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In many applications, it is important to catch collections of autonomously navigating microbes and
man-made microswimmers in a controlled way. Using computer simulation of a two-dimensional system of
self-propelled rods we show that a static chevron-shaped wall represents an excellent trapping device for
self-motile particles. Its catching efficiency can be controlled by varying the apex angle of the trap which
defines the sharpness of the cusp. Upon decreasing the angle we find a sequence of three emergent states: no
trapping at wide angles followed by a sharp transition towards complete trapping at medium angles and a
crossover to partial trapping at small cusp angles. A generic trapping ‘“phase diagram” maps out the
conditions at which the capture of active particles at a given density is rendered optimal.
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One of the key survival strategies of human beings over
the ages is their ability to catch animals. An efficient way
to capture mammals, fish and birds is “trapping,”’ i.e.,
releasing a device in a populated zone which irreversibly
attracts and stores the prey. While the methods for captur-
ing (macroscopic) animals have been well optimized by
now, the corresponding problem in the microworld, namely
catching microbes, is much more challenging due to the
strongly reduced nanometric size of the trap. The possibil-
ity to trap autonomously navigating microorganisms in a
controlled way provides fascinating options to prevent or
cure microbial contamination [1,2] and to concentrate
microbes near externally imposed patterned surfaces [3].
Similar applications can be envisaged for man-made mi-
croswimmers, i.e., artificial particles which are actively
propagating due to an internal “motor”’. Examples include
catalytically driven Janus particles [4—6], colloids with
artificial flagella [7,8] and vibrated granulates [9,10].
Lithographic techniques have been employed to confine,
control and steer the motion of microbes and artificial
microswimmers [11,12]. The use of lithographic nanopat-
terns has advanced significantly in recent years [13,14] and
has opened up numerous possibilities to sort particles
[15,16], to rectify their motion [3,17], and to design build-
ing blocks of micromachines [18-20]. These experimental
observations provide impetus for devising models which
can explain collective self-trapping of active particles.
These models may subsequently serve as benchmarks for
the design of efficient microbial traps.

It is well known that (passive) fluids in strong confine-
ment behave quite differently from the bulk. In this Letter
we explore the dramatic effect of system boundaries for
active fluids. In particular, we utilize geometric confine-
ment to propose an efficient strategy for capturing rigid
self-propelled rods (SPR) in which particles are exposed to
a simple static boundary of variable shape. The collective
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behavior of SPRs is simulated using a two-dimensional,
particle-resolved model which predicts the formation of
swarms in bulk. The presence of a static chevron-type
boundary with variable apex angle leads to collective
rectification of particle motion and eventually to a pro-
nounced self-trapping at the trap boundary. The apex angle
a of the chevron plays a key role in determining the self-
trapping efficiency of the setup and unveils three distinct
nonequilibrium stationary states: no trapping, partial trap-
ping, and complete trapping. The transition from partial to
complete trapping occurs smoothly at a lower critical angle
while the complete trapping state abruptly terminates at an
upper critical apex angle. We show that the sharp transition
from complete to no trapping at large apex angles has an
appropriate system-size scaling which allows a classifica-
tion similar to a true thermodynamic phase transition.
Collective self-trapping emerges as a generic many-body
effect which is found to be robust against intrinsic rota-
tional fluctuations of the microswimmers. The phenome-
non is therefore expected to be relevant to a large range of
self-motile microparticles in planar confinement as well as
3D bulk situations.

Our model consists of N rigid rods of length €, each with
a constant self-motility force F, directed along the main
axis. Due to solvent friction the particles move in the
overdamped low Reynolds number regime, while interact-
ing with the other particles and the boundary by steric
forces only [21]. The latter are implemented by discretiz-
ing each rod into a linear array of n equidistant spherical
segments and imposing a repulsive Yukawa potential
between the segments of each pair. The total pair potential
between rods {a, B} with orientational unit vectors
{@,, Gz} and centre of mass distance Ar,g is then given

by Uap = (Up/n*) X1 X, exp[—rzﬁ//\]/r?jﬁ, where
Uy > 0 defines the amplitude, A the screening length and
rlf;.'g = |Ar,g + ([;Gi, — [;iig)] the distance between
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segment i of rod a and j of rod B (a # B) with [; =
d(i — 1), i €[1, n] denoting the segment position along
the main rod axis. The number of rod segments 7 is chosen
such that the intrarod segment distance d={/(n—1)=<2A
and rod overlaps are prevented. A trap is introduced as a
static boundary with a prescribed shape and contour length
{ 1. Particle-trap interactions are implemented by discretiz-
ing the trap boundary into n; = |€;/d] equidistant seg-
ments each interacting with the rod segments via the same
Yukawa potential. Mutual SPR collisions generate apolar
nematic alignment which stimulates swarm formation at
finite concentrations [10]. The boundary potential mimics
a hard wall and imparts 2D planar order with rods pointing
favorably perpendicular to the local wall normal.

