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Resonant behavior of trapped Brownian particles in an oscillatory shear flow
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The response of harmonically trapped Brownian particles to an externally imposed oscillatory shear flow is
explored by theory and computer simulation. The special case of a single trapped particle is solved analytically.
We present explicit results for the time-dependent density and the velocity distribution. The response of the
many-body problem is studied by computer simulations. In particular, we investigate the influence of oscillatory
shear flow on the internal modes of the cluster. As a function of the shear oscillation frequency, we find resonant
behavior for certain (antisymmetric) normal modes, implying that they can be efficiently excited by oscillatory
shear. Our results are verifiable in experiments on dusty plasmas and trapped colloidal dispersions.
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I. INTRODUCTION

Recently, it has become possible to trap mesoscopic
classical dust grains or colloidal spheres in external fields (e.g.,
laser-optical tweezers, electric fields, or thermal fields [1]),
where they form well-controlled clusters containing only a
few particles [2–5]. In many cases, the effective confinement
potential is practically harmonic. For a dusty plasma, it has
been shown that the cluster typically possesses a shell structure
[6–11] and exhibits a melting transition upon heating [12].
Dynamically, there are internal modes like breathing [13]
and rotation excitations [14], which can be induced either
thermally, by lasers [15], or by adding a second delocalizing
time-dependent field [16]. A similar setup can be realized
for colloidal dispersions in a fluid solvent, where the same
phenomena are observed, albeit with the caveat that the
damping of the particles is much larger. Hard-sphere-like
colloids have been confined to cavities, and the glass transition
has been studied [17–20]. The clusters can be two-dimensional
both for dusty plasmas and colloids. In the latter case,
superparamagnetic particles have been used in a circular
environment [21].

Here, we put forward the idea of exposing a cluster of
trapped Brownian particles to an external oscillatory shear
flow field. Shear flow can be imposed on both dusty plasma
and colloidal clusters: For dusty plasmas, a rotating electrode
can be used to induced a flow field of the neutral gas, which
then exerts an additional friction term relative to the flow field
[22–24]. In the colloidal case, the solvent can be directly
sheared in shear cells [25,26].

The simplest case is steady-state linear shear (Couette flow),
where the flow field is time independent. Oscillatory shear
fields with a characteristic oscillation frequency � can also
be imposed: For dusty plasmas, this would be an oscillatory
electrode, a setup that has not yet been implemented but
which is, in principle, conceivable. In the colloidal context,
oscillatory shear is a standard rheological setup which also
has been used in particle-resolved studies [27–29]. Our goal
here is to predict, by theory and simulation, the response of a
finite trapped particle cluster to oscillatory shear.
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Our motivation to do so is threefold: First, the oscillation
frequency � inherent in the shear excitation can excite certain
dynamic modes. A selective excitation of modes would be
helpful to understand and control the dynamic response of
the whole cluster. This could be pivotal to constructing
new antenna systems, for example, ultrasonic emitters [30].
Second, more fundamentally, even the case of a single trapped
particle is interesting since analytical solutions have been
presented for the linear-shear case [31–34]. Due to the
stochastic Brownian force, these solutions are nontrivial and
exhibit interesting particle distribution functions and shear-
induced cross-correlations. Here, we generalize the analytical
solution to oscillatory shear and discuss the dependence on
the shear oscillation frequency �. The analytical solution is
already interesting in itself since it may serve as a standard
situation to compare with the many-body system. Third, our
predictions are verifiable in experiments on complex plasmas
or on colloids. This concerns the behavior of a single particle
(as predicted by our analytical solution) and that of many
particles (as predicted by our simulations).

A colloid experiment is in principle straightforward and has
already been implemented to verify the analytically predicted
behavior of two particles in time-independent shear flow [35].
This has been done with the caveat that the hydrodynamic
interactions between the particles play an important role for
more than a single particle in the trap [16,36,37]. The latter are
irrelevant for gas flow in complex plasmas, where oscillatory
shear can be imposed by a time-oscillating electrode [22,23].

As a result, our analytical solutions reveal that the particle
and velocity distributions exhibit a strong resonance in weakly
damped systems. With relatively low shear rates, it is possible
to induce a significant anisotropy in the distribution functions.
Our simulations for a small cluster show that oscillatory
shear can be used to excite particular modes in confined
systems. This is demonstrated for four particles, where we
observe two resonances for the amplitude of the spatial cross-
moment.

