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Abstract – The director field in a plastic crystal is calculated by particle-resolved Monte Carlo
computer simulations of two-dimensional, slightly anisometric hard spherocylinders exposed to
an external periodic substrate potential. We investigate the structure of the director field in the
Wigner-Seitz cell and find a topological defect structure that can be controlled with the substrate
potential. At zero potential we find a charge −1/2 defect at the corners besides the expected defect
in the centre with unit topological charge. When switching the substrate potential on, the corner
defects are surrounded by three satellite defects which bear charge −1/2, too. Additionally, we
then find two charge +1/2 defects on each edge of the unit cell. Finally, within a simplified model,
we obtain a qualitative explanation for this defect structure. Our predictions can in principle be
verified by using particle-resolved experiments of colloidal plastic crystals.

Copyright c© EPLA, 2012

At appropriate thermodynamic conditions, systems
composed of non-spherical particles can self-assemble into
meso-phases [1], which show both liquid- and solid-like
order [2,3]. This is due to the fact that the translational
and the orientational degrees of freedom exhibit different
kinds of ordering. One of the emerging meso-phases is a
plastic crystal (or rotator crystal) in which the averaged
centre-of-mass positions of the particles are ordered on a
crystalline lattice while there is no global orientational
order (polar or nematic).
Plastic crystals are found for mesoscopic colloidal parti-

cles [4–6] and for molecules [7,8] both in three dimensions
and in two-dimensional sheets. In fact, colloidal particles
can be strongly confined to almost two dimensions [9–11]
and molecular plastic-crystalline monolayers are typically
observed on structured substrates [12]. In general, plastic
crystals have special elasto-mechanical properties, repre-
sent ideal orientational glass formers [13–15] and are
—in their colloidal realization— promising candidates for
photonic crystals [16,17]. Clearly, plastic crystals are only
expected for slightly anisometric particles in order to allow
for an almost unhindered rotation around the lattice sites.
However, the particles fluctuate around the mean lattice
positions and the rotational degree(s) of freedom of a
particle that is displaced from the perfect lattice position

(a)E-mail: pcremer@thphy.uni-duesseldorf.de

is confined by the neighbouring particles resulting in a
preferred mean orientation. The latter can be regarded as
a director field n̂(r) of a plastic crystal which is lattice
periodic, i.e., defined in the Wigner-Seitz cell of the crys-
tal, where n̂ is a unit vector and r a given position.
The director field n̂(r) in plastic crystals can bear topo-

logical defects [18] as any director field in liquid-crystalline
phases (e.g., in the nematic phases). The defect structure
has been studied in great detail for two-dimensional
nematics confined on a sphere (so-called nematic bubbles
or shells) [19–21] and in three-dimensional nematic
droplets (so-called “tactoids”) [22–24] as well as for
spherical colloidal particles immersed in a nematic solvent
[25–27]. However, there is much less work done in the
plastic-crystalline phase. The important point to mention
here is that for plastic crystals the director field n̂(r)
varies on the microscopic scale, i.e., on the scale of
the particle extensions. In the macroscopic context of
elasticity theory, the director is defined as the average
orientation within a subvolume of the system containing
many particles. From a microscopic point of view, the
director is defined as an average over the orientations of
single particles during many visits of their centres of mass
to a subvolume much smaller than their size.
In most of the approaches, the director field is assumed

to be completely disordered [28] or only globally directed
as a response to external fields [29] or the orientation has
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been modelled on a purely phenomenological level [30].
As far as we know, the only work which addresses the
director field in bulk plastic crystals in detail from a more
microscopic point of view including a discussion of the
topological defects structure is ref. [31]. In their approach,
Achim et al. apply a coarse-grained phase-field-crystal
model [32] designed for liquid-crystalline phases [33,34] to
a two-dimensional plastic crystal. A defect with positive
unit topological charge was found at the lattice positions
while there is a defect with topological charge −1/2 in the
corners of the Wigner-Seitz cell.
In this letter, we address the director field of a plas-

