coulomb potential

V(r) = V0
exp(−κr)

r
(1)

in two spatial dimensions (following [10, 35]), where
r denotes the central distance between two particles.
Here V0 measures an interaction amplitude and κ is
the inverse screening length. A Yukawa pair potential is
an established model for the interaction between charged
colloidal suspensions [36, 37], also in confinement between
two charged plates [38]. All particles interact via the same
potential irrespective of their species. The system is simulated
in the canonical ensemble at fixed particle number N (N/2

particles for each species), area A and temperature T . The
mean interparticle distance a defined as a =

√
A/N serves as

unit of length, and the thermal energy kBT is a suitable energy
scale. Anticipating that our qualitative results do not depend
on interaction and thermodynamic details, we fixed κa = 6
and V0a/kBT = 0.3 throughout all of our simulations.

The external field EF(α) acting along the y-direction
depends, however, on the particles species α (α = 1, 2):

EF(α) = (−1)αFEey (2)

such that the particles are driven in opposite directions. It is
convenient to introduce the dimensionless Peclet number Pe
to characterize the strength of the drive as

Pe =
Fa

kBT
. (3)

We vary the Peclet number in the range from zero up to 160.
The simulation is performed in a rectangular box of

dimensions Lx and Ly such that the total area of the system
is A = LxLy. There are periodic boundary conditions in
the x-direction perpendicular to the drive. The boundary
conditions in the field direction are either periodic (as
considered in most of our simulations) or shifted. Due to
the drive, the box length Ly in drive direction is expected
to be more crucial than Lx, therefore we choose Ly = 4Lx

in most of our simulations. The initial configuration at time
t = 0 is taken from an equilibrated drive-free simulation.
Time-dependent trajectories of the particles are calculated
using a finite-time step method with a diagonal diffusion
tensor [34] characterized by a short-time diffusion constant
D0. The latter serves to define a Brownian timescale τB =

a2/D0. After an initial relaxation period t0, the system runs
into a steady state. We take steady-state statistics within a
time window of about 100τB. The finite time-step used in the
simulation was 1t = 10−4τB.

Let us now define a correlation length characterizing
the typical length of the lanes. Let {Erαi } = {(x

α
i , yαi )} be a

particle configuration, where α = 1, 2 is the species index
and the index i = 1, . . . ,N/2 labels the particles of the same
species. To measure the extent of laning we associate with
each particle i of species α a length scale `αi , as obtained from
its anisotropic local surrounding. The idea is to consider only
opposite particles which are within a stripe of width a

2 , as

expressed by an index set I(α)i = {j} of indices j which all
fulfil the condition

|xαi − xᾱj | ≤
a

2
. (4)

Here we defined the species index ᾱ, which is complementary
to α, by

ᾱ =

{
1 for α = 2

2 for α = 1.
(5)

Under this condition we look for the next oppositely driven
particle with the smallest distance from the ith particle, as
sketched in figure 1. This distance characterizes the length of
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Figure 2. Typical snapshots of a computer simulation with N = 4096 particles for the relaxation into the laned steady state at Pe = 115
after a time of (a) 0τB (initial mixed configuration), (b) 2τB, (c) 8τB and (d) 20τB. Particles of different species are differently coloured. The
white regions contain no particles at all.

a lane in the y-direction, hence

`αi = min
j∈I(ᾱ)i

|yαi − yᾱj |. (6)

In the case there is no oppositely charged particle in
the observed lane, we set `αi = Ly corresponding to a
system-spanning lane. We construct a histogram of `αi
when averaged over all particles, species and steady-state
configurations, and therefore obtain a normalized distribution
function P(`) of the distances. Finally, we define the first
moment of this distribution as a system correlation length ξ ,
namely

ξ = 〈`αi 〉 ≡ 〈`〉 =

∫
∞

0
d` `P(`) (7)

with 〈· · ·〉 denoting an average over all particles and
steady-state configurations [39].

3. Results

For the relaxation into the steady state after applying the
external drive, typical simulation snapshots for N = 4096
particles are shown in figure 2 for a high Peclet number

Pe = 115, where a strong degree of laning is developing. The
system moves to a completely laned state after about 20τB.
One should note, however, that for larger times the lanes are
not static but constantly change and intermix.

In figure 3, we show snapshots in the steady state
for different drives. One clearly sees the tendency to form
longer and more pronounced lanes as the Peclet number Pe
increases.

It is important to get a clear idea about the duration of
the relaxation process in order not to obscure steady-state
averages with transient initial effects. We point out that the
relaxation time t0 needed to get into the steady state depends
on the driving strength. We have monitored the relaxation
of the correlation length ξ in order to estimate t0. For N =
65 536 particles, an example is presented in figure 4(a), plotted
logarithmically over a broad time window for two different
Peclet numbers Pe = 60 and 120.