This paper is organized as follows: The theoretical model
and the relevant equations are introduced in Sec. II. The
solution for the single-particle problem is worked out in
Sec. III. In particular, we derive explicit solutions for the time-
dependent moments of the position and velocity distribution
functions. In Sec. IV, Langevin dynamics simulations are
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FIG. 1. (Color online) Sketch of the flow field u(r,t), the
confining force −∇V (r), and the particle distribution (ellipse) at
(a) t = t0 and (b) t = t0 + Tsh/2.

performed to study the effect of oscillatory shear on strongly
interacting few-particle systems. We conclude with a summary
and discussion of our results in Sec. V. Mathematical details
and the explicit results for the moments are presented in the
Appendices.

II. MODEL

We consider N particles with identical mass m that are
confined by an isotropic harmonic confinement potential

V (r) = m

2
ω2

0r
2, (1)

where ω0 is the trap frequency and r2 = x2 + y2. They are
subject to an oscillatory shear flow described by the velocity
field

u(r,t) = γ̇ y cos(�t) êx, (2)

with êx denoting the unit vector in the x direction, γ̇ the shear
rate, and � the shear frequency (period Tsh = 2π/�). The
model is illustrated in Fig. 1.

The dynamics of N particles is described by the Langevin
equations

r̈ i = −ω2
0 r i +

N∑
j �=i

F(r ij )

m
− ν[ṙ i − u(r i ,t)] + f i

m
, (3)

where F(r ij ) is the interparticle force, ν is the damping
coefficient, and f i(t) = (f x

i (t),f y

i (t))T the stochastic force.
The latter is assumed to have zero mean, 〈 f i(t)〉 = 0, and the
correlation function〈

f α
i (t) f β

j (t ′)
〉 = 2mνkBTnδij δ

αβ δ(t − t ′). (4)

Here, Tn denotes the neutral gas temperature and kB denotes
the Boltzmann constant. Particle indices are labeled by i,j ∈
{1, . . . ,N} and coordinates by α,β ∈ {x,y}.

In the static limit (� = 0), several aspects of this problem
have been addressed previously, for example, diffusion [38],
inertial effects [31], dynamic properties [33], fluctuation-
dissipation relations [34,39], the probability distribution in
the overdamped limit [32], or retardation effects [40]. In the
following, we focus on the oscillatory case with � > 0 and
explore the influence of the periodic flow on the dynamics of
a single particle (Sec. III) and many particles (Sec. IV).

III. SINGLE-PARTICLE PROBLEM

In this section, the motion of a single particle is investigated
analytically by solving the Langevin equation (3).

A. Solution of Langevin equation

The two second-order equations (3) can be written equiv-
alently as the following system of first-order equations for
χ(t) = (vx(t),vy(t),x(t),y(t))T ,

χ̇(t) = A(t)χ(t) + ξ (t). (5)

Here, we have introduced ξ (t) = (fx(t),fy(t),0,0)T /m with

〈ξ (t)〉 = 0, 〈ξ (t)ξT (t ′)〉 = D δ(t − t ′), (6)

where the diffusion matrix is given by

D = 2νkBTn

m

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠. (7)

Compared to static shear flow [31,34], the coefficient matrix
A(t) now becomes time dependent and reads

A(t) =

⎛
⎜⎜⎜⎝

−ν 0 −ω2
0 νγ̇ cos(�t)

0 −ν 0 −ω2
0

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎠. (8)

Note that it is Tsh periodic; that is, A(t + Tsh) = A(t). In
mathematical terms, Eq. (5) describes an Ornstein-Uhlenbeck
process with time-periodic coefficients; see Refs. [41,42] for
more general investigations.

The solution of a system of linear ordinary differential
equations such as Eq. (5) with the initial condition χ(t0) = χ0

can be written in the form (see, e.g., Ref. [43])

χ (t) = U(t)χ0 + U(t)
∫ t

t0

U−1(t ′)ξ (t ′) dt ′

= G(t,t0)χ0 +
∫ t

t0

G(t,t ′)ξ (t ′) dt ′, (9)

where U(t) represents the solution of the homogeneous
equation (ξ ≡ 0). It satisfies U̇(t) = A(t)U(t) and U(t0) = 1
with 1 being the unit matrix. The second line is an equivalent
expression (see, e.g., Refs. [41,42]) in terms of the evolution
operator

G(t,t ′) = U(t)U−1(t ′). (10)

The explicit results for U(t) are derived in Appendix A.