tic crystal by a particle-resolved Monte Carlo computer
simulation [35–38] of two-dimensional hard spherocylin-
ders [39] which are only slightly anisotropic. For these
particles, a plastic crystal with a triangular lattice is found
at intermediate densities. We apply a triangular external
potential to the system, which increases the stability of the
plastic crystal. The external potential mimics the particle-
substrate interactions for the molecular case [12], but can
also be realised by superimposing laser-optical fields for
the colloidal case [40,41]. It constrains the translational
fluctuations which destroy long-range positional ordering
in two spatial dimensions [42]. For zero substrate potential
amplitude we confirm in general the gross defect struc-
ture obtained in ref. [31] for a triangular crystal. When
the potential is switched on, however, the fine structure is
different. In detail, we find the same charge +1 topologi-
cal defect at the lattice position and −1/2 defects at the
Wigner-Seitz cell corners as ref. [31]. However, the −1/2
defects at the Wigner-Seitz cell corners are surrounded by
three satellite defects which bear the topological charge
−1/2. The total topological charge neutrality required
for a crystal with no global orientational order dictates
that there are additional defects with positive topological
charge. We find them in the form of charge +1/2 defects
on the edges of the Wigner-Seitz cell. This defect struc-
ture is qualitatively explained in terms of a cell model
for the plastic crystal. Only if the field is smeared close
to the Wigner-Seitz cell corner by long wavelength fluc-
tuations (as achieved for vanishing substrate potential),
the rough structure predicted in ref. [31] is recovered. Our
predictions can in principal be verified by using particle-
resolved experiments of colloidal (lyotropic) plastic crys-
tals. By exploiting the dependence of the defect structure
on the substrate potential, it might be possible to use a
plastic crystal as an optical switching device [43].

Model and simulation technique. – We consider
a two-dimensional triangular plastic crystal of hard
spherocylinders on a substrate potential, which supports
the triangular lattice, see fig. 1 for a schematic repre-
sentation. Due to the well-known Landau-Peierls
instability, positional order decays logarithmically
with the system size in two-dimensional crystals. To
prevent this instability and to have a well-defined
lattice on which our director field can be measured,
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Fig. 1: (Color online) A schematic representation of the system
(not to scale): a two-dimensional triangular plastic crystal of
spherocylinders of length L and diameterD under the influence
of a small-amplitude hexagonal substrate potential.

we impose the hexagonal substrate potential given by
Vext(r) = V0 [3− cos(k1 · r)− cos(k2 · r)− cos(k3 · r)] [41],
where r= (x, y) is the position of a particle and
k1 = [2π/a0](1, 1/

√
3), k2 = [2π/a0](0, 2/

√
3) and

k3 = [2π/a0](1,−1/
√
3) are the reciprocal lattice vectors

of a hexagonal lattice with lattice constant a0. Unless
mentioned otherwise, the amplitude V0 was set to 0.1kBT
and the number of particles to N = 10000 throughout this
work. With these values for V0 and N , system size effects
were negligible. We apply standard Monte Carlo simu-
lations [44] at fixed number of particles N , area A and
temperature T . Periodic boundary conditions in a rectan-
gular simulation box are employed in both directions. We
initialise the spherocylinders with random orientations
on ideal triangular lattice sites and then perform 106

equilibration moves per particle to obtain an equlibrium
plastic crystal. Subsequently, 24 · 106 moves per particle
are performed to gather statistics. The packing fraction
is defined as η≡NAp/A, where Ap ≡LD+πD

2/4 is
the area of a two-dimensional spherocylinder. The local
nematic order parameter S and the nematic director were
obtained by diagonalizing the nematic order parameter
tensor [45] measured locally for particles at a certain
position r. We have considered spherocylinder aspect
ratios of 0.1�L/D� 0.25 and packing fractions in the
range 0.73� η� 0.74.

Results. – The director field within the Wigner-
Seitz cell obtained from the simulation can be seen
in fig. 2. Results are shown here for a spherocylinder
aspect ratio of L/D= 0.2 and a packing fraction of
η= 0.74. However, director fields for L/D= 0.1, 0.15, 0.25
and η= 0.73, 0.74 respectively show the same overall
structure. At a topological defect, all directors are equally
probable or equivalently the nematic order parameter is
zero [46]. Therefore, the positions of the defects are those
positions for which S = 0 in fig. 2. The charge (or winding
number) of the topological defects can be determined
by investigating the local nematic director field near the
defect. The resulting defect structure is schematically

38005-p2
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Fig. 2: (Color online) Director field obtained from Monte Carlo
simulations for spherocylinders with aspect ratio L/D= 0.2 at
a packing fraction of η= 0.74 superimposed on a color plot
of the nematic order parameter field S. At the positions of
topological defects S goes to zero.

