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Abstract
Both charged colloidal suspensions and complex (dusty) plasmas represent classical
many-body strongly coupled Coulomb systems. Here we discuss their basic properties and
focus on their heterogeneous crystallization from an undercooled melt. In particular, a model
with different mobilities is proposed which is realizable in binary mixtures of charged
particles. Within this binary-mobility model, the crystallization behaviour near a structured
wall is explored by Brownian dynamics computer simulations. As a result, the propagation
velocity of the crystal–fluid interface is a nonmonotonic function of the mobility ratio (if
expressed in terms of an averaged mobility).

(Some figures may appear in colour only in the online journal)

1. Introduction: colloids and complex plasmas

There is strong scientific activity in the field of colloidal
dispersions [1–4] and in that of complex plasmas [5, 6]. Both
systems allow for particle-resolved studies and provide us
with excellent classical strongly coupled many-body systems
to study phase transitions in equilibrium and nonequilibrium.
Strong coupling here refers to the effective interaction
between the big particles, i.e. the colloid or dust particles.
Therefore, quite naturally, there is an interdisciplinary link
between charged colloidal dispersions and complex plasmas.
Colloids comprise mesoscopic particles which can be highly
charged and are embedded in a liquid solvent. This makes
them similar and, at the same time, different to complex
plasmas: the latter are also highly charged but are embedded
in a plasma, see figure 1. Static equilibrium properties only
depend on the interaction forces, which are mainly screened
Coulomb forces in both systems [7–13]. Within traditional
linearized screening theory, the effective interaction between
two charged particles (with charges Z1 and Z2 and radii a1 and
a2) are given by a Yukawa pair potential [14–16]

V12(r) =
Z1 exp(κa1)

1+ κa1

Z2 exp(κa2)

1+ κa2

exp(−κr)

εr
(1)

for a given central separation3 r. Here κ is the inverse Debye
screening length4 and ε is the relative dielectric constant of
the solvent (ε = 1 for the dusty plasmas). The similarity
in the effective interactions results in similar behaviour for
static behaviour, e.g. for the equilibrium freezing transition.
The (short time) particle dynamics, however, is completely
different. It is strongly overdamped (Brownian) for the
colloidal particles, and ballistic (virtually undamped) for
dusty plasmas.

The common advantage of colloids and complex
plasmas is that the individual particle trajectories can
be tracked by recording the coordinates of all particles
simultaneously in real-time. This allows particle-resolved
studies and gives direct insight into the nature of phase
transitions and instabilities on the fundamental particle scale.
Nevertheless, due to the different embedding background,
there are important complementarities between colloidal

3 The Yukawa interaction is justified also for small screening lengths. In
this case, only the interactions stemming from nearest neighbours is relevant.
Then the Yukawa interaction can also be understood as an efficient fit for the
effective forces at the distance range of the first neighbour shell (with Zi and
κ playing the role of flexible fitting parameters).
4 Strong coupling is formally defined by the condition 0 = Z2

1/kBTa1ε � 1.
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Figure 1. Schematic view of colloidal dispersions and complex plasmas: colloidal particles (black spheres in the left picture) are embedded
in a molecular liquid containing also microions (counter- and co-ions) while dust particles (black spheres in the right picture) are embedded
in a dilute weakly ionized gas.

dispersion and complex plasmas. Colloidal particles couple
almost instantaneously to a multitude of molecules which
thermalizes them efficiently. Therefore, colloidal suspensions
can easily be equilibrated and are pivotal model systems if
precise equilibration is needed (e.g. for the details of the
two-dimensional melting process [17]). Complex plasmas,
on the other hand, are typically in some quasi-equilibrium.
Since the dust particles are of the order of several microns,
gravity needs to be balanced by counteracting fields and
therefore levitation is a harder problem for complex plasmas
than for colloids, which are typically smaller and can be
levitated by density-matching the solvent. This explains why
a microgravity environment is essential for some complex
plasma experiments.