B. Mean and correlation functions

From Eqs. (6) and (9) we can calculate the mean value
(see Ref. [31])

〈χ (t)〉 = U(t)χ0 (11)
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and the correlation matrix (τ > 0)

C(t,τ ) = 〈[χ (t + τ ) − 〈χ (t + τ )〉][χ(t) − 〈χ (t)〉]T 〉
=

∫ t

t0

dt ′ G(t + τ,t ′)D GT (t,t ′). (12)

Our interest is in the stationary state (“s”) at times t − t0 	 ν−1

when the system has lost any memory of the initial conditions.
For this purpose we let t0 → −∞,

Cs(t,τ ) =
∫ t

−∞
dt ′ G(t + τ,t ′)D GT (t,t ′)

= U(t + τ )

[ ∫ t

−∞
dt ′ U−1(t ′)D (U−1)T (t ′)

]
UT (t).

(13)

Due to the periodicity of A(t), the evolution operator
is invariant under a time shift by Tsh [41]; that is, G(t +
Tsh,t

′ + Tsh) = G(t,t ′). By changing the integration variable
in Eq. (13) and making use of the periodicity, one can then
show that Cs(t + Tsh,τ ) = Cs(t,τ ). As a consequence of the
symmetry of the shear flow, the mean value [Eq. (11)] vanishes:
〈χ (t)〉s = 0.

Since the motion in the y direction is independent of
the shear flow, the respective correlation functions remain
unaffected. They are simply those of a damped harmonic
oscillator and can be found, for example, in Ref. [44]. All
other cases are evaluated from Eq. (13) and the explicit results
for U(t) given in Appendix A (with the help of computer
algebra).1

C. Moments of the distribution function

In the following, we consider the static (τ = 0) correlation
functions of χ (t), that is, the second moments that determine
the (Gaussian) distribution function; see Refs. [31,33].

They can be written as [cf. Eq. (13)]

Cs(t,0) = kBTn

mω2
0

[
diag

(
ω2

0,ω
2
0,1,1

)
+ Wi2 diag

(
ω2

0 dvx
,0,dx,0

) + Wi R(t)
]
, (14)

where Wi = γ̇ ν/ω2
0 is the Weissenberg number [33]. The time-

independent contributions are given by

dx = �̄2 + 4(ν̄2 + 1)

(ν̄2 + �̄2)[4ν̄2�̄2 + (�̄2 − 4)2]
, (15)

dvx
= 1

2

�̄4 + 2(2ν̄2 − 1)�̄2 + 8

(ν̄2 + �̄2)[4ν̄2�̄2 + (�̄2 − 4)2]
, (16)

where �̄ = �/ω0 and ν̄ = ν/ω0. For future reference we intro-
duce the dimensionless shear rate ˙̄γ = γ̇ /ω0. The explicit re-
sults for the time-dependent contributions R(t) = R(t + Tsh)
are presented in Appendix B. Note that the matrix is symmet-
ric, Cs(t,0) = CT

s (t,0).

1If we choose the limit t0 → −∞ such that t0 = t∗
0 = −nTsh with

n ∈ N, n → ∞, we have G(t,t ′) = G(t + t∗
0 ,t ′ + t∗

0 ) = U(t + t∗
0 )

U−1(t ′ + t∗
0 ). The matrix U(t) explicitly depends on t and t0;

i.e., U(t) = U t0 (t). From Eqs. (A8) and (A9) one can see that
U t∗0 (t + t∗

0 ) = U0(t), which we use to evaluate the integral in Eq. (13).

1. Angular momentum and rotation

In the static limit, it is known that the flow leads to rotation
with a constant angular momentum [31]. In the time-dependent
case, it is given by

〈Lz(t)〉 = m〈xvy − yvx〉

= −kBTn

ω0

˙̄γ√
1 + (�/ν)2

cos(�t + φLz
), (17)

where ϕLz
= − arctan(�/ν) is the phase angle. Note that the

amplitude is negative.
The angular momentum is largely determined by the ratio

of the shear frequency and the damping rate. If the latter
significantly exceeds the former (�/ν  1), the phase shift
ϕLz

vanishes, and the amplitude is slightly smaller than in the
static limit (� = 0) [31]. On the other hand, if �/ν 	 1, the
phase shift asymptotically tends to −π/2 while the amplitude
decreases monotonically and goes to zero.

2. Resonances

The shear flow can be considered an external periodic
driving force. As such, it allows excitation of internal modes of
the unperturbed system both in the linear and nonlinear regime.
We now explicitly consider the spatial and velocity moments,
where resonance effects manifest themselves as amplitude
peaks at particular excitation (i.e., shear) frequencies.

Since the y component is not directly affected by the shear
flow, its moments are 〈y2〉 = kBTn/(mω2

0) and 〈v2
y〉 = kBTn/m.