The saturation of ξ to its steady-state value occurs after
about t0 = 2τB for Pe = 60 and after about t0 = 100τB for
Pe = 150. Basically, ξ increases with time, indicating the
steady built-up of lanes. Before reaching the steady-state
limit, there are significant fluctuations. This estimate for t0
is consistent with monitoring the potential energy during

3
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Figure 3. Typical snapshots of a computer simulation with N = 4096 particles in the steady state for (a) Pe = 0 (mixture in equilibrium)
(b) Pe = 40, (c) Pe = 80 and (d) Pe = 160. Particles of different species are differently coloured.

Figure 4. Temporal development of (a) the correlation length ξ and
(b) total potential energy per particle U

kBT during relaxation for two
Peclet numbers Pe = 10 and Pe = 150 with N = 65 536.

relaxation, which is conveniently chosen to characterize the
relaxation processes [40]. In fact, the relaxation of the total
potential energy U per particle is shown over the same time
window in figure 4(b) for the same two Peclet numbers
Pe = 60 and 120. In general, the potential energy increases
initially and then decreases towards its steady-state limit.
This has to do with the fact that, after getting started from a
mixed configuration at time t = 0, the opposite drive increases
the separation between particles of different species which
increases U while subsequent laning causes a decrease of
these energetically costly collisions. If the relaxation time
t0 is estimated from the potential energy saturation, the data
are close to that gained from the saturation of the correlation
length ξ , compare figures 4(a) and (b)1. Finally, one should
also bear in mind that the relaxation time depends slightly on
the system size.

Figure 5 shows the correlation length ξ versus driving
strength Pe for different particle numbers N. Periodic
boundary conditions were used. Small sizes give the same
correlation length for low Peclet number but start to deviate
from the data of larger system sizes when the correlation
length becomes comparable to the system size Ly in the drive

1 Another marker for the relaxation process is the mechanical pressure.
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Figure 5. Correlation length ξ in the steady state versus external
drive Pe for different particle numbers N.

Figure 6. Semi-logarithmic plot of the exponential fit and the
power-law fit for the correlation length data 1ξ(Pe)/a.

direction. Using this plot as a reference one can conclude that
the data of the largest system size are reliable up to about Pe =
132 and define uniquely a dimensionless function ξ(Pe)/a.
We have tried to approximate this function by various fits. In
particular, a good description was achieved by an exponential
fit

ξ(Pe) = ξ(0)+ A

(
exp

(
Pe

Pe0

)
− 1

)
(8)

with two fit parameters A = 0.069 and Pe0 = 23.3 and ξ(0) =
1.35a determined from the equilibrium simulations. As an
alternate fit, the following power law was used

ξ(Pe) = ξ(0)+ BPeγ (9)

again with two fitting parameters B = 9.18 × 10−11

and an exponent γ = 5.35. As becomes evident from a
semi-logarithmic plot of 1ξ(Pe) = (ξ(Pe) − ξ(0)), shown in
figure 6, the exponential fit is better than the power-law fit over
the range of Peclet numbers between 60 and 132. Figure 6 in
fact reveals a linear dependence of the data over a full decade,
thus confirming the exponential fit of equation (8). Hence we
conclude that based on our simulation data the correlation
length depends exponentially on the drive such that for large
drives:

ξ(Pe) ∝ exp
(

Pe

Pe0

)
. (10)

As a further check of finite system size effects, we have
scaled the full data for the correlation length by the finite
box length Ly. The results for all system sizes explored are
shown in figure 7. The data for ξ/Ly are obviously bounded

Figure 7. Plot of ξ/Ly versus driving strength Pe for different
system sizes N.

Figure 8. Critical Peclet number Pec characterizing the inflection
points versus particle number N on a semi-logarithmic
representation. A linear fit to the data is also shown.

between 0 and 1. For a given system size the correlation
length ξ quickly switches in a relative small range of Peclet
numbers from small values to system-size comparable ones.
In this range, for each fixed system size N, we have fitted the
following hyperbolic Fermi–Dirac-like approximation to the
data

ξ(Pe)/Ly = b+
c

1+ d exp(Pe/f )
(11)

where b, c, d and f are fit parameters. The inflection point of
this fit gives a good measure to the point where the correlation
length becomes comparable with the system size and defines
a system-size dependent critical Peclet number Pec(N). This
critical Peclet number is shown on a semi-logarithmic plot
in figure 8. Over more than two decades of system sizes, a
linear behaviour reveals that the system size corrections are
logarithmic, i.e.