The advantage of complex plasmas lies in their dynamics,
they move almost ballistically (at timescales corresponding
to, e.g. the Einstein frequency) and therefore represent big
‘molecules’ in the sense that they are governed by the
Newtonian equation of motion. Therefore, the molecular
dynamics is projected upwards to much larger length scales
and correspondingly to longer timescales. This enables a
dynamical resolution of ordering and flow phenomena on the
particle scale. Colloids, on the other hand, are governed by
completely overdamped Brownian motion. A typical example
of particle trajectories is shown in figure 2. Figure 2(a)
illustrates the undamped motion (close to the virtually
undamped dusty plasma case), while in figure 2(b) the
stochastic overdamped motion (colloids) is depicted. One can
clearly see that the nature of the two trajectories is completely
different.

Efficient thermalization of colloids comes at a price:
moving a particle in the liquid implies a flow field

of the solvent which mediates hydrodynamic interactions
between neighbouring colloids. For many situations far
from equilibrium, the hydrodynamic interactions cannot be
neglected [1, 18, 19]. Since the interactions are long-ranged
and also yield lubrication for almost touching particles, their
thorough treatment is a formidable task.

Nonetheless, for some dynamical nonequilibrium proper-
ties, hydrodynamic interactions are not relevant. Then there
is a strong analogy between colloids and dusty plasma for
strong external drives. This explains why in both systems
laning has been found [20–22] and its characterization is
similar. Moreover, fluid–fluid phase separation kinetics can be
resolved both in binary mixtures of dusty plasmas [23, 24]
and in colloid–polymer mixtures [25, 26] revealing similar
dynamical growth scenarios.

Finally, colloids and complex plasmas are both excellent
model systems for crystallization and melting [27]. Real-
space-imaging techniques and computer simulations yield a
particle-resolved picture of freezing and melting processes,
e.g. near grain boundaries [28, 29], at surfaces [30, 31] and
in between external walls [32, 33].

Here we describe some results on crystallization which
is initiated at a templated wall. The wall consists of fixed
particles which act as an efficient nucleation seed. First of all,
to highlight the link between complex plasmas and colloids,
it is instructive to compare heterogeneous crystallization in
a one-component Yukawa system for undamped molecular
dynamics and overdamped Brownian dynamics. Second, more
extensively, we study the role of the mobility ratio on
crystallization in a binary system of hard spheres.

Regarding the one-component Yukawa system, all
structural parameters and initial conditions were precisely
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Figure 2. Typical trajectories of a tagged (black) particle for (a) Newtonian dynamics, (b) Brownian dynamics. The interaction and starting
configuration (as given by the neighbouring grey spheres) are the same.

chosen to be the same such that the only difference lies in
the dynamics. A wall which initializes the heterogeneous
crystallization consists of particles fixed on a triangular lattice
with a spacing 1.133a and is brought into contact with a
fluid of particles with a number density ρ0 = 1/a3. Then
crystalline layers grow into the fluid. The growth process can
be characterized by the laterally integrated density profile ρ(z)
with z denoting the distance perpendicular to the wall. Peaks
in ρ(z) indicate a solid. In the undamped case of molecular
dynamics (MD) the particle mass m induces the natural
timescale ω−1

p where the plasma frequency ωp is defined via
ω2

p = 4πρ0Z2/m. For the overdamped Brownian dynamics
(BD) the friction coefficient (or equivalently the short-time
diffusion constant D0) sets the Brownian timescale as τB =

a2/D0. For MD, one can further define a time-dependent
laterally averaged temperature field T(z) via the local kinetic
energy of the particles. In equilibrium, T(z) coincides with the
prescribed bulk temperature T . For BD, there is instantaneous
thermalization leading to T(z) = T at any time. As an
important physical difference between MD and BD, latent
heat which is produced during the crystallization process is
diffusing away for MD but immediately taken away on the
Brownian timescale for BD. Due to the local heating at the
interface [34] we expect that crystallization in BD is faster
than for MD if considered on appropriate timescales τB and
ω−1