The microscopic equations of motion for the positions
and orientations of the SPRs emerge from a balance of the
forces and torques acting on each rod «,

fr-0x,(1) =—V, U@t) + F,a,(),
fr - 00,() ==V U + M,(1),

)

in terms of the total potential energy U =
(1/2)Y e pazpUap + ZarUar With U,r the potential
energy of rod « with the trap. The one-body translational
and rotational friction tensors f and fx can be decom-
posed into parallel, perpendicular and rotational contribu-
tions which depend solely on the aspect ratio a = €/A
[22]. The typical self-propulsion speed of a single rod vy =
F,/|lf 7|l defines the time interval 7 = €/v, a SPR needs
to swim a distance comparable to its size. Orientational
fluctuations induced by, e.g., bacterial tumbling are
represented by a stochastic torque M, with zero
mean (M,;,(#)) =0 and correlations (M,,(1)M;z(t")) =
2Dg|IfR176;;6,58(r — 1) (i = x, y) with D an effective
rotational diffusion rate. The strength of the rotational
fluctuations is given by the parameter y = €Dg /v, which
allows interpolation between noiseless, directed SPR mo-
tion (y = 0) and “run and tumble” motion (y > 0) as
observed for E. coli and other bacterial species [23,24].
We simulate SPRs with aspect ratio a = 10 in a rectan-
gular simulation box with area A and periodic boundary
conditions in both Cartesian directions. A particle packing
fraction is defined as ¢ = No /A with o0 = €A + A’7/4
the effective area of a single rod. In the bulk density range
¢ < 0.2 the SPRs spontaneously form flocks with strong
spatial density fluctuations [25]. Let us now subject the
SPRs to a chevron boundary with contour length € = 20¢
and variable apex angle 0° < a < 180° (see Fig. 1). In the
macroscopic limit, the system can be interpreted as a
reservoir of microswimmers exposed to an equidistant
array of mutually independent static traps. The area frac-
tion occupied by the traps is angle dependent with a
maximum value given by ¢, = (€2/8A) which fixes the
number of rods via N = (€2/80)(¢/d7). We constrain
¢ < 0.1 in order to guarantee the traps to be completely
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FIG. 1 (color online). Sketch of a system of SPRs with aspect
ratio a = €/ and axial active force F, at bulk density ¢
subjected to a static chevron-type trap with contour length ¢
and apex angle «. The macroscopic system consists of periodic
replicas with boundaries indicated by the dotted lines. Real-
space trajectories of a single SPR with(out) rotational noise are
shown on the right. Arrows mark the initial SPR configuration.
A noiseless SPR (y = 0) gets trapped if a < 90.

independent of each other within the typical range of
bulk rod packing fractions 0 < ¢ << 0.1 considered here. A
SPR is considered trapped if its velocity v = |v| remains
below a threshold value v™* during a time interval of at least
t* = 257. The number fraction of trapped rods defines the
trapping efficiency x;(f) = N;(f)/N and its long-time
limit x(TO) = lim,_,xr(f) (0= x(TO) = 1) can be used to
discern various stationary states.

Figure 2(a) represents an overview of the collective
trapping states for noiseless SPRs (y = 0) that emerge
upon varying the two main system variables, the rod pack-
ing fraction ¢, and trap angle . The trapping “‘phase
diagram” exhibits three distinct stationary regimes. First,
for large « no trapping occurs as the cusp is too wide to
efficiently capture a significant fraction of particles in the
system. Second, below a certain critical angle a sharp
transition towards complete trapping occurs. This state is
characterized by the formation of a large monocluster
comprising all particles in the system. Upon further de-
creasing « a third region is entered corresponding to partial
trapping. In this regime, the effective rod-trap collision
cross section is insufficient to trap all the particles present
in the system, and a substantial portion of rods remains
mobile even at large 7. The transitions demarcating the
various states in the diagram can be inferred from the
evolution of the trapping ‘“‘order parameter” x(TO) as a
function of «, as shown in Fig. 3(a). Upon departing
from the flat-wall limit a sharp discontinuity occurs around
a ~ 120° where the jump in x(To) from zero to unity signals
a transition from no trapping to complete trapping. For
sharper cusps a second, continuous transition from com-
plete to partial trapping can be located at the point where
x§9) starts dropping smoothly below unity. The sharp

transition toward complete trapping is only marginally
affected by the rotational fluctuations [Fig. 3(b)], although
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FIG. 2 (color online).
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(a) Phase diagram marking three different collective trapping states of SPRs (v = 0) at a chevron boundary

with length €7 = 20¢; no trapping at large apex angle «, complete trapping at medium « and partial trapping at small & upon variation
of the reduced rod packing fraction ¢ = ¢/py. Phase boundaries are shown for two different values of ¢; the area fraction
occupied by the trap. The region of complete trapping is bounded by a triple point at larger rod concentration beyond which a smooth
transition from no trapping to partial trapping occurs. (b) Snapshots depicting the three stationary states for the case ¢ = 0.045.

the individual particle trajectories are quite different

(Fig. 1). The robustness of x§9) with respect to the choice
of v* can be established from the velocity histograms P(v)
in Fig. 3(c) whose strongly bimodal character provides an
unambiguous distinction between trapped and mobile
SPRs. Also here, the collective properties appear rather
insensitive to 7y for typical bacterial values y =~ 0.01 [24].