Using the results presented in Appendix B, one finds for the
cross moments

〈x(t)y(t)〉 = Wi

(
kBTn

mω2
0

)
Axy cos(�t + φxy), (18)

〈vx(t)vy(t)〉 = Wi

(
kBTn

m

)
Avxvy

cos(�t + φvxvy
), (19)

where the amplitudes are given by

Axy =
[

4ν̄2 + �̄2

(ν̄2 + �̄2)[4ν̄2�̄2 + (�̄2 − 4)2]

]1/2

, (20)

Avxvy
=

[
�̄2

(ν̄2 + �̄2)[4ν̄2�̄2 + (�̄2 − 4)2]

]1/2

, (21)

and the phase angles follow from

tan φxy = ν̄�̄

[
�̄2 + 4(ν̄2 + 1)

�̄4 − 4�̄2 + 4ν̄2(�̄2 − 2)

]
, (22)

tan φvxvy
= ν̄

�̄

[
3�̄2 − 4

�̄2 − 2ν̄2 − 4

]
. (23)

Similarly, we get

〈x2(t)〉
kBTn/mω2

0

= 1 + Wi2[dx + Axx cos(2�t + φxx)], (24)

〈
v2

x(t)
〉

kBTn/m
= 1 + Wi2

[
dvx

+ Avxvx
cos(2�t + φvxvx

)
]
, (25)
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with rather complicated expressions for the amplitudes and phase angles:

Axx =
[

4ν̄4 + 4(�̄2 − 1)2 + ν̄2(17�̄2 + 8)

4(ν̄2 + �̄2)(ν̄2 + 4�̄2)[4ν2�̄2 + (�̄2 − 4)2][ν̄2�̄2 + (�̄2 − 1)2]

]1/2

, (26)

Avxvx
=

[
4ν̄4�̄4 + 4(�̄2 − 1)4 + ν̄2�̄2(17�̄4 − 4�̄2 − 4)

4(ν̄2 + �̄2)(ν̄2 + 4�̄2)[4ν̄2�̄2 + (�̄2 − 4)2][ν̄2�̄2 + (�̄2 − 1)2]

]1/2

, (27)

tan φxx = ν̄�̄

(
8�̄6 − 22�̄4 + 38�̄2 − 24 + 4ν̄4(2�̄2 − 3) + ν̄2(34�̄4 − 31�̄2 − 16)

4�̄2(�̄2 − 4)(�̄2 − 1)2 − 4ν̄6�̄2 − ν̄4(13�̄4 + 20�̄2 − 8) − ν̄2(−13�̄6 + 41�̄4 + 10�̄2 − 8)

)
, (28)

tan φvxvx
= ν̄�̄

(
8�̄8 − 36�̄6 + 90�̄4 − 86�̄2 + 24 + 8ν̄4�̄2(�̄2 − 1) + ν̄2(34�̄6 − 41�̄4 + 4)

4�̄2(�̄2 − 4)(�̄2 − 1)3 − 4ν̄6�̄4 − ν̄4�̄4(13�̄2 + 6) − ν̄2(−13�̄8 + 31�̄6 + 30�̄4 − 38�̄2 + 8)

)
. (29)

The results for the cross-moments are illustrated in Fig. 2.
For weak damping, both Axy and Avxvx

exhibit a clear
resonance near �̄ = 2, which becomes less pronounced as
the damping rate increases. While Avxvy

→ 0 for �̄ → 0, Axy

approaches a constant value in the static limit. The dependence
of the phase angles on the shear frequency is monotonic, except
for φxy , which displays a small minimum at weak damping
and low �̄; see Fig. 2(a). In the high-frequency limit, both
amplitudes go to zero.

Compared to the cross-moments, the amplitudes for the
time-dependent contributions to 〈x2(t)〉 and 〈v2

x(t)〉 have a two-
peak structure at low damping; see Fig. 3. In addition to the
maximum near �̄ = 2, they exhibit another peak near the trap
frequency, �̄ = 1, which can become the dominant resonance
at intermediate damping; see Fig. 3(a). The constant terms dx

and dvx
, on the other hand, have only a single peak near �̄ = 2.

Both the constant terms and the amplitudes attain large values
near the static limit and the resonance frequency. They vanish
in the limit �̄ → ∞.
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FIG. 2. (Color online) Phase angles [(a), (b)] and amplitudes
[(c), (d)] of 〈x(t)y(t)〉 and 〈vx(t)vy(t)〉 according to Eqs. (20)–(23)
for the parameters indicated in the figure.