p respectively.
Figure 3 shows the profiles ρ(z) and T(z) at two different

times t1 and t2 after starting the simulation both for MD and
BD. The ratio t1/t2 is fixed to 5. All other system parameters
are given in the caption. There are two basic messages to
learn from figure 3: first, the temperature is generated at the
interface and is diffusing away from the wall since the wall is
modelled to be elastic. Second, by comparing the distance the
crystal–fluid front has grown during the time interval t2 − t1,
one can indeed conclude that the growth in BD is faster than
that in MD if the time is appropriately scaled with τB and ω−1

p
respectively. In fact, for MD the crystal–fluid interface has
grown for about seven layers while this shift is 11 layers for
BD. This can be contributed to the local temperature increase
at the interface due to latent heat production. It is only in

the limit when thermal diffusion is much faster than crystal
growth that this kinetic hindering can be neglected.

Subsequently, we consider heterogeneous crystallization
of a binary-mobility system of hard spheres near a wall. In
our binary model we assume the same interaction diameter,
but different short-time mobilities for the two species. We
show that this model can be realized in binary mixtures
of charged particles provided these are mapped on systems
with an effective interaction diameter. As a function of the
mobility ratio, this mobility-binary system exhibits a maximal
crystal–fluid interfacial velocity if the latter is measured in
terms of an appropriate timescale associated with the averaged
mobility. The occurrence of an optimal front velocity can be
exploited for practical applications and may provide some
insight into the microscopic freezing kinetics of fluids in
porous media modelled as random matrices with an extreme
mobility asymmetry.

2. Heterogeneous crystallization near a wall for a
binary-mobility system

Particle-resolved experiments on both colloids [4, 35]
and complex plasmas [36] can be used to observe the
details of heterogeneous crystallization kinetics induced by
external inhomogeneities. The crystallization effect can be
significantly modified in the presence of other external fields
like gravity or external electric fields [36, 37]. Most of
the features can by now be quantitatively encaptured by
BD computer simulations of simple models [38, 39] (like
a hard sphere model with an effective interaction diameter
σ ) which typically neglect hydrodynamic interactions. Under
gravity, more effects were predicted by simulations, like a
huge interfacial broadening [38] and a doubled heterogeneous
crystallization in mass-binary mixtures [39]. These effects can
in principle be verified in future real-space experiments with
colloidal mixtures or dusty plasmas.

In the following we consider heterogeneous crystalliza-
tion in a binary system with different short-time mobilities
while keeping the interaction diameter σ the same. It is
important to note that the static equilibrium quantities (like
phase transition boundaries and structural correlations) are

3
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Figure 3. Simulation results for the laterally averaged particle density ρ(z)/ρ0 and the temperature profile T(z)/T for a one-component
Yukawa system at two different times t1 and t2. Here, ρ0 = N/V is the average particle number density. The simulation box contains
N = 80 000 particles in a volume V = LxLyLz. The laterally averaged density is defined as ρ(z) = N(z)/(LxLy1z), where N(z) is the
averaged number of particles inside a strip of width 1z. The simulation box has dimensions Lx = 36a, Ly = 38a, Lx = 58a. The bulk

temperature is chosen to be T = 2.3× 10−4 Z2κ
kBε

, where Z/e = 100, ε = 80 and κa = 4. (a) Molecular dynamics (MD) simulation results.

The full line (red in online version)—ρ(z) at time t1 = 36 000ω−1
p , dashed line (pink online)—ρ(z) at time t2 = 5t1, thin full line (blue

online)—T(z)/T for t1 = 36 000ωp
−1, dot-dashed line (green online)—T(z)/T for t2 = 5t1. (b) Brownian dynamics (BD) simulation

results: full line (red online)—ρ(z) at time t1 = 3τB, dashed line (pink online)—ρ(z) at time t2 = 5t1, horizontal dot-dashed line (green
online)—the trivial temperature profile T(z)/T = 1.

identical to the one-component hard sphere system while the
dynamical correlations and the nonequilibrium behaviour is
different. For nonequilibrium dynamics, our model allows a
link to transport processes in porous media in its limit of
very high asymmetry. In this limit, one species is almost
frozen-in, constituting a fixed matrix of spheres which is felt
as an external obstacle (porous matrix) by the other mobile
spheres [40].

