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A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by
computer simulation and theory. The more repulsive A-particles create a depletion zone of less repul-
sive B-particles around them reminiscent to a bubble. Applying Archimedes’ principle effectively to
this bubble, an A-particle can be lifted in a fluid background of B-particles. This “depletion bubble”
mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the
lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container
bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a peri-
odic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In
this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are
based on computer simulations and density functional theory of a two-dimensional binary mixture of
colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interac-
tions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar
or charged colloidal mixtures as well as in charged granulates and dusty plasmas. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.3698622]

I. INTRODUCTION

Gravity or centrifugation is commonly used to sort and
separate different particles out of a mixture1, 2 but the under-
lying microscopic (i.e., particle resolved) processes of mixing
and demixing under settling are still debated.3, 4 It is known
for long time that shaken or vibrated granular mixtures can
exhibit the “brazil-nut effect,” namely that the heavier par-
ticles are on top of the lighter ones.5, 6 The details and pa-
rameter combinations for the brazil-nut effect to occur are
still discussed.7–12 The brazil-nut effect may even contradict
Archimedes’ law, which governs the equilibrium density pro-
files of molecular mixtures and colloidal solutions by the
buoyancy principle.

Colloidal mixtures are valuable model systems to ex-
plore gravity effects on the particle scale13–18 both in equi-
librium and nonequilibrium. Sediments of binary charged
mixtures are commonly used to determine the phase
behavior.19–22 In highly deionized charged colloidal mixtures,
the sediment23, 24 can split into separated layers due to counte-
rion lifting, a phenomenon referred to as “colloidal brazil-nut
effect.” The separation of binary hard-sphere mixtures was
explored using the equation of state and separation of the two
species was predicted in line with Archimedes’ principle.25–27

Recent experimental real-space studies on soft repulsive col-
loidal mixtures in three dimensions16 clearly showed that
the buoyancy principle is not violated. Colloid-polymer
mixtures are known to phase-separate under gravity in
equilibrium.28, 29

Nonequilibrium studies, on the other hand, include the
dynamics of the settling process on the particle scale13, 30 af-

ter quickly turning the sample upside down, the enforcement
of crystal growth on a patterned template under gravity,31, 32

spatially varying temperature fields33 and novel zone forma-
tion in sedimenting colloidal mixtures.34 Interestingly, for
colloidal mixtures, there are only few studies where gravity
is changed periodically in time35 which may be considered to
be the colloidal analogue of granulate shaking.

In this paper, we consider a binary mixture of particles in-
teracting via long-ranged repulsive forces in gravity. We use
Monte Carlo and Brownian dynamics computer simulation
and mean-field density functional theory to predict the equi-
librium density profiles and the nonequilibrium response of
the system to oscillatory gravity. The more repulsive particles
are referred to as A-particles while the less repulsive parti-
cles are the B-particles. A-particles create a depletion zone of
small particles around them reminiscent to a bubble. Applying
Archimedes’ principle effectively to this bubble, an A-particle
can be lifted in a fluid background of B-particles. This “deple-
tion bubble” mechanism results in a brazil-nut effect where
the heavier A-particles float on top of the lighter B-particles.
It also implies an effective attraction of an A-particle towards
a hard container bottom wall which produces a boundary lay-
ering of the A-particles. If the direction of gravity is period-
ically inverted causing perpetuous mutual penetration of the
mixture in a slit geometry, a similar stable layering emerges
as a nonequilibrium phenomenon. We emphasize that our ef-
fects do not occur for short-ranged interactions such as for
hard sphere mixtures.25 This is only the case when the (effec-
tive) hard sphere interaction diameter differs largely from that
of the actual particle size. Therefore, it is the softness of the
repulsion which is relevant here.
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Our results are obtained for a two-dimensional binary
mixture of colloidal repulsive dipoles. This is an appropriate
model for colloidal particles at an air-water interface which
are exposed to an external magnetic field. Therefore, our sim-
ulation results can be verified in real-space microscopy exper-
iments of two-dimensional superparamagnetic particles,36–41

see also Refs. 42 and 43 for alternative setups. An external
magnetic field induces repulsive dipole forces. The gravity
can either be realized by tilting the droplets or by applying a
laser light pressure on the sample.44 The predicted effects also
occur for other long-ranged repulsive interactions and in three
spatial dimensions. They are therefore also verifiable in set-
tling experiments on dipolar or charged colloidal mixtures16

as well as in charged granulates45 and dusty plasmas.46, 47

The paper is organized as follows: in Sec. II, we describe
the model and the simulation technique applied. In Sec. III,
we discuss the density functional theory. Results are presented
in Secs. IV and V and we conclude in Sec. VI.