It is worth noting from Fig. 2(a) that the transition from
no trapping to complete trapping is fairly insensitive to the
rod concentration as well the area fraction occupied by
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FIG. 3 (color online). (a) Long-time trapping efficiency x(TO) of
noiseless (v = 0) SPRs as a function of the trap angle « for three
reduced rod packing fractions ¢ . The jumps around o = 120°
signal “first-order”” phase transitions from no trapping to complete
trapping. (b) Same results for three different strengths of the
rotational noise y at ¢pp = 0.56. (c) Histograms of the normalized
distribution P(v) of SPR velocities v corresponding to the three
trapping states for both deterministic and diffusive SPR motion.

trap. Generically, complete trapping is possible only if
the apex angle does not exceed a typical threshold value
a = 120°. By defining a reduced rod density ¢pp = ¢/ P
the triple point is rendered virtually independent of the trap
area fraction and attains a universal value ¢y =~ 1.3. This
suggests that the window of stability for complete trapping,
as marked by the rod density ¢* at the triple point, can
be systematically tuned by changing the number of traps
per area and/or the contour length €, of the boundary.
Although complete trapping is strictly suppressed at ¢ >
¢*, the trapping efficiency x; still shows a marked jump
from zero to nearly 100% if the angle drops below about
120°. This indicates that the chevron wall continues to be a
powerful trapping device at larger bulk concentrations.

To ascertain whether the chevron is indeed the optimal
shape we compare its trapping efficiency with that of a
circular trap with identical trap area A; = 52¢> and trap
angle @ = 110°. A time series of the fraction of trapped
particles reveals a distinct difference between the two trap
shapes (Fig. 4). While the chevron induces a fast intake of
particles into the trap surface leading up to a trapping
efficiency of almost 100% (complete trapping) at large
times, the circular one fails to capture a significant fraction
of particles over time. The rounded shape of the circular
trap does not facilitate particle-wall anchoring but instead
forces clusters of particles to slide collectively along the
trap interior. This leads to a process whereby the rods
collectively enter and leave the interior of the trap, as
indicated by the ““bursts’ in the number fraction of parti-
cles x; inside the trap in Fig. 4. Its rhythmic nature is
reflected by a peak in the power spectrum at a character-
istic frequency which translates into a typical life time
2127 of a rod cluster inside the circle trap. The number
fraction of immobile rods x(f), however, remains practi-
cally zero throughout the sampled time interval in stark
contrast to the chevron trap.

In conclusion, while there is a wealth of knowledge
about trapping passive particles, such as colloids in optical
tweezers or atoms in a Paul trap, it less obvious how active
particles can be captured collectively. We have shown that
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FIG. 4 (color online). Comparison of the number fraction x; of
SPRs (y = 0) located within the trap area and the fraction of
trapped particles x7 as a function of time ¢ for both chevron and
circular traps with equal trap area Ay = 52€2, angle a = 110°
and reduced packing fraction ¢ = 0.89.

active rods coherently self-trap at a static chevron-shaped
boundary which enforces SPRs to rectify their swimming
direction, jam at the cusp and form a small immobile
cluster which subsequently acts as an efficient nucleus
for growing a mesoscopic aggregate of trapped rods. The
apex angle of the trap plays a crucial role in determining
the stationary trapping state of the SPRs and reveals three
emergent states: no trapping, partial trapping and complete
trapping. A trap boundary which is rounded on the length
scale of the particle extension is incapable of capturing
particles over time. It is therefore essential for the trap
boundary to possess sites with strong local curvature
x> ¢~ which serve as “nucleation” seeds for collective
self-trapping. We remark that the trapping phenomenon
can easily be envisaged in 3D situations where the trapping
boundary is represented by a conical object. We further
emphasize that the sharp transition from no trapping to
complete trapping is a collective, nonequilibrium effect
and is uncorrelated to self-trapping of a single SPR which
depends sensitively on the level of noise (cf. the trajecto-
ries in Fig. 1). The dramatic collective response of SPRs to
small changes in the boundary shape is remarkable and
remains unseen for passive systems exposed to external
boundaries or electromagnetic traps.

Collective trapping can be verified in experiments
on rod-shaped bacteria [26] or driven polar granular rods
[27] exposed to geometrically structured boundaries
[12-14]. This setup could, for instance, be exploited as an
efficient purification device to manipulate and remove con-
taminating microbes. Future challenges could focus on in-
corporating the effect of different propulsion mechanisms
[28,29] and their associated hydrodynamic flow fields [30],
as well as chemotactic forces mediated by local concentra-
tion variations of chemical substances. We believe, however,

that the long-ranged nature of these interactions will neither
affect the microscopic mechanism underpinning collective
trapping nor the global topology of the trapping phase
diagram presented here.
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