2.1. Model for a binary-mobility system

Our model is an equimolar binary mixture of hard
spheres with the same interaction diameter but different
hydrodynamic (or physical) diameters, see the sketch in
figure 4. Indeed such a mobility-binary system can in
principle be realized by a charge-bidisperse mixture of
colloidal particles, see e.g. [41–45], or dust particles in the
plasma [21]. We describe the basic effects of the repulsions
by mapping them onto an effective hard sphere system [46].
From equation (1), one sees directly that charged particle
with a different charge and hydrodynamic radius can possess
nevertheless the same interaction diameter provided their
effective charge

Zi
eff = Zi exp(κai)/(1+ κai)

is the same for i = 1, 2. This implies that high-charge
particles with a small hydrodynamic radius can have
the same effective charge as low-charge particles with a
larger hydrodynamic radius. Therefore charged particles with

Figure 4. Sketch of the mobility-binary system. Two particle
species 1 and 2 with the same interaction diameter σ but with
different hydrodynamic radii a1 and a2 are shown. .

identical pair interactions (and therefore the same effective
interaction parameter) can be vastly different in terms of
their hydrodynamic radii. Of course, the effective interaction
diameter should always be larger than the hydrodynamic ones,
i.e. the two conditions σ > 2a1 and σ > 2a2 should hold, see
again figure 4.

The mobility can be characterized by a short-time
diffusion constant which is given in the colloidal case as
Di = kBT/6πηsai for i = 1, 2, where kBT denotes the thermal
energy and ηs the viscosity of the solvent. The mobility
asymmetry as characterized by the ratio

γ = D1/D2 = a2/a1 (2)

4
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can therefore be varied at fixed σ , showing that our model is
realizable.

Strictly speaking, hydrodynamic interactions can only be
neglected if the physical core size (i.e. the hydrodynamic
diameter) is much smaller than the effective interaction
diameter σ . In fact, this is realized for weakly screened
charged suspensions if the Coulomb coupling is large. On
the other hand, it has been shown in previous work [35]
that even for hard spheres where the hydrodynamic and
the interactions diameter are comparable, most of the
hydrodynamic interaction can be incorporated into an
effective short-time diffusion constant D0.

Our model interpolates between two well-known models
gained for the symmetric case γ = 1 and for the extreme
asymmetry limit γ → ∞. For γ = 1, we are dealing
with a simple (one-component) hard sphere system. Its
heterogeneous crystallization behaviour has been explored
previously [35] and can serve as a reference case. The
opposite limit γ → ∞ describes mobile hard spheres in
a matrix of fixed hard spheres. The thermodynamics and
structure of this model have been intensely studied by
theory [47–49]. Moreover, its dynamics has been explored by
computer simulations [50, 51]. However, we are not aware of
any crystallization study in this limit.

2.2. Computer simulation technique

We study the binary-mobility system by using BD simulations
where hydrodynamic interactions are neglected [35, 38]. In
detail, an equimolar mixed disordered starting configuration
is used and a wall covered with hard spheres on a triangular
lattice of lattice constant5 a = 1.133σ (corresponding to a line
spacing of 0.921σ ) is at the bottom of the sample at z = 0
(where z denotes the direction perpendicular to the wall). This
will help in nucleating a crystalline sheet at the wall at time
t = 0, which subsequently grows into the bulk.

A rectangular simulation box with dimensions Lx, Ly and
Lz containing N/2 fast particles with mobility D1 and N/2
slow particles with mobility D2 is considered. In total, N =
80 000 particles were simulated. The mobility asymmetry
γ = D1/D2 is varied in the range between 1 and 20. The
initial homogeneously mixed fluid configuration has a volume
fraction

η =
πσ 3

6
N

LxLyLz
(3)

which is another system parameter defining the ‘undercool-
ing’ (or ‘overpacking’) of the fluid initial state relative to the
stable solid.