II. MODEL AND SIMULATION TECHNIQUE

The system consists of a suspension of two species of
point-like superparamagnetic colloidal particles denoted as A
and B, which are confined to a two-dimensional planar inter-
face. These particles are characterized by different magnetic
dipole moments MA and MB, where

M = MB/MA (1)

is the dipole-strength ratio. The dipoles are induced by an ex-
ternal magnetic field H according to Mi = χ iH (i = A, B),
where χ i denotes the magnetic susceptibility. The magnetic
field is applied perpendicular to the two-dimensional interface
containing the particles. In the following, the dipole-strength
ratio M is fixed to 0.1, corresponding to recent experimental
samples.38, 39, 41 The relative composition X = NB/(NA + NB)
of B particles is fixed at 50%; hence we are considering an
equimolar mixture. The particles are exposed to an external
potential Vext,i(r) which is a combination of gravity and the
hard bottom wall and is given by

Vext,i(r) =
{

migy for y ≥ 0

∞ otherwise.
(2)

Here, mi is the buoyant mass of particle species i (i = A, B).
Gravity acts along the −y direction. We characterize the mass
ratio by the dimensionsless parameter

m = mB/mA. (3)

The particles interact via a repulsive pair potential of two par-
allel dipoles of the form

uij (r) = μ0

4π
MiMj/r3 = μ0

4π
χiχjH

2/r3 (i, j = A,B),

(4)

where r denotes the distance between two particles in the
plane. For this inverse power potential, at fixed composition
X and susceptibility ratio χB/χA, all static quantities depend
solely48 on a dimensionless interaction strength (or coupling

constant)

� = μ0

4π

χ2
AH 2

kBT l3
A

, (5)

where kBT is the thermal energy and lA = kBT/(mAg) the grav-
itational length of A particles, which we employ as a unit of
length.

For time-dependent gravity (“shaking”) we consider the
external potential

Vext,i(r, t) =
{

mig(t)y for 0 ≤ y ≤ Ly

∞ otherwise,
(6)

which embodies a time-dependent gravity strength g(t) in a
finite slit of width Ly. This is conveniently modelled to be a
stepwise constant function of time,

g(t) =
{
g for n − 1 < t/T0 ≤ n − ϑ

−g for n − ϑ < t/T0 ≤ n,
(7)

n = 1, 2, ...

introducing a time period T0 and a “swap fraction” 0 ≤ ϑ ≤ 1.
Note that for the time-dependent gravity we confine the sys-
tem to a slit of vertical width Ly in order to keep the external
potential bounded from below for all times.

The particle dynamics is assumed to be Brownian. Hy-
drodynamic interactions are neglected. The Brownian time
scale is set by the short-time diffusion constant DA of the A-
particles. Knowing that this diffusion constant scales with the
inverse of the radius of a particle, DB was chosen such that
DB/DA = 1.61 corresponding to the physical diameter ratio of
the experimental samples.38, 39, 41

We perform standard nonequilibrium Brownian dynam-
ics (BD) and Monte Carlo (MC) computer simulations49–51

in the canonical ensemble where the particle numbers
Ni (i = A, B), the temperature T and the area A is fixed. In
the static (equilibrium) case, where the external potential is
not time-dependent, the one-particle density field has been
calculated via MC simulations of NA = 600 A-particles and
NB = 600 B-particles, which were placed in a finite rectangu-
lar box Lx × Ly of area A = (30 × 120)(lA)2. In the nonequi-
librium case, where gravity is time-dependent, we obtained
the one-particle density field by performing BD simulations
of NA = NB = 300 particles in a rectangular box of size
A = (15 × 60)(lA)2. In both cases, the simulation box fea-
tures periodic boundary conditions in x-direction, an aspect
ratio Lx/Ly = 1/4 and a gravitational load NA/Lx = 20/lA.
The coupling constant � is fixed to 10. A finite time step δt
= 10−4τ was used in the BD simulations, where τ = l2

A/DA.
We denote the density profiles as ρ

eq
i (r) (i = A, B) in the static

case and ρi(r, t)(i = A, B) in the dynamical case.