3. Particle and velocity distribution

We now turn to the details of the spatial and velocity
distribution functions. A principal component analysis [33]
yields the lengths of the principal axes

√
cp,v;1,2 of the elliptical

distributions and their orientation in space, characterized by
the angle φp,v(t) between the longer axis and the x axis. The
ratio Vp,v(t) between the two axes and the angle φp,v(t) are
determined by [33]

cp;1,2(t) = 1

2
[〈x2〉 + 〈y2〉 ±

√
4〈xy〉2 + (〈x2〉 − 〈y2〉)2],

tan φp(t) = 1

2

[ 〈xy〉
|〈xy〉|

√
4 +

( 〈x2〉 − 〈y2〉
〈xy〉

)2

−
( 〈x2〉 − 〈y2〉

〈xy〉
)]

, (30)

Vp(t) =
√

cp;2

cp;1
, (31)
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FIG. 3. (Color online) Amplitudes [(a), (b)] and constant terms
[(c), (d)] of 〈x2(t)〉 and 〈v2

x(t)〉 according to Eqs. (26) and (27) and
Eqs. (15) and (16) for the parameters indicated in the figure.
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where the subscript 1 (2) refers to the plus (minus) sign. The
expressions for the velocity distribution are analogous.

Before we study the time evolution, we compare our results
for the static limit � = 0,

tan φp =
√

1 + 1

4

(
Wi + γ̇

ν

)2

− 1

2

(
Wi + γ̇

ν

)
, (32)

Vp =
[

Wi + γ̇

ν
+ 4

Wi −
√

4 + (
Wi + γ̇

ν

)2

Wi + γ̇

ν
+ 4

Wi +
√

4 + (
Wi + γ̇

ν

)2

]1/2

, (33)

with previous calculations [31,33,34]. Holzer et al. [33] con-
sidered the overdamped limit. Consequently, their results do
not account for the ∼γ̇ /ν correction terms that are important
in weakly damped systems. Rzehak and Zimmermann [31], on
the other hand, explicitly considered inertial effects but used
an adjusted diffusion matrix that incorporated properties of
the flow field. Their results then agree with ours for γ̇ /ν = 0
and those of Ref. [33] for the overdamped case. For the
velocity distribution one finds φv = 0 and an increased kinetic
temperature in the flow direction,

Vv =
[

1 + ˙̄γ 2

2

]−1/2

; (34)

see Refs. [31,34]. It is independent of the damping rate ν.
Since the time-dependent contributions to the second

moments vanish in the high-frequency limit, �̄ → ∞, we
obtain Vp,v → 1. Here, the particles are too inert to adjust
to the motion of the flow.

At finite shear frequencies, the angle φp,v(t) satisfies
φp,v(t + Tsh/2) = −φp,v(t), while the ratio of the axes is
strictly Tsh/2 periodic, Vp,v(t + Tsh/2) = Vp,v(t). The time
evolution is depicted in Figs. 4–7. Generally, the maximum
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FIG. 4. (Color online) Angle between the major axis and the x

axis of the particle distribution according to Eq. (30) for ˙̄γ = 0.2
(solid line), ˙̄γ = 1 (long-dashed line), and ˙̄γ = 5 (short-dashed line).
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FIG. 5. (Color online) Ratio between the minor and the major
axis of the particle distribution according to Eq. (31) for ˙̄γ = 0.2
(solid line), ˙̄γ = 1 (long-dashed line), and ˙̄γ = 5 (short-dashed line).

value the angle can attain decreases with the shear rate, which
is accompanied by an increasingly elongated particle and
velocity distribution.

We first discuss the results for the particle (density)
distribution. Near the static limit, φp(t) shows the most
complicated behavior. For sufficiently high shear or damping
rates, the angle can feature two minima and maxima during
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FIG. 6. (Color online) Angle between the major axis and the
x axis of the velocity distribution for ˙̄γ = 0.2 (solid line), ˙̄γ = 1
(long-dashed line), and ˙̄γ = 5 (short-dashed line).
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FIG. 7. (Color online) Ratio between the minor and the major
axis of the velocity distribution for ˙̄γ = 0.2 (solid line), ˙̄γ = 1 (long-
dashed line), and ˙̄γ = 5 (short-dashed line).

a shear cycle; see Fig. 4(g). In these cases, Vp(t) exhibits
the largest variations and closely approaches zero at high ˙̄γ
[Fig. 5(g)]. The shape of the distribution changes from almost
spherical to very elongated. Since �/ν is small, the amplitude
of the mean angular momentum is large and close to the value
in the static limit; see Eq. (17). In the high frequency limit
(�̄ = 3), the angle quickly changes its sign and has an almost
stepwise behavior, which becomes less pronounced at higher
shear or damping rates. A high shear rate leads to a more
permanent elongation of the distribution than near the static
limit.