Fig. 3: (Color online) A schematic representation of the
topological defect structure in the two-dimensional triangular
plastic crystal of hard spherocylinders, also compare to the
Monte Carlo results in fig. 2. Topological charges of positive
winding number are denoted by blue dots, where the lighter
dot in the centre has charge +1 and the darker blue dots on the
edges of the unit cell have winding number +1/2. The orange
dots denote defects with topological charge −1/2.

depicted in fig. 3. As mentioned above, the net charge
of the unit cell is always zero for a plastic crystal. To
determine the defect positions quantitatively we plot S
along a path connecting the Wigner-Seitz cell’s symmetry

Fig. 4: (Color online) Nematic order parameter S along a path
connecting the symmetry points of the Wigner-Seitz cell (the
path is shown in the inset). It must vanish at Γ and K due
to symmetry, but it does so additionally between Γ and K
and between K and M in the many-particle Monte Carlo
simulation.

points. This is shown in fig. 4. The symmetry points are
the centre (Γ-point), the corner (K-point) and the centre
of the edge (M -point). Again, points of vanishing S along
the path reveal the defect positions. Defects at the Γ-point
and at the K-point are dictated by the symmetry. They
appear in the form of a +1 vortex defect in the cell’s centre
and a −1/2 wedge disclination in each corner. A −1/2
wedge disclination between Γ and K and a +1/2 wedge
disclination between K and M appear in addition to the
symmetry-dictated defects. A point worth noting is that
the structure away from the defects appears to display as
little bending in the local director field as possible given
the presence of the defects. For instance, the directors
near the line connecting the satellite defect positions are
surprisingly parallel to this line. This is in agreement
with the phase field crystal theory of ref. [31], in which a
bending term, that penalises locally non-parallel directors,
can be found in the expression for the free energy.
For small systems ranging from N = 144 to N = 1024

particles, the same defect structure was found (that of
fig. 3) regardless of the potential strength V0. However,
when we set the substrate potential amplitude V0 = 0 and
increase the system size further, the defects move closer
to each other and eventually merge, showing the combined
charge. At a system size of N = 10000, only the symmetry-
dictated defects at the Γ and K points can be observed.
This coarsened structure was also obtained within the
phase field crystal model in ref. [31]. Clearly, the decreased
positional order for large system sizes due to the Landau-
Peierls instability leads to a smearing of the director field
which causes the coarsening of the defect structure. By
applying a substrate potential amplitude of V0 = 0.1kBT ,
we can suppress the Landau-Peierls instability normally
incurring in two-dimensional crystals. That allows us to
obtain the complex defect structure in fig. 3 also for large
system sizes.
To understand qualitatively how the defect structure

arises in our system we put now forward a simplified, yet
topologically equivalent model. A single spherocylinder

38005-p3
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Fig. 5: In a simplified model, one spherocylinder of aspect ratio
L/D is confined by its nearest neighbours on the hexagonal
lattice, which are approximated as disks of diameter D. Two
of the neighbouring disks have to be displaced as indicated to
allow the spherocylinder to reach the Wigner-Seitz cell corner.
(The particles and displacements are not drawn to scale.)
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Fig. 6: (Color online) The director field obtained from the
simplified model contains the same defect structure near the
Wigner-Seitz cell corner. (a) Results from the calculation
are qualitatively the same as the results from the many-
particle Monte Carlo simulation in fig. 2. (b) A schematic
representation of the observed defects. The x and y distances
from the corner at (xK , yK) are measured in units of dKM , the
distance between the K and M points.