III. DENSITY FUNCTIONAL THEORY

Within density functional theory (DFT) the grand canon-
ical free energy 	(T ,μA,μB, [ρA(r), ρB (r)]) depending on
the temperature T and the chemical potentials μA, μB is mini-
mized with respect to the local partial one-particle densities
ρA(r) and ρB(r). This functional can be split according to
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Refs. 52–54, so that in two spatial dimensions we obtain

	 (T ,μA,μB, [ρA(r), ρB(r)])

= Fid ([ρA(r), ρB(r)]) + Fexc ([ρA(r), ρB(r)])

+
∑

i=A,B

∫
d2rρi(r)[Vext,i(r) − μi], (8)

where the first term is the free energy of an ideal gas

Fid = kBT
∑

i=A,B

∫
d2rρi(r)[ln(
2

i ρi(r)) − 1] (9)

including the (irrelevant) thermal wavelength 
i of particles
of species i (i = A, B). As already introduced above, Vext,i(r)
is the static external potential acting on particle species i. The
only unknown part is the excess free energy functional Fexc,
resulting from the inter-particle interactions. In order to ap-
proximate Fexc, we use a simple Onsager functional55, 56

Fexc = kBT

2

∫
d2r

∫
d2r ′fij (|r − r ′|)ρi(r)ρj (r ′), (10)

consisting of the Mayer f-function

fij (r) = 1 − e−βuij (r), (11)

with the interaction potential uij(r) from Eq. (4) and the
inverse temperature β = (kBT)−1. The Onsager approxima-
tion is valid at low densities reproducing the second virial
coefficient of the bulk fluid equation of state correctly but is
expected to break down at higher densities. Unfortunately,
unlike for hard-core interactions,57, 58 no alternative approx-
imation working at higher densities is known for mixtures
of soft inverse-power-law potentials. (A Ramakrishnan-
Yussouff approximation was put forward for one-component
dipoles in S. van Teeffelen, N. Hoffmann, C. N. Likos,
H. Löwen, Europhys. Lett. 75, 583-589 (2006), but this was
never generalized to repulsive mixtures.) However, we expect
the general trends to be captured by the theory but not the
details of molecular layering.

The equilibrium density profiles ρ
eq
i (r) are obtained from

the minimization condition

δ	[ρA(r), ρB (r)]

δρi(r)

∣∣∣∣
ρi (r)=ρ

eq
i (r)

= 0. (12)

It is important to note that DFT is typically formulated in the
grand-canonical ensemble where the chemical potentials μA,
μB are fixed instead of the particle numbers, while the sim-
ulations are performed in the canonical ensemble. We have
therefore considered the chemical potentials μA, μB as La-
grange multipliers which fix the total line density perpendic-
ular to gravity and matched them such that this line density
coincides with that prescribed in the simulations.

If gravity gets time-dependent, there is a dynamical
generalization of DFT appropriate for Brownian systems
which can be derived in various ways59–61 from the ex-
act Smoluchowski equation via an adiabatic approximation.
Within this dynamical density functional theory (DDFT), the
time-dependent density fields obey the generalized diffusion

equation

∂ρi(r, t)
∂t

= βDi∇ ·
(

ρi(r, t)∇ δ	[ρA(r, t), ρB (r, t)]
δρi(r, t)

)
,

(13)

with a diffusion constant Di corresponding to particle species
i = A, B. It is important to note that this equation conserves
the total density, i.e., provided the starting density profiles are
matched to that in the canonical ensemble, the time evolution
given by the DDFT equation is canonical. Therefore, the re-
sults obtained from DDFT can directly be compared to our
BD simulations. In our case of an external potential which
depends only on the y-coordinate, we consider only density
profiles which are independent of x. This is justified far away
from surface freezing.62

IV. RESULTS IN EQUILIBRIUM

A. Colloidal brazil-nut effect

We performed MC simulations for various mass ratios 0
≤ m ≤ 1 and dipolar ratios 0 ≤ M ≤ 1. Thereby, we choose
A as the heavier and stronger coupled species. (The opposite
case m > 1 (for 0 ≤ M ≤ 1) where the weaker coupled parti-
cles are heavier is not considered in this paper though it is in
principle realizable.) An example for the partial density pro-
files ρ

eq
i (r) (i = A, B) is given in Fig. 1 where at fixed M = 0.1

two different mass ratios m = 0.1, 0.5 are considered. Interest-
ingly, the MC simulation data show quite distinct qualitative