Resonance effects can be observed in Figs. 5(a)–5(c), where
the damping rate is low (ν̄ = 0.05). Close to the resonance
frequency (�̄ = 2), an increase of the shear rate leads to a
significant reduction of Vp [Fig. 5(b)], while the decrease in
the high- and low-frequency limits is considerably weaker
[Figs. 5(a) and 5(c)]. The effect becomes much less obvious
at higher damping rates, where the resonance is suppressed,
and the distribution in the low-frequency limit becomes more
elongated for identical flow parameters.

Let us now consider the corresponding parameters for the
velocity distribution, which are depicted in Figs. 6 and 7. At
low frequencies and high shear rates, the angle φv(t) shows a
pronounced extremum during a half-cycle. Near the resonance
frequency and rather high damping, we observe a two-peak
structure similar to that of φp at low frequencies. The behavior
at �̄ = 3 is still similar, but the two-peak structure vanishes.
The behavior of Vv(t) is very similar to that of Vp(t). One
recognizes the resonance at �̄ = 2 and ν̄ = 0.05, where Vv is
much more affected by a variation of the shear rate than at �̄ =
0.2 and �̄ = 3. In the low-frequency case, the elongation of
the velocity distribution is less pronounced than the elongation
of the particle distribution.

0
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0 0.5 1 1.5 2 2.5

Â
x

y
/
(l

2 0
N

)

Ω̄

(i) (ii)

(i)

(ii)

FIG. 8. (Color online) Dependence of Âxy on the shear frequency
for ν̄ = 0.1. The squares ( ˙̄γ = 0.3) and circles ( ˙̄γ = 0.8) show results
for N = 4 particles with  = 400 and a/λ = 0.7. In these cases,
the length scale on the vertical axis must read l0 = a. The vertical
lines show the eigenfrequencies of the modes sketched in the right
part of the figure [24,46]. The triangles denote simulation results
for noninteracting particles (N = 500, ˙̄γ = 1), where the associated
length scale reads l2

0 = kBTn/(mω2
0). The solid line (blue [gray])

shows the corresponding analytical result; see Eqs. (18) and (20).

IV. MANY-BODY EFFECTS

In this section, we approach the many-body problem by
Langevin dynamics simulations.2 As an example, we investi-
gate a cluster with four particles, which has been the subject
of previous studies in the context of dusty plasmas [14,46].
For the particle interactions, which give rise to new collective
phenomena compared to the single-particle problem studied in
the previous section, we employ the Yukawa potential φ(r) =
Q2 exp(−r/λ)/r , where λ denotes the screening length and Q

denotes the particle charge. This pairwise interaction neglects
the physical core size of the particles.

Our simulations are done for the underdamped case found in
dusty plasmas. Note that for the overdamped colloid dynamics,
hydrodynamic interactions [5,26] between colloidal particles
become relevant, including lubrication forces at contact, which
are not considered in this paper.

At strong coupling conditions—characterized by  = Q2/

(akBTn) 	 1, where a = (Q2/mω2
0)1/3—the linear response

of the cluster is described by its 2N normal modes. They are
obtained from a diagonalization of the Hessian matrix [47]. In
the following, we show that oscillatory shear flow can be used
to excite particular modes of the system.

The normal modes of the four-particle cluster have been
studied previously [14,24,46]. They contain two antisymmetric
excitations that compress the cluster in one direction and
elongate it in the other; see Fig. 8. There, we show

Âxy =
(

2/Wi2

Tsh

∫ Tsh

0
[〈x(t)y(t)〉 − 〈x(t)〉〈y(t)〉]2dt

)1/2

(35)

as obtained from an average over many shear periods.
For the low shear rate ( ˙̄γ = 0.3), the location of the peaks

is in very good agreement with the frequencies of the afore-
mentioned eigenmodes, which shows that they are responsible

2We use the “symplectic low-order algorithm” (SLO) of Ref. [45].
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for the resonance. As the shear rate increases ( ˙̄γ = 0.8), we
observe a small shift of the resonance frequencies, which
could be caused by nonlinear effects. Here, the excitation
becomes stronger, and the shear flow considerably disturbs
the cluster. The high-frequency behavior of the amplitude is
only marginally affected by the shear rate, and the two curves
for ˙̄γ = 0.3 and ˙̄γ = 0.8 merge. Temperature is expected to
smear out the resonances but not to drive nonlinear stochastic
resonances [48]. Clearly, we recover the amplitude predicted
by Eq. (20) for noninteracting particles.