In order to identify trends as a function of the mobility
ratio γ , we define an averaged timescale τ3 = σ

2/D3 where
D3 is the arithmetic mean of the two diffusion constants,
D3 = (D1 + D2)/2. This averaged time can also be rewritten
as

τ3 = τ1
2γ

1+ γ
(4)

5 A more systematic exploration of the dependence of crystallization on the
substrate lattice constant was recently performed in [52].

with τ1 = σ
2/D1. We appropriately rescale the simulation

time as t∗ = t/τ3 and compare the behaviour of different
systems at a given t∗ for different undercoolings η and
asymmetries γ .

Crystalline particles are identified with a common
q6-criterion [35, 38]. All other particles are called liquid-like.
In order to identify the crystal–fluid interface, we define
a laterally averaged profile φ(z, t) of the volume fraction.
Furthermore, laterally averaged number densities nc(z, t) and
n`(z, t) for the crystalline and liquid-like particles are defined.

3. Results

Simulation results for the laterally averaged volume fraction
φ(z, t) and the laterally averaged number densities nc(z, t) and
n`(z, t) are shown in figure 5 after a time t = 10τ3. Three
different values of γ are explored at fixed packing fraction
of η = 0.52. The φ(z, t) exhibits three parts: a crystalline
part touching the wall at z = 0 which has huge density peaks
(maxima are not shown), an interfacial region comprising
about eight crystalline layers, and a fluid part for large
distances z. The data reveal a width of the q6-interface of
about 5σ which is more or less independent of γ .

The position z0(t) of the crystal–fluid front can directly
be located by the intersection point of the crystalline
and liquid-like particle profiles, see the full and broken
lines in figure 5. Interestingly, the front position depends
nonmonotonically on the mobility ratio γ . This trend holds
also for longer times as documented in figure 6, where
the corresponding laterally averaged volume fractions are
shown for t = 100τ3. It is important to note that there is
no segregation between fast and slow particles. Both partial
volume fractions are (to a good approximation) half of the
total volume fraction φ(z, t).

In order to get more intuitive information about the
interfacial structure we consider typical simulation snapshots
of the crystalline particles. These allow us to have a direct
instantaneous view on the fluid–solid interface. Simulation
snapshots after a time t = 50τ3 are shown in figure 7 for
η = 0.52 and three different values of γ . As expected, the
nonmonotonic behaviour is clearly visible here as well but
the snapshots also reveal a considerable roughness of the
crystal–fluid interface.

We have finally plotted the propagated distance of the
crystal–fluid interface z0(t) after a time of t = 50τ3 for various
mobility ratios γ and four different bulk packing fractions
η in figure 8. We see that z0 attains a maximum at a small
dynamical asymmetry γmax and then decreases substantially at
large γ . The inset of figure 8 clearly shows that γmax increases
with bulk packing fraction η, but the increase is small. It is
important to note that the timescale must be chosen to be some
average of the two individual timescales to see this maximum.
If the growth velocity is expressed in terms of the individual
timescales τ1 = σ

2/D1 or τ2 = σ
2/D2, there is no maximum.

However, if the geometric mean of τ1 and τ2 is taken as
a timescale, the maximum persists. Clearly, the maximum
would also have occurred if another time (e.g. t = 20τ3 instead
of t = 50τ3) had been taken. We have further made sure that

5
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Figure 5. Simulation results for laterally averaged packing fractions φ(z) for η = 0.52 at t = 10τ3. From top to bottom the parameter
γ = D1/D2 is changed as 1.1, 1.25, and 5. Dashed line (pink in online version)—φ(z), thick full line (red online)—interfacial profile nc(z)
for the ‘crystalline’ particles, thick dashed line (blue online)—interfacial profile nl(z) for the ‘liquid-like’ particles.

Figure 6. Same as figure 5, but now for t = 100τ3.

the nonmonotonicity persists if a q6 threshold value different
from 0.5 is used to define the interface position.