FIG. 1. One-particle density profiles ρ
eq
i (r), i = A, B obtained from DFT

and MC simulation. Mean sedimentation heights hi, i = A, B from Eq. (14)
are indicated by highlighted points for MC simulation data. (a) M = 0.1,
m = 0.1 (no brazil-nut effect). (b) M = 0.1, m = 0.5 (brazil-nut effect). The
insets enlarge the behavior at small wall distances where a strong peak of the
A-particles occurs.
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behavior for these two cases. In Fig. 1(a) (m = 0.1) the lighter
B-particles are on top of the heavier A-particles as expected,
while in Fig. 1(b) (m = 0.5) the behavior is reversed: here,
the heavier A-particles are on top of the lighter B-particles.
At first glance, this opposite trend is counterintuitive. We call
it – in some analogy to granulate matter – (colloidal) brazil-
nut effect.

DFT data are also included in Fig. 1. In fact, static density
functional theory can basically reproduce the partial density
profiles ρ

eq
i (r) (i = A, B) though the comparison is not quan-

titative since the functional is approximated by a low-density
expression. In fact, as compared to the simulation data, the
DFT results for the layering spacings are too large but the
contact density of A-particles at the bottom wall are well re-
produced in DFT (see the insets shown in Fig. 1). Of course,
one should bear in mind that there is no fit parameter involved
in the comparison.

In order to quantify the colloidal brazil-nut effect, we fol-
low the criterion proposed in Ref. 23. We define averaged
heights hi, i = A, B by taking the first moment of the partial
density fields as

hi =
∫ ∞

0 yρ
eq
i (y)dy∫ ∞

0 ρ
eq
i (y)dy

, i = A,B. (14)

In Fig. 1, the location of the corresponding heights is indi-
cated by a large symbol for MC data. The brazil-nut effect is
then defined by the condition

hA > hB , (15)

which means that on average, the heavier A-particles are on
top of the lighter B-particles.

Within the full parameter range 0 ≤ m ≤ 1, 0 ≤ M
≤ 1, the region separating the brazil-nut effect from the or-
dinary behavior (no brazil-nut effect) is shown in Fig. 2. MC
computer simulation data for the separation line are given
by square symbols. These results were obtained by system-
atically scanning the parameter space. The brazil-nut effect

FIG. 2. Separation line between the occurrence of the colloidal brazil-nut
effect and the absence of this effect in the parameter space of dipolar asym-
metry M and mass asymmetry m. Monte Carlo simulation data (contoured
white squares), density functional data (full black circles) and the transition
line implied by the bubble condition (18) (contoured circles) are shown.

FIG. 3. Simulation snapshot depicting A-particles (large red spheres) embed-
ded in the fluid of B-particles (smaller green spheres) in the bottom region of
the sample. Notably, A-particles are surrounded by a circular depletion zone
reminiscent of a bubble (area indicated in faint red). Particles are displayed
as spheres of finite radii for clarity only.

occurs preferentially for strong dipolar asymmetry and is
favoured if the two masses do not differ much. DFT results
for the phase boundary are also included in Fig. 2 and are in
good agreement with the simulation data predicting the same
trends and the same slope of the separation line in the M-m
parameter space.

B. Depletion bubble picture

We now put forward an intuitive picture for the mech-
anism behind the colloidal brazil-nut effect which also pro-
vides a very simple theory for the separation line. This picture
is based on the observation that when surrounded by a fluid
of B-particles, a single A-particle creates a circular void-like
space around it which is free of B-particles due to the strong
repulsion between A- and B-particles, see the highlighted area
in Fig. 3. This depletion bubble is firmly attached to the A-
particle. Applying the buoyancy criterion to the whole bub-
ble, the effective weight per area of the A-particles is strongly
reduced. Assuming a homogeneous fluid density ρ̄B sur-
rounding a bubble of radius R around an A-particle, the con-
dition for lifting the A-particle can be stated as a buoyancy
criterion

mA

πR2
< mBρ̄B. (16)

We estimate the radius R by a low-density argument, where
the density profile of B-particles around an A-particle fixed
at the origin is ρ̄B exp(−uAB(r)/kBT ) = ρ̄B exp(−M�l3

A/r3)
such that a reasonable assumption for the radius R of the
depletion zone is given by the separation where the AB-
interaction energy equals kBT, i.e.,

R = lA(M�)1/3 . (17)

Upon insertion in Eq. (16), this yields the bubble condition

m >
(
π (M�)

2
3 l2

Aρ̄B

)−1
. (18)

Thereby, a simple estimate for the separation line is provided.
The only unknown parameter entering in Eq. (18) is the aver-
aged density ρ̄B . We have used simulation data to determine
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FIG. 4. Simulation snapshot for M = 0.1, m = 0.5 showing the marked-off
bottom layer of heavy A-particles (large red spheres) at y = 0 beneath the
fluid of light B-particles (small green spheres). The arrow indicates direction
of gravity, −y.

