
PHYSICAL REVIEW E 85, 021406 (2012)

Self-propelled Brownian spinning top: Dynamics of a biaxial swimmer at low Reynolds numbers
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Recently the Brownian dynamics of self-propelled (active) rodlike particles was explored to model the motion
of colloidal microswimmers, catalytically driven nanorods, and bacteria. Here we generalize this description
to biaxial particles with arbitrary shape and derive the corresponding Langevin equation for a self-propelled
Brownian spinning top. The biaxial swimmer is exposed to a hydrodynamic Stokes friction force at low Reynolds
numbers, to fluctuating random forces and torques as well as to an external and an internal (effective) force
and torque. The latter quantities control its self-propulsion. Due to biaxiality and hydrodynamic translational-
rotational coupling, the Langevin equation can only be solved numerically. In the special case of an orthotropic
particle in the absence of external forces and torques, the noise-free (zero-temperature) trajectory is analytically
found to be a circular helix. This trajectory is confirmed numerically to be more complex in the general case of an
arbitrarily shaped particle under the influence of arbitrary forces and torques involving a transient irregular motion
before ending up in a simple periodic motion. By contrast, if the external force vanishes, no transient regime is
found, and the particle moves on a superhelical trajectory. For orthotropic particles, the noise-averaged trajectory
is a generalized concho-spiral. We furthermore study the reduction of the model to two spatial dimensions and
classify the noise-free trajectories completely finding circles, straight lines with and without transients, as well
as cycloids and arbitrary periodic trajectories.
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I. INTRODUCTION

In the traditional description of colloidal particles, their
shape is assumed to be either spherical or rodlike [1–3], or,
in other words, the particles are either isotropic or uniaxial,
i.e., rotationally symmetric around a figure axis [4–8]. In
the isotropic case, the location of the particle is described
by its center-of-mass position, while for uniaxial particles an
additional unit vector is needed to describe its orientation.
Using various preparation techniques, by now, it is possible
to prepare colloidal particles with a more complex shape than
spherical and uniaxial in a controlled way [9–14]. In particular,
it is possible to synthesize particles with an orthotropic shape
such as, for example, board-like colloids [15]. However, while
the theory of Brownian dynamics for spherical and uniaxial
colloidal particles is quite advanced [1,2,16,17], much less is
known for biaxial particles, which need an additional angle to
describe their location in space (on top of the center-of-mass
position and the orientational unit vector). This additional
degree of freedom complicates the description of Brownian
motion considerably [18,19].

A second recent development in colloid science is to make
the colloidal particles self-propelling such that they are moving
in space on their own (so-called active particles) [20,21].
There are numerous examples of self-propelling colloidal
particles including catalytically driven nanorods [22–25] and
thermogradient-driven Janus particles [26], not to speak of
other realizations of swimmers in vibrating granulates [27],
magnetic beads [28], and real biological systems [29–37],
where, for example, protozoa use cilia, flagella, traveling
waves, and protoplasmic flow for locomotion [38]. The
simplest description of self-propulsion is modeled by an
internal effective force, which provides an constant propulsion
mechanism on top of the Brownian motion of the particle.1

1This should not be confused with the basic fact that a swimmer is
force free and torque free.

In two spatial dimensions, it was shown recently that the
simultaneous action of an internal force and an internal
torque leads to circle swimming [27,39], and in three spatial
dimensions, the behavior of the mean square displacement was
calculated analytically [40–42].

All considerations for Brownian swimmers were done
hitherto for uniaxial particles. We are not aware of any study
for biaxial swimmers except for a recent modeling by Vogel
and Stark [43]. This is important for at least two reasons:
First, real particles are in general not uniaxial, and therefore
the effect of biaxiality needs to be studied. Second, it is of
general importance to generalize the equations of a “Brownian
spinning top” toward self-propulsion in order to understand
and predict its motion on a fundamental level. Surprisingly,
while the spinning top in an external field governed by the
Newtonian (or Eulerian) equations is a standard reference
model in classical mechanics, there are only few studies
for overdamped Brownian motion of a passive spinning top
[44,45].

In this paper we derive the Langevin equation for a biaxial
self-propelled particle with arbitrary shape that may even
be screw-like, implying a translational-rotational coupling
[46,47]. The biaxial swimmer is exposed to a hydrodynamic
Stokes friction force at low Reynolds numbers, to fluctuating
random forces and torques, as well as to an external and an
internal (effective) force and torque. The internal force and
torque control the translational and angular propulsion velocity
and are constant in the body-fixed frame while the external
force and torque are constant in the space-fixed laboratory
frame.