of aspect ratio L/D is confined in a cage of nearest
neighbours approximated as disks of diameter D. To allow
the spherocylinder to reach the corner of the unit cell,
two of the neighbours have to be displaced from their
lattice sites, as indicated in fig. 5. Such displacements are
readily available due to the characteristic softness of the
phonon in any plastic crystal at moderate density [47].
Subsequently, the director at each position near the corner
of the Wigner-Seitz cell is determined by Monte Carlo
integration over the directions of the spherocylinder. The
resulting director field, which has been symmetrised using
the rotation and mirror symmetries at the corner of the
Wigner-Seitz cell, can be seen in fig. 6. It shows the
same defect structure near the corner as the many-particle
Monte Carlo simulation. This indicates that the director
field near the K-point in the many-particle system is
indeed created by a two-particle displacement similar to
the one depicted in fig. 5. However, this is a qualitative
model and not designed for complete agreement with

the many-particle Monte Carlo simulation. The +1/2
defect is predicted to lie between K and M , but there
is no quantitative agreement with figs. 2 and 4, since
the positions of the defects do not coincide. Note also
the difference in scale for the nematic order parameter
compared to fig. 2. Additionally, the simplified model
for the configuration of neighbours in fig. 5 can only
provide information close to the Wigner-Seitz cell edge.
Other configurations of neighbours are responsible for the
director field at other points in the unit cell.
The analogy between the simple model and the many-

particle system allows us to explain the observed defect
structure. For most positions of the spherocylinder within
the unit cell, its neighbours form a closed “front” at the
packing fractions where the crystal is stable. Minimisation
of the distance between the spherocylinder and this front
of neighbours requires the spherocylinder to align parallel
to the front. However, when the spherocylinder moves
towards a corner of the unit cell it drives the two closest
neighbours apart from each other, opening a gap in the
front of neighbours. To insert itself into this gap, the
spherocylinder must assume an orientation perpendicular
to the front of neighbours. Accordingly, the spherocylinder
changes its orientation when it approaches the corner. On
the symmetry lines between Γ and K and between M and
K the director has to be either perpendicular or parallel
to the line in question. If it rotates, it has to perform
a 90-degree rotation. The only topological defect types
compatible with such a rotation are those with half-integer
winding number. Thus, the charge −1/2 defect between
Γ and K appears naturally and the charge +1/2 defect
between M and K follows from the topological charge
neutrality of the unit cell. The structure of fig. 3 is then
the most obvious structure that both minimises bending in
the director field and obeys the symmetries of a hexagonal
plastic crystal.

Conclusions. – In conclusion, we have calculated
the director field of a plastic crystal using the Monte
Carlo simulation of two-dimensional hard spherocylinders
exposed to an external substrate potential. A non-trivial
topological defect structure of the director field was found.
There are integer topological defects at the lattice position
and charge −1/2 defects in the Wigner-Seitz cell corners,
where the latter are surrounded by three −1/2 satellite
defects. Finally, defects with topological charge +1/2 are
found on the edges. We investigated the origin of these
defects qualitatively within a simplified model. Basically
they result from a pair displacement of the neighbouring
particles, that allows the spherocylinder access to the
corner.
The most promising set-up to verify our results both

qualitatively and quantitatively is for colloidal suspensions
confined to a quasi–two-dimensional substrate [5,10,40]. In
an experimental real-space study, the director field can be
obtained from the orientations and positions of the colloids
using the methods described above.
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Different aspects would be interesting for future
work: first, three-dimensional plastic crystals should
be addressed by computer simulations. In the 3d case,
many more possibilities for defect structures arise [18]
including defect lines. Since three-dimensional crystals
exhibit true long-range positional order no substrate
potential is required in that case. Second, it would be
challenging to apply a microscopic theory like the density
functional theory [11] to hard spherocylinders in the
plastic-crystalline phase and to resolve the director field
completely. The fundamental measure approach which
has been recently constructed for hard anisotropic parti-
cles by Mecke and Hansen-Goos [48,49] is a promising
theory since it has recently been successfully applied to
hard spherocylinders [48,50,51]. Finally, a growing plastic
crystal, say out of a disordered phase would provide an
exciting set-up to see the internal topological defects
emerge: it is unclear at the moment how the generation of
defects is coupled to the development of positional order.
The phase-field-crystal model [31,33] would be a good
starting point to study these dynamical non-equilibrium
questions.
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