ρ̄B as the effective density at a distance 2R,

ρ̄B = ρ
eq
B (2R). (19)

The resulting separation line is included in Fig. 2. Despite its
simplicity, the depletion bubble picture describes the simula-
tion data pretty well. Clearly, the depletion bubble is induced
by the soft long-ranged repulsion and is therefore missing for
pure hard sphere mixtures where neighbouring particles are
at contact. However, when the interaction is mapped onto a
substitute interaction core with an effective diameter,63 all the
traditional sedimentation is qualitatively contained in this ef-
fective hard sphere mixture.

C. Boundary layering and effective interaction
between an A-particle and the bottom wall

We finally discuss the implication of the depletion bub-
ble on the layering of A-particles close to the hard bottom wall
of the confining container (at y = 0), see again the insets of
Fig. 1. The strong layering is clearly demonstrated by an ac-
tual simulation snapshot shown in Fig. 4. If a single A-particle
is fixed at a given distance from the bottom wall, its depletion
bubble is reduced since the void space is cut by the hard wall,
see the sketch in Fig. 5. Note that the A-particle is point-like
so that in principle, it can approach the wall very closely. If
the A-particle is close to the wall, the void space is half of
the full circle in the bulk (situations I and III in Fig. 5). If the
height y of the A-particles increases, the depletion bubble area
A(y) grows. Assuming a constant depletion bubble radius R,
A(y) is given analytically as

A(y) = R2

⎧⎨
⎩π − arccos( y

R
) + y

R

√
1 − (

y

R

)2
for y ≤ R

π otherwise.

(20)

The growing bubble size causes two opposing effects: first,
in order to increase the depletion bubble area, work against
the osmotic pressure p̄B of the fluid B-particles is necessary.
Assuming that p̄B is constant in the small height regime, this

FIG. 5. Schematic illustration of the metastable trapping of A-particles at y
= 0, leading to the formation of a boundary layer. A-particles are represented
by large red spheres, while B-particles are depicted as smaller green spheres.
The solid line indicates y = 0, while the orientation is analogous to Fig. 4.
The depletion zone surrounding A-particles is indicated by a dashed outline.

work equals p̄B(A(y) − A(0)) and gives rise to an effective
attraction of an A-particle close to the wall (situation II in
Fig. 5). In fact, this attraction is similar to the depletion attrac-
tion in the ordinary Asakura-Oosawa-Vrij model of colloid-
polymer mixtures near a hard wall64, 65 although there is a
finite (physical) colloidal diameter in this model.

The second effect resulting from the increasing bubble
size A(y) is a change in the effective buoyancy. The effec-
tive buoyant force is given by −mAg + ρ̄BmBgA(y). If the
bubble containing the A-particle is lighter than the surround-
ing B-fluid, this term is repulsive with respect to the wall and
therefore opposed to the depletion force.

Combining these two effects, we gain the following an-
alytical expression for the depletion potential V(y) between a
single A-particle and the wall,

V (y) =

⎧⎪⎨
⎪⎩

p̄B(A(y) − πR2/2) + mAgy

−ρ̄BmBg
∫ y

0 dy ′A(y ′) for y ≥ 0

∞ for y < 0,

(21)

where the integral can be calculated as∫ y

0
dy ′A(y ′) = πR2y − R2y arccos

( y

R

)

+R3

√
1 − y2

R2
− R3

3

(
1 − y2

R2

) 3
2

. (22)

This expression requires p̄B as an input parameter. In
order to evaluate V(y), we have determined p̄B via a bulk
reference simulation of a pure B-system (in the absence of
gravity) at a prescribed number density ρ̄B by using the virial
expression.66

We further checked a posteriori whether the radius R of
the depletion bubble is consistent with that obtained from a
radially averaged density profile of a bulk B-fluid around a
single A-particle fixed at the origin. This “renormalized” ra-
dius R′ can be estimated to be the position of the first inflec-
tion point in this density profile of B-particles. Actually, we
find values for R′ which are a bit smaller than those given by
the estimate (Eq. (17)) which only works at low ρ̄B .