Pec(N) ∝ ln(Ly) ∝ ln(N). (12)

This is consistent with equation (8): if one sets ξ equal
to a fraction of Ly, the resulting critical Peclet number is
logarithmic in Ly. From the slope of the linear fit shown
in figure 8, one gets to leading order Pec(N) = 14 ln(Ly/a),
where the prefactor 14 is smaller but of the same order
of magnitude as the parameter Pe0 = 23.3 found in the
exponential fit in equation (8). The difference in the two
prefactors is consistent with the fact that the correlation
length is larger in a finite system (as induced by the periodic
boundary conditions).

As a more general remark, logarithmic size corrections
are dramatic, they also destroy long-range positional order in
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Figure 9. Plot of ξ(Pe)
Ly

from two types of simulations with
N = 65 536 particles using either periodic or shifted boundary
conditions.

two-dimensional equilibrium crystallization [41] and occur in
other circumstances [42, 43]. For a review see [44]. As the
most basic conclusion we therefore state that, for finite drives,
system-spanning lanes only occur for infinite-large systems,
i.e. in the thermodynamic limit.

We finally address the stability of our results with respect
to other boundary conditions in the drive direction. We
have introduced a shift by ±0.5a in the x-direction if a
particles leaves the simulation box. This is unfavourable for
lanes extended in the y-direction. Our large-scale simulations
show that shifted boundary conditions affect the critical
Peclet number Pec but not the actual exponential behaviour
obtained when ξ is much smaller than Ly. In other words,
the exponential fit (8) is independent of the boundary
conditions and the logarithmic law (12) persists. The actual
proportionality prefactor in (12), however, depends slightly on
the boundary conditions. This is documented by simulation
data for two particle numbers N = 4096 and N = 65 536
shown in figure 9. While the boundary conditions change
the critical Peclet number by about 10% for small system
sizes (N = 4096), the deviations drop to about 3% for N =
65 536 if the inflection point criterion is used to determine
Pec. The boundary conditions, however, do not affect the data
in the low-ξ wing needed to extract the exponential fit of
equation (8).

4. Conclusions

In conclusion, we have systematically explored finite-size
effects for the laning transition. Our main conclusion is that
perfect laning with system-spanning lanes occurs only at
infinitely high driving forces. Lane formation is therefore a
continuous crossover, but the length of the lanes depends
exponentially on the drive. In previous experiments [17, 45]
the lanes observed were pretty short, much smaller than
the system size at finite drive. This is at least qualitatively
compatible with our findings, although there is a caveat
since the experiments of [17, 4] were conducted in three
dimensions. In previous simulations, the system size was
too small to clearly see the finite-size corrections, which are
logarithmic in the system size. However, the onset of the
laning transition is consistent with previous work if finite
lanes composed of 3–10 particles are considered.

We finally point out that there is a formal similarity
of laning to the glass transition, which is also generally
understood to be a nonequilibrium phenomenon. The drive
leading to glass formation is thermodynamic and achieved
by cooling the system. For strong glass formers [46–50], the
characteristic timescale τα (corresponding to our correlation
length) diverges exponentially with the inverse temperature
1/T (corresponding to the Peclet number of this study),
as described by an Arrhenius law τα ∝ exp(T0/T), where
T0 is a material-dependent scale. Traditionally one states
that a system is glassy when the timescale τα exceeds an
experimentally observable time window. In our situation, this
translates to the fact that the correlation length becomes of the
order of the observable system size. Of course, further work is
needed to explore this possible formal analogy between glass
formation and laning in more detail.

Future work should address the following open questions:
first, it would be interesting to study the nature of the
laning in three spatial dimensions. Then similar two lanes
spanning the system in drive direction can merge without
crossing an oppositely driven lane. Therefore, one can
speculate that the order of the laning is different in
3D. Second, in zero-temperature models (similar to that
proposed in [11]) laning can emerge as a second-order
transition. This is, however, different to our model where the
temperature is finite. Third, the influence of hydrodynamic
interactions on laning should be studied more. The latter
can be accessed either by diffusion tensors [28] or by more
advanced simulation schemes such as multi-particle collision
dynamics [51, 45]. Fourth, there is a need to study laning on
theoretical grounds by a microscopic nonequilibrium theory
based on the Smoluchowski equation, similar to what has been
proposed for external shear fields [52]. This would extend
previous approaches where a phenomenological current term
was needed as an input [13, 53]. A first approach was recently
proposed in [54]. Finally, there are a few further questions
which should be explored in future studies including: (i) the
emergence and formation of lanes in the initial relaxation
towards the steady state, (ii) the typical life-time of a
finite-extended lane in the steady state, (iii) the distribution
of the (horizontal) thicknesses of the lanes during the
relaxation process, (iv) a full phenomenological construction
of finite-size scaling and (v) a simulation of the particle
currents in order to compare them with phenomenological
assumptions [13, 53].
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