In order to further check the stability of the nonmono-
tonicity, we have plotted the front velocity v defined as

v =
z0/σ

τ3/τ1
=

z0/σ

2γ /(1+ γ )
(5)

after a time t = 50τ3 for various mobility ratios γ and four
different bulk packing fractions η. One should bear in mind
that this front velocity is scaled with respect to τ3, i.e. it
measures the distance the interface position travels within the
time τ3. Figure 9 shows that at lower values of η the front
velocity v attains a maximum at a small dynamical asymmetry

6
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Figure 7. Simulation snapshots of crystalline particles after a time
t = 50τ3 for η = 0.52. From top to bottom: γ = 1.1, 1.25 and 5.

γmax and then decreases substantially at large γ . The actual
values for γmax (see insets of figures 8 and 9) are similar but
not exactly the same.

Our intuitive explanation for the optimal growth velocity
(corresponding to the maximum in the propagated distance)
at small undercooling η < 0.54 is as follows: let us consider

Figure 8. Simulation results for the crystal–liquid front position z0
for different bulk packing fractions η at t = 50τ3 as a function of the
mobility ratio γ = D1/D2. The inset shows the dependence of the
value γmax at which z0 is maximal on the bulk packing fraction η.
The error bars are no larger than the symbol size used.

Figure 9. Simulation results for the crystal–fluid front velocity v
for different bulk packing fractions at t = 50τ3 as a function of the
mobility ratio γ = D1/D2. The parameter γmax, which corresponds
to the values of γ at which the front velocity reaches a maximum
value is shown in the inset. The error bars of calculated velocities do
not exceed the size of the symbols used.

slightly asymmetric systems where γ is a bit larger than
1. Starting from an initial disordered configuration, the
undercooling forces both particle species to find positions
which are crystal-like. The faster particles will find such
a position on a timescale of order τ1 more quickly than
the slower particles. Once the faster particles are at a
crystal-like position, this will accelerate the motion of the
smaller particles towards their optimal crystal-like positions.
Hence they will get there a bit faster than supposed for
an uncorrelated picture. Altogether, when considered on
the species-averaged timescale τ3, a binary mobility will
accelerate the dynamics of crystallization, i.e. v will increase
with γ . On the other hand, in the extreme limit of very
large γ , the slow particles will act as immobile obstacles
for the crystallization of the fast particles (‘limit of a
porous matrix’). Hence fast particles have to crystallize in a
complex surrounding, which slows down the crystallization
considerably. Consequently, there must be an optimal ratio of
mobilities where the growth velocity is maximal.

7
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At large undercooling (η = 0.54), the reduction in
the kinetic prefactor (or in the long-time self-diffusion
coefficient) leads to the fact that z0 is getting smaller
although the thermodynamic drive is larger, see again figure 8.
Neighbouring particles are forced to move as clusters at these
high densities such that the picture of subsequent individual
motion of fast and slow particles breaks down. This gives an
insight into why there is no nonmonotonicity for η > 0.53.

The occurrence of an optimal mobility ratio can be
exploited to steer crystal growth in mixtures. In particular,
quick crystallization can be induced by using mixtures almost
symmetric in their mobility.

We finally comment that, for the colloids moving in a
matrix of fixed obstacles, as obtained formally in the limit of
γ → ∞ hydrodynamic interactions can be neglected if the
matrix has particles with a large interaction diameter and a
small core size. Such a model matrix can be realized by fixing
many strongly charged colloids at matrix position by using
optical tweezers.

4. Conclusions

In conclusion, charged colloidal dispersions and complex
plasmas share the feature of a classical strongly coupled
Coulomb system. Both systems are ideal model systems
to study freezing and melting processes on the particle
scale in order to unravel the processes of crystal nucleation
and growth. Binary mixtures with different short-time
mobilities show an important effect of the mobility asymmetry
on the speed of crystal growth. For small asymmetries,
crystallization becomes faster while for large asymmetries the
fast particles freeze first feeling the slow particles as obstacles,
which slows down the crystallization process as compared to
the one-component system.

Future work should explore different interaction radii of
the species. Moreover, the limit of high mobility asymmetry
should be considered more in order to work out the link to
fluids in disordered porous media [40].
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