More rigorously, we can define the effective interaction
between the wall and an A-particle under the presence of the
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FIG. 6. Particle-wall depletion potential Veff from Eq. (23) explored by a
single A-particle within a fluid of B-particles near the system boundary at y
= 0 versus reduced height y/lA. Panel (a) shows the potential barrier peak
at close distances and includes the theoretically predicted depletion potential
V(y) from Eq. (21) for parameters M = 0.1, m = 0.5 and two different de-
pletion bubble radii: R (black circles), R′ (black diamonds). (b) and (c) show
Veff for M = 0.1 and M = 0.01, respectively. For clarity, curves representing
different values of m are shifted relatively.

inhomogeneous distribution of B-particles by a potential of
mean-force.67, 68 For a given altitude y, the effective interac-
tion potential Veff(y) is given by

Veff(y) = −
∫ y

0
〈FA(y)〉 dy, (23)

where 〈FA(y)〉 is the canonically averaged total force on the A-
particle in the presence of the B-particles (which by symmetry
points in the y-direction). FA(y) also contains the trivial direct
part −mAg from gravity.

Computer simulation data for the effective potential
Veff(y) are presented in Fig. 6. Two possibilities occur: if the
A-particle is much heavier than the B-particles, the potential is
fully attractive by a combination of depletion attraction close
to the wall and gravity. In the brazil-nut case, on the other
hand, there are three regimes in Veff(y): an attractive regime
close to the wall (corresponding to situation I, II in Fig. 5),
followed by a repulsive regime (situation III in Fig. 5) and a
subsequent attractive regime (situation IV in Fig. 5). The re-

pulsive regime is caused by the lift force also responsible for
the brazil-nut effect.

Figure 6(a) includes the theoretical prediction of V(y)
from Eq. (21) for one set of parameters. There is very good
agreement if the renormalized value R′ for the depletion bub-
ble radius is taken (diamonds) while the agreement deterio-
rates for the low-density expression R (circles). This demon-
strates that the analytical expression (21) incorporates the ba-
sic physics principles.

Between the short-ranged wall attraction and the lift
regime, there is an energetic barrier E typically of the order
of several thermal energies kBT. Comparing our MC simula-
tion results to approximation (21) with renormalized bubble
radius, the energetic barrier height proves to be in fair agree-
ment. For M = 0.1, m = 0.5, Eq. (21) predicts E = 8.6kBT,
while we obtain E = 7.8kBT from our MC simulation. Con-
sidering the parameter combination M = 0.3, m = 0.9, an
energetic barrier height E = 15.5kBT follows from Eq. (21),
while MC simulation yields E = 9.8kBT. Here, this large
discrepancy can be attributed to the relatively thin layer of B-
particles close to the bottom wall. As a remark, a finite physi-
cal core (as relevant for possible experimental studies) would
cut the effective potential at the core radius and would there-
fore just reduce the energetic barrier accordingly.

If the energetic barrier is interpreted as a static one, an
A-particle which is initially trapped in the metastable mini-
mum close to the wall needs a huge escape time to leave this
metastable minimum which scales in an Arrhenius-like fash-
ion ∝ exp (E/kBT). However, as pointed out by Vliegenthart
and van der Schoot,69 the effective interaction can strongly
fluctuate such that the energetic barrier is not static. In this
case, the particle will escape much more quickly by wait-
ing for a fluctuation which reduces the energetic barrier in-
stantaneously and accelerates the escape process. Therefore,
we have computed also the fluctuations of the depletion
force 〈F2〉 = 〈F2〉 − 〈F〉2, see Fig. 7. Near the potential
barrier, 〈F2〉 increases significantly. The inset of Fig. 7

FIG. 7. Mean square fluctuation 〈F2〉 versus reduced height y/lA. Inset:
Relative fluctuation 〈F2〉/〈F2〉 versus reduced height y/lA. The parameters
are M = 0.1, m = 0.5.
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shows the relative fluctuations. They are indeed of the order
one near the effective potential maximum. This indicates that
A-particles are exposed to strongly fluctuating forces when at-
tempting to escape the boundary layer. Therefore, although
the depletion potential comprises a potential barrier in the
order of several kBT, particle transitions from the bound-
ary layer to higher altitudes occur at much higher frequen-
cies than expected from the static activated Arrhenius ex-
pression ∝ exp (E/kBT). In fact, this facilitates the bound-
ary layer sampling in the Monte Carlo simulations of many
A-particles to a large extent and ensures sufficient equili-
bration. (The described effect is not caused by a large MC
step. It is rather due to the strongly fluctuating depletion po-
tential that transitions from the bottom layer to higher alti-
tudes occur more easily than in the case of a static potential
barrier.)