V. CONCLUSION

In summary, we have derived the analytical solution for
harmonically trapped particles in oscillatory linear shear flow.
While we have focused on the moments of the distribution
function, our results can also be used to explicitly calculate the
correlation functions. We have shown that the flow field leads
to a time-dependent variation of the aspect ratio of the principal
axes and their orientation in space. As a function of the shear
frequency, the cross-moments show resonant behavior near
�̄ = 2.

Our simulations have shown that resonances also occur in
many-particle systems. In particular, oscillatory shear flow
allows excitations of particular normal modes, where the
cluster is being compressed in one direction and elongated
in the other. This has been demonstrated for a small cluster
but should be equally efficient in larger systems with hundreds
of particles. The effect could be used to excite and probe the
linear and nonlinear response of confined dusty plasmas and
their dependence on temperature, screening, etc.

Finally, the model can also be generalized to active
Brownian particles; see Ref. [49] for a recent review. In this
case, a negative friction is used to keep the particle on a
nonvanishing velocity [50].
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APPENDIX A: SOLUTION OF HOMOGENEOUS
EQUATION

The solution matrix U(t) for Eq. (5) can be found by
first considering the motion in the y direction only, which

is completely decoupled from the motion in the flow direction.
Since we only require the solution for ξ ≡ 0 (the homogeneous
equation), the stochastic force can be omitted in the following.
The y component now satisfies the equation of motion of a
damped harmonic oscillator. In the x direction, however, the
flow field acts as an additional driving force:

ÿh(t) + νẏh(t) + ω2
0yh(t) = 0 (A1)

ẍh(t) + νẋh(t) + ω2
0xh(t) = νγ̇ cos(�t)yh(t). (A2)

The solution yh(t) = (vy,h(t),yh(t))T with the initial condi-
tion yh(t0) = y0 can then be written in the form

yh(t) = H(t − t0) y0, (A3)

where H(t) contains the well-known solution for the under-
damped harmonic oscillator,

H(t) = e−βt

×
(

cos(ωrt) − β

ωr
sin(ωrt) −ω2

0 sin(ωrt)/ωr

sin(ωrt)/ωr cos(ωrt) + β

ωr
sin(ωrt)

)
.

(A4)

Here, we have introduced β = ν/2 and ωr = (ω2
0 − β2)1/2.

The same method can be used for the x direction with
xh(t) = (vx,h(t),xh(t))T , where the shear flow is now treated
as an additional (known) driving force, that is,

xh(t) = H(t − t0)x0 +
∫ t

t0

H(t − t ′)M(t ′) yh(t ′) dt ′. (A5)

Here, the matrix M(t) describes the force due to the flow field,

M(t) =
(

0 νγ̇ cos(�t)

0 0

)
. (A6)

Using Eq. (A3) in Eq. (A5) leads to

xh(t) = H(t − t0)x0 +
∫ t

t0

H(t − t ′)M(t ′)H(t ′ − t0) dt ′ y0.

(A7)

By carrying out the integral (computer algebra), one obtains
a closed-form solution for xh(t) in terms of the initial
conditions x0 and y0. Together with Eq. (A3), this yields
all required matrix elements for U(t) in the general solution
[Eq. (9)].

The explicit results are given by

Uvxvx
= Uvyvy

= e−βθ

[
cos(ωrθ ) − β

ωr
sin(ωrθ )

]
, Uxx = Uyy = e−βθ

[
cos(ωrθ ) + β

ωr
sin(ωrθ )

]
,

(A8)

Uvxx = Uvyy = −ω2
0

ωr
sin(ωrθ )e−βθ = −ω2

0 Uxvx
= −ω2

0 Uyvy
, Uvyvx

= Uvyx = Uyvx
= Uyx = 0,

Uvxvy
= e−βθ 4βγ̇

�2 − 4ω2
r

{
sin(ωrθ )

(
�

2ωr
sin(�t) − 2ωr

�
cos(��) sin

[
�θ

2

])
− cos(ωrθ ) sin(��) sin

[
�θ

2

]

− cos(��)
β

ωr

[(
1

2
+ ωr

�

)
sin

(
θ (� − 2ωr)

2

)
−

(
1

2
− ωr

�

)
sin

(
θ (� + 2ωr)

2

)]}
,
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Uxy = e−βθ 4βγ̇

�2 − 4ω2
r

{
− sin(ωrθ )

(
�

2ωr
sin(�t0) + 2ωr

�
cos(��) sin

[
�θ

2

])
+ cos(ωrθ ) sin(��) sin

[
�θ

2

]

+ cos(��)
β

ωr

[(
1

2
+ ωr

�

)
sin

(
θ (� − 2ωr)

2

)
−

(
1

2
− ωr

�

)
sin

(
θ (� + 2ωr)