Due to biaxiality and hydrodynamic translational-rotational
coupling, the Langevin equation can only be solved nu-
merically. In the special case of an orthotropic particle,
which has no translational-rotational coupling, the noise-
free (zero-temperature) trajectory is analytically found to
be a circular helix in the absence of any external force
and torque. Such helix-like trajectories are indeed typical
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for swimming microorganisms [38,48]. The trajectories are
confirmed numerically to be much more complex in the general
case. Typically there is an irregular transient motion before the
particle ends up in a simple periodic motion. By contrast, if
the external force vanishes, no transient motion shows up and
the particle exhibits a superhelical trajectory. For orthotropic
particles, the noise-averaged trajectory is studied numerically
and found to be a generalized concho-spiral [49] with a
“snail-shell” structure. We furthermore study the reduction
of the model to two spatial dimensions, where there is only
one orientational angle and the internal and external torques
can be combined to a single effective torque. In this simpler
two-dimensional limit, we classify the noise-free trajectories
completely. Circles are found in the absence of the external
force. In general, the trajectories are straight lines with and
without transients as well as cycloids and arbitrary periodic
curves.

This paper is organized as follows: In Sec. II we present the
Langevin equation for a general self-propelled rigid biaxial
Brownian particle in an unbounded viscous fluid with low
Reynolds number being at rest at infinity. Section III is
dedicated to special analytical solutions and Sec. IV to more
general numerical calculations for the Langevin equation.
Finally, we conclude and give an outlook in Sec. V.

II. LANGEVIN EQUATION

In this section we describe the Brownian motion of a biaxial
self-propelled particle suspended in an unbounded viscous
fluid at rest at infinity for low Reynolds numbers. It is assumed
that the colloidal particle is rigid and has a constant mass
density. The motion of such a particle is characterized by
the translational center-of-mass velocity �̇r = d�r/dt with the
center-of-mass position �r(t) and the time variable t as well
as by the instantaneous angular velocity �ω(t). The Brownian
motion of colloidal particles with arbitrary shape involves a
hydrodynamic coupling between the translational and the rota-
tional degrees of freedom, which was described theoretically,
for example, by Brenner [46,47]. In 2002 Fernandes and de
la Torre [44] proposed a corresponding Brownian dynamics
simulation algorithm for the motion of a passive rigid particle
with arbitrary shape. The underlying equations of motion were
generalized toward an imposed external flow field for the
surrounding fluid by Makino and Doi [45].

Here we appropriately generalize this description to
internal degrees of freedom, i.e., to a self-propelled biaxial
particle, which experiences an internal effective force �F0 and
torque �T0, which are both constant in a body-fixed coordinate
system. This models a biaxial microswimmer. Of course, a
swimmer is in principle force free and torque free, but the
internal force and torque are meant to be effective quantities,
which govern the propulsion mechanism of the particle.
Using a compact notation, we introduce the basic completely
overdamped Langevin equation for three spatial dimensions

�v = βD(�x)[R−1(�x) �K0 − �∇�xU (�x) + R−1(�x)�k]

+ �∇�x · D(�x)
(1)

for a self-propelled Brownian spinning top (see the Appendix
for a derivation). At first, we explain the notation step by

step. The biaxial particle has the position �r(t) = (x1,x2,x3)
and the orientation �� (t) = (φ,θ,χ ), which is given in Eu-
lerian angles.2 We summarize translational and rotational
degrees of freedom by a compact six-dimensional vector
�x = (�r, �� ), which obviously involves a generalized velocity
�v = (�̇r, �ω) (with �ω denoting the angular velocity) and a gradient
�∇�x = ( �∇�r , �∇ �� ). This gradient operator is composed of the
usual translational gradient operator �∇�r = (∂x1 ,∂x2 ,∂x3 ) acting
on the Cartesian coordinates of �r and of the rotational gradient
operator �∇ �� = iL̂ [50] given by the product of the imaginary
unit i and the angular momentum operator L̂ = (L1,L2,L3)
in Eulerian angles. In the space-fixed coordinate system, the
angular momentum operator L̂ is given in Eulerian angles
by [50]

iL1 = − cos(φ) cot(θ )∂φ − sin(φ)∂θ

+ cos(φ) csc(θ )∂χ , (2)

iL2 = − sin(φ) cot(θ )∂φ + cos(φ)∂θ

+ sin(φ) csc(θ )∂χ , (3)

iL3 = ∂φ . (4)