V. RESULTS UNDER TIME-DEPENDENT GRAVITY
(COLLOIDAL SHAKING)

Finally, we turn to the nonequilibrium situation of time-
dependent gravity, see Eq. (6), which is a simple model of
colloidal shaking. As far as our methods are concerned, we
now use Brownian dynamics simulations appropriate for col-
loids and dynamical density functional theory. Various dif-
ferent starting configurations were used in the simulations to
obtain statistical averages which were all sampled from an in-
teracting bulk system. This corresponds to an initial homoge-
neous density field in DDFT. The swap fraction ϑ is chosen to
be 1/4, i.e., we consider the case that the time-average of the
gravity is non-zero. In particular, we discuss the emergence of
a steady state upon time-periodic gravity.

The relaxation of an initially homogeneous (but in-
teracting) fluid of A- and B-particles towards its periodic
steady state can be monitored by observing the instanta-
neous ensemble-averaged total potential energy Epot of the
system:41

Epot(t) = 1

2

∫
d2r

∫
d2r ′ ∑

i,j=A,B

uij (r − r ′)ρi(r, t)ρj (r ′, t)

+
∑

i=A,B

∫
d2rVext,i(r, t)ρi(r, t). (24)

This quantity is shown in Fig. 8, indicating that only few os-
cillations are needed to get into the steady behavior. Due to
the homogeneous starting configuration the energy oscillation
amplitude increases with time. DDFT describes all trends cor-
rectly and also provides good data for the potential energies
and the associated relaxation time.

The averaged height, as defined by the first moment of
the density profile (see Eq. (14)), can be generalized to a dy-
namical (time-dependent) quantity hi(t), (i = A, B) via

hi(t) =
∫ Ly

0 yρi(y, t)dy∫ Ly

0 ρi(y, t)dy
, i = A,B . (25)

The time-dependent heights are another indicative param-
eter which probes the dynamical response of the whole
system.70, 71 The quantity hA(t) is shown for two shaking fre-

FIG. 8. Total potential energy Epot/(NA + NB ) per particle versus reduced
time t/τ , using time period T0 = 8τ and swap fraction ϑ = 1/4. The parame-
ters are M = 0.1, m = 0.24.

quencies ω = 2π /T0 in Fig. 9. As a result, the relaxation time
is mainly scaling with the Brownian time τ but is rather in-
sensitive to the periodicity T0. DDFT reproduces the trend
with respect to increasing the periodicity T0 but underesti-
mates the actual heights hA(t), consistent with what we found
in the equilibrium case.

Upon shaking, the boundary layer of the A-particles per-
sists. We take a snapshot after the relaxation time at

tn = (n − ϑ)T0, n = 1, 2, ... (26)

This is just the time at which the direction of gravity is in-
verted. Comparing the results to the density profiles predicted
by DDFT, the persistence of the boundary layer is indicated
by both methods. Figure 10 depicts density profiles obtained
by BD simulations and DDFT for various shaking periods T0.
Dynamical density functional data are in qualitative agree-
ment with Brownian dynamics computer simulations results
but show the same deficiencies as in the equilibrium case.
This indicates that the deviations can be solely attributed to
the quality of the density functional but not to the additional
adiabatic approximation inherent in any DDFT. Again, as in
equilibrium, the amplitude of the outermost density peak is in
good agreement, see the inset of Fig. 10.