2

)]}
,

Uxvy
= e−βθ 4βγ̇ /ωr

�2 − 4ω2
r

cos(��)

[(
1

2
+ ωr

�

)
sin

(
θ (� − 2ωr)

2

)
−

(
1

2
− ωr

�

)
sin

(
θ (� + 2ωr)

2

)]
,

Uvxy = e−βθ 4βγ̇ ωr

�2 − 4ω2
r

{
sin(ωrθ ) cos

(
�θ

2

)[
sin(��)

(
β�

ω2
r

)
− cos(��)

(
1 − β2

ω2
r

)]

− cos(ωrθ ) sin

(
�θ

2

)[
cos(��)

(
2ω2

0 − �2

�ωr

)
+ sin(��)

(
2β

ωr

)]}
, (A9)

where θ = t − t0 and � = (t + t0)/2. The corresponding expressions for � → 0 can be found in Ref. [31].

APPENDIX B: EXPLICIT RESULTS FOR THE SECOND MOMENTS

The oscillatory parts of the second moments, Eq. (14), can be expressed as

(R)αβ(t) = 1

Dαβ

[aαβ cos(ωαβt) + bαβ sin(ωαβt)], (B1)

where (R)αβ(t) = 0 for indices concerning the y direction only. The oscillation frequencies are ωvxvx
= ωvxx = ωxx = 2� and

ωvxvy
= ωvxy = ωvyx = ωxy = �. The coefficients read

Dvxvx
= Dvxx = Dxx = 2(ν̄2 + �̄2)(ν̄2 + 4�̄2)[4ν̄2�̄2 + (�̄2 − 4)2][ν̄2�̄2 + (�̄2 − 1)2],

Dvxvy
= Dvxy = Dvyx = Dxy = (ν̄2 + �̄2)[4ν̄2�̄2 + (�̄2 − 4)2],

avxvx
= ω2

0 Wi[4ν̄6�̄4 + ν̄4�̄4(13�̄2 + 6) + ν̄2(−13�̄8 + 31�̄6 + 30�̄4 − 38�̄2 + 8) − 4�̄2(�̄2 − 4)(�̄2 − 1)3],

bvxvx
= ω2

0 Wi[8ν̄4�̄2(�̄2 − 1) + ν̄2(34�̄6 − 41�̄4 + 4) + 8�̄8 − 36�̄6 + 90�̄4 − 86�̄2 + 24]ν̄�̄,

axx = −bvxx/� = Wi[−4ν̄6�̄2 − ν̄4(13�̄4 + 20�̄2 − 8) − ν̄2(−13�̄6 + 41�̄4 + 10�̄2 − 8) + 4�̄2(�̄2 − 4)(�̄2 − 1)2],

bxx = avxx/� = Wi[ν̄4(−8�̄2 + 12) + ν̄2(−34�̄4 + 31�̄2 + 16) − 8�̄6 + 22�̄4 − 38�̄2 + 24]ν̄�̄,

avxvy
= ω2

0[−2ν̄2 + �̄2 − 4]�̄2, bvxvy
= ω2

0[−3�̄2 + 4]ν̄�̄, avyx = ω0[6�̄2 − 8]ν̄, bvyx = ω0[−4ν̄2 + 2�̄2 − 8]�̄,

axy = −4ν̄2�̄2 + 8ν̄2 − �̄4 + 4�̄2, bxy = [4ν̄2 + �̄2 + 4]ν̄�̄, avxy = ω0[4ν̄2�̄2 + �̄4 − 2�̄2 + 8]ν̄,

bvxy = ω0[4ν̄2(�̄2 − 1) + �̄4 − 6�̄2 + 8]�̄. (B2)
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[5] A. V. Ivlev, H. Löwen, G. E. Morfill, and C. P. Royall, Complex

Plasmas and Colloidal Dispersions: Particle-Resolved Studies
of Classical Liquids and Solids (World Scientific, Singapore,
2012).

[6] V. A. Schweigert and F. M. Peeters, Phys. Rev. B 51, 7700
(1995).

[7] M. Kong, B. Partoens, and F. M. Peeters, New J. Phys. 5, 23
(2003).

[8] O. Arp, D. Block, A. Piel, and A. Melzer, Phys. Rev. Lett. 93,
165004 (2004).

[9] S. W. S. Apolinario, B. Partoens, and F. M. Peeters, New J. Phys.
9, 283 (2007).

[10] M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner,
P. Ludwig, A. Piel, and A. Filinov, Phys. Rev. Lett. 96, 075001
(2006).

[11] H. Baumgartner, D. Asmus, V. Golubnychiy, P. Ludwig,
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