The angular velocity �ω is expressed in Eulerian angles by

�ω = M( �� ) �̇� (5)

with the tensor [51]

M( �� ) =
⎛⎝0 − sin(φ) cos(φ) sin(θ )

0 cos(φ) sin(φ) sin(θ )
1 0 cos(θ )

⎞⎠, (6)

M−1( �� ) =
⎛⎝− cos(φ) cot(θ ) − sin(φ) cot(θ ) 1

− sin(φ) cos(φ) 0
cos(φ) csc(θ ) sin(φ) csc(θ ) 0

⎞⎠, (7)

and the time derivatives �̇� = d ��/dt of the Eulerian angles
�� (t). Furthermore, in Eq. (1) the compact notation �K0 =

( �F0, �T0) for the generalized force is used, which combines the
effective propulsion force and torque. In general, the biaxial
particle is also exposed to an external potential U (�x) giving
rise to an external force �Fext = −�∇�rU and an external torque
�Text = −�∇ �� U , which we consider to be constant in the sequel
in order to keep the model simple.

The 6×6-dimensional matrix R−1(�x) in Eq. (1) is associ-
ated with the geometric transformation from the body-fixed
frame to the space-fixed laboratory frame. Its inverse R(�x) is
the block diagonal rotation matrix

R(�x) = diag (R( �� ),R( �� )) (8)

2As there is no uniqueness in the definitions of the Eulerian angles
�� = (φ,θ,χ ), we use for convenience the popular convention of Gray

and Gubbins [50], which is equivalent to the second convention of
Schutte [51]. This convention has the advantage that it is a direct
generalization of the spherical coordinates (θ,φ) that are identical
with the first two Eulerian angles φ and θ , while the third angle χ

describes the rotation around the axis that is defined by θ and φ in
the spherical coordinate system.
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with the submatrices

R( �� ) = R3(χ ) R2(θ ) R3(φ),
(9)

R−1( �� ) = RT( �� ) = R3(−φ) R2(−θ ) R3(−χ ),

where the elementary rotation matrices Ri(ϕ) describe a
clockwise rotation (when looking down the axes) around the
ith Cartesian axis by the angle ϕ for i ∈ {1,2,3}:

R1(ϕ) =
⎛⎝1 0 0

0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

⎞⎠, (10)

R2(ϕ) =
⎛⎝cos(ϕ) 0 − sin(ϕ)

0 1 0
sin(ϕ) 0 cos(ϕ)

⎞⎠, (11)

R3(ϕ) =
⎛⎝ cos(ϕ) sin(ϕ) 0

− sin(ϕ) cos(ϕ) 0
0 0 1

⎞⎠. (12)

The particle shape and its hydrodynamic properties enter
the Langevin equation in the generalized short-time diffusion
(or inverse friction) tensor D(�x). This can be expressed as the
6×6-dimensional matrix

D(�x) =
(

DTT( �� ) DTR( �� )

DRT( �� ) DRR( �� )

)

= 1

βη
R−1(�x)H−1 R(�x), (13)

where DTT( �� ), DTR( �� ) = (DRT( �� ))T, and DRR( �� ) are 3×3-
dimensional submatrices, which correspond to pure trans-
lation, translational-rotational coupling, and pure rotation,
respectively.3 Here η is the dynamic (shear) viscosity of
the embedding fluid and β = 1/(kBT ) with the Boltzmann
constant kB and the absolute (effective) temperature T denotes
the inverse thermal energy. The matrix H is constant and
depends only on the shape and the size of the Brownian
particle. It is composed of the symmetric translation tensor
K, the not necessarily symmetric coupling tensor CS,4 and the
symmetric rotation tensor �S [47,52]:

H =
(

K CT
S

CS �S

)
. (14)

The matrix H thus involves altogether 21 shape-dependent
parameters. If the considered particle has a symmetric shape,
many elements of the matrix H are zero and the total number
of shape-dependent parameters is much smaller. Especially
for particle shapes without a hydrodynamic translational-
rotational coupling, the coupling tensor CS vanishes and at
most 12 shape-dependent parameters remain, if the coordinate
system is chosen appropriately. An example for such particles
without a hydrodynamic translational-rotational coupling is
orthotropic particles. For these particles, the matrix H is

3For experimental investigations of the three-dimensional transla-
tional and rotational diffusion of biaxial colloidal particles, see, for
example, Refs. [70,71] and references therein.

4The coupling tensor becomes symmetric if one chooses the center
of hydrodynamic reaction as reference point S [52].

even diagonal, implying only six shape-dependent parameters.
Rodlike particles with rotational symmetry about a figure axis
and additional head-tail symmetry are still more symmetric.
Two of the first three as well as the last three diagonal elements
of the matrix H are equal for rodlike particles so that there
are only three shape-dependent parameters left. The most
symmetric shape is the sphere. For spherical particles, there are
only two shape-dependent parameters. The first one is related
to translation and appears in the first three diagonal elements
of H, while the second parameter is associated with rotation
and appears in the last three diagonal elements of the matrix
H. The general connection of the symmetry properties of the
particle shape with the structure of the matrix H is described
in detail in Ref. [52].

Finally, �k(t) = ( �f0,�τ0) denotes the stochastic force �f0(t) and
torque �τ0(t) due to thermal fluctuations, which act on the Brow-
nian particle in body-fixed coordinates for T > 0. This thermal
noise �k(t) is assumed to be Gaussian white noise with mean

〈�k(t)〉 = �0 (15)

and correlation

〈�k(t1) ⊗ �k(t2)〉 = H2η

β
δ(t1 − t2), (16)

where 〈 · 〉 denotes the noise average.
We remark that the dynamics, which is described by the

Langevin equation, depends on the definition of the stochastic
contribution ∝�k(t). In the present form, the Langevin equation
is only valid if the multiplicative noise is defined in the Itô
sense [53]. Then the additive drift term �∇�x · D(�x) at the end
of the Langevin equation guarantees that the solutions of the
Langevin equation respect the Boltzmann distribution, when
the system is in thermodynamic equilibrium at temperature T .
Other definitions than that of Itô, for example, the Stratonovich
formulation, require a modification of the drift term [54]. This
circumstance is always relevant in the case of multiplicative
noise, but the necessity of the adaptation of the Langevin
equation to the definition of the stochastic noise has been
missed in previous work [44,45].

III. SPECIAL ANALYTICAL SOLUTIONS OF THE
LANGEVIN EQUATION

The Langevin equation (1) represents a system of six
coupled nonlinear stochastic differential equations [55] that
cannot be solved analytically in general. There exist only a few
analytical solutions for rather special situations. Several simple
Langevin equations for self-propelled spherical or uniaxial
particles in two or three spatial dimensions are known from
the literature [39–41] and appear to be special cases of our
general Langevin equation (1). These Langevin equations are
not as general and complicated as Eq. (1) and can be solved
analytically. Other analytically solvable special cases of Eq. (1)
are obtained for orthotropic particles in the absence of thermal
fluctuations.

A. Three spatial dimensions

In the general three-dimensional case, it is not even possible
to solve the Langevin equation (1) analytically, if the stochastic
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noise is neglected. Further simplifications that reduce the
number of the degrees of freedom or diagonalize the matrix H
are necessary in order to obtain soluble cases.

B. Two spatial dimensions

An obvious simplification of the general Langevin equation
(1) is the restriction to two spatial dimensions. A two-
dimensional analog of the general Langevin equation can be
obtained by choosing x3 = 0, θ = π/2, and χ = 0 leaving
only a single azimuthal angle φ. In analogy to the notation
in Ref. [39], we further define R−1(�x) �K0 = ( �FA,0,0,0,M),
�k(t) = (0,f⊥,f‖,−τ,0,0), and R−1(�x)�k = ( �f ,0,0,0,τ ), where
�FA = F‖û‖ + F⊥û⊥ is the internal driving force and M

is the internal driving torque. The orientation vector û‖ =
(cos(φ), sin(φ)) denotes the figure axis of the particle, and
û⊥ = (− sin(φ), cos(φ)) is its orthogonal complement. Sim-
ilarly, the vector �f (t) denotes the stochastic force, and τ (t)
is the stochastic torque acting on the particle. The stochastic
force vector �f (t) is decomposed like the internal driving force:
�f (t) = f‖û‖ + f⊥û⊥. Moreover, the new two-dimensional

position vector is �r = (x1,x2), the corresponding gradient
is �∇�r = (∂x1 ,∂x2 ), and the stochastic noise is characterized by

the vector �̃ξ (t) = (f⊥,f‖, − τ ) with mean

〈�̃ξ (t)〉 = �0 (17)

and correlation

〈�̃ξ (t1) ⊗ �̃ξ (t2)〉 = H̃ 2η

β
δ(t1 − t2), (18)

where H̃ = (Hij )i,j=2,3,4 is a 3×3-dimensional submatrix of
H. The Langevin equations for two spatial dimensions are then
given by

�̇r = �BI + β[DT( �FA − �∇�rU + �f ) − �DC(M − ∂φU + τ )],

φ̇ = β[DR(M − ∂φU + τ ) − �DC · ( �FA − �∇�rU + �f )] (19)

with the drift vector

�BI(φ) = B
‖
I û‖ + B⊥

I û⊥, (20)

which is in accordance with the interpretation of the solution of
the Langevin equations as an Itô process [56], the translational
short-time diffusion tensor

DT(φ) = D1û‖ ⊗ û‖ + D2(û‖ ⊗ û⊥ + û⊥⊗ û‖)

+ D3û⊥⊗ û⊥,
(21)

and the coupling vector

�DC(φ) = D
‖
Cû‖ + D⊥

C û⊥. (22)

They involve only 8 instead of 21 shape-dependent parameters.
These are the translational drift coefficients

B
‖
I = 1

βη
[(H−1)24 − (H−1)15], (23)

B⊥
I = 1

βη
[(H−1)16 − (H−1)34], (24)

the translational diffusion coefficients

D1 = 1

βη
(H−1)33 = 1

βη
(H̃−1)22, (25)

D2 = 1

βη
(H−1)23 = 1

βη
(H̃−1)12, (26)

D3 = 1

βη
(H−1)22 = 1

βη
(H̃−1)11, (27)

the coupling coefficients

D
‖
C = 1

βη
(H−1)34 = 1

βη
(H̃−1)23, (28)

D⊥
C = 1

βη
(H−1)24 = 1

βη
(H̃−1)13, (29)

and the rotational diffusion coefficient

DR = 1

βη
(H−1)44 = 1

βη
(H̃−1)33 . (30)

Similar to the case of three spatial dimensions, some of
these eight coefficients are zero or equal, respectively, if the
described Brownian particle is symmetric. Table I gives an
overview of possible symmetries of the particle’s shape and the
corresponding properties of the shape-dependent coefficients
(23)–(30).

Although the Langevin equations (19) for two spatial
dimensions are much simpler than Eq. (1), they are still
coupled nonlinear stochastic differential equations and thus
not analytically solvable. However, if the external potential
U (�r,φ) is set to zero, the Langevin equations can be solved
analytically and the center-of-mass trajectory becomes a circle
(T = 0) or a logarithmic spiral (T > 0) like in Ref. [39].
The analytical solution for U (�r,φ) = f‖ = f⊥ = τ = 0 is
given by

TABLE I. Connection between the symmetry of the particle shape and the parameters (23)–(30) in the Langevin equations (19) for two
spatial dimensions.

Shape-dependent parameters
Type of shape Symmetries Invariance properties D1 �= 0, DR �= 0

Uniaxial No symmetry – B
‖
I �= 0, B⊥

I �= 0, D2 �= 0, D3 �= 0, D
‖
C �= 0, D⊥

C �= 0

Uniaxial Inflection symmetry x1 → −x1 B
‖
I = 0, B⊥

I �= 0, D2 = 0, D3 �= 0, D
‖
C �= 0, D⊥

C = 0

x2 → −x2 B
‖
I �= 0, B⊥

I = 0, D2 = 0, D3 �= 0, D
‖
C = 0, D⊥

C �= 0

Uniaxial Inflection symmetry x1 → −x1, x2 → −x2 B
‖
I = 0, B⊥

I = 0, D2 = 0, D3 �= 0, D
‖
C = 0, D⊥

C = 0

Isotropic Rotational symmetry φ → φ + �φ ∀ �φ ∈ [0,2π ) B
‖
I = 0, B⊥

I = 0, D2 = 0, D3 = D1, D
‖
C = 0, D⊥

C = 0
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�r(t) = �r0 + β

ω
(F‖D2 + F⊥D3 − MD⊥

C )(û‖(φ0 + ωt) − û‖(φ0))

−β

ω
(F‖D1 + F⊥D2 − MD

‖
C)(û⊥(φ0 + ωt) − û⊥(φ0)), (31)

φ(t) = φ0 + ωt (32)

with the angular velocity

ω = β(MDR − D
‖
CF‖ − D⊥

C F⊥), (33)

the initial position �r0 = �r(0), and the initial orientation φ0 =
φ(0). If instead of U (�r,φ) the translational diffusion coefficient
D2 and the coupling coefficients D

‖
C and D⊥

C vanish, as
is the case for a particle with double inflection symmetry,
the Langevin equations (19) become similar to the Langevin
equations for the Brownian circle swimmer in Ref. [39], but
with a more general driving force �FA, which is not necessarily
parallel to the figure axis. For D2 = D