The mean heights hi (i = A, B) at times tn are shown
in Fig. 11 versus frequency ω = 2π /T0. The dissipative re-

FIG. 9. Time-evolution of the mean A-particle height hA(t) versus reduced
time t/τ for different shaking periods T0 and a swap fraction ϑ = 1/4. The
parameters are M = 0.1, m = 0.24.
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FIG. 10. A-particle density profile ρA versus reduced height y/lA upon shak-
ing, obtained by DDFT (curves) and BD simulations (symbols). The in-
set depicts the outer boundary peak for both methods. Shaking periods T0
= 0.8τ and T0 = 48τ are shown for a swap fraction ϑ = 1/4. The parameters
are M = 0.1, m = 0.24.

sponse leads to a decay of the peak as a function of ω. For
ω → 0, we recover a quasi-static equilibrium case while for
ω → ∞, the shaking is so fast that the system does not react at
all upon this stimulus. It, therefore, approaches the limit of an
ordinary equilibrium fluid mixture confined between two slits
in the absence of gravity where layering is much less pro-
nounced than in the presence of gravity. The crudest model
of colloidal shaking is a completely overdamped response to
a periodic external stimulus. In this case, the response ampli-
tude scales with the shaking frequency as 1/ω. A fit which
involves the 1/ω scaling is included in Fig. 11 and provides a
good description in the high-frequency regime. The DDFT re-
produces these trends and provides good data for hB(tn) while
underestimating hA(tn). Again, we attribute this to the low-
density approximation of the functional, where the stronger
interacting A-particles are treated in a more approximative
way than the B-particles.

FIG. 11. Mean heights hi (i = A, B) at times tn as a function of ω = 2π /T0
from DFT (squares and diamonds) and BD simulations (circles and triangles).
The expected scaling ∼1/ω is indicated by dashed lines. The parameters are
M = 0.1, m = 0.24.

VI. CONCLUSIONS

In conclusion, we have explored a two-dimensional bi-
nary mixture of particles interacting via long-ranged repulsive
forces in gravity by using computer simulation and density
functional theory. The more repulsive A-particles create a de-
pletion zone (void space) of less repulsive B-particles around
them reminiscent of a bubble. Applying Archimedes’ princi-
ple effectively to this bubble, an A-particle can be lifted in a
fluid background of B-particles. This mechanism also works
when the A-particles are heavier than the B-particles leading
to a colloidal brazil-nut effect where the heavier particles float
on top of the lighter particles. Still the buoyancy principle is
fulfilled if it is effectively applied to the mass per bubble vol-
ume. This general finding is in accordance with the recent
experimental sedimentation results on colloidal mixtures by
Serrano et al.16

In the latter work, the settling of charged colloids was
studied in three-dimensional space. The interaction between
the particles is of long-ranged screened Coulomb type simi-
lar to the long-ranged dipolar forces considered in this work
in two dimensions. A similar depletion bubble picture as put
forward in this paper would apply here, albeit in three dimen-
sions. However, in Ref. 16, no brazil-nut effect was found as
the interaction and mass ratios of the mixture were not in the
brazil-nut regime.

Within the depletion bubble picture, an effective attrac-
tion of A-particles towards a hard container bottom wall is ob-
tained which leads to boundary layering of the A-particles. We
have also studied a periodic inversion of gravity causing per-
petuous mutual penetration of the mixture in a slit geometry.
This non-equilibrium case of time-dependent gravity is simi-
lar to shaking. Upon shaking the boundary layering persists.
Our results are based on Brownian dynamics computer simu-
lations and density functional theory. The brazil-nut effect and
the boundary are very general effects, they do also occur for
other long-ranged repulsive interactions and in three spatial
dimensions. They are, therefore, verifiable in future settling
experiments on dipolar or charged colloidal mixtures as well
as in charged granulates and dusty plasmas. Clearly, the three-
dimensional pair interactions should be radially symmetric.
A dipolar interaction in three dimensions is anisotropic and
would therefore lead to even more complex sedimentation
phenomena which are beyond the scope of the present paper.

The comparison of our computer simulation data to den-
sity functional theory shows that the latter made qualita-
tive predictions but the details of the density profiles were
not reproduced exactly. This can be attributed mainly to the
Onsager approximation of the density functional. Clearly,
more sophisticated density functionals valid for soft repulsive
mixtures over a broad density range need to be constructed
which is a great challenge for future work.

Further future work should address other interparticle in-
teractions. Novel effects are expected for a strongly attrac-
tive cross-interactions leading to mutual mixing of A- and
B-particles. These interactions are for example realized in
oppositely charged suspensions.72, 73 It would be interesting
to check whether a colloidal brazil-nut effect can still be
observed in this case. Another option for future study is to su-
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perimpose more external fields (e.g., an external electric field)
to the gravitational field in order to control the response of the
system even more.74 The latter setup is relevant for electronic
ink.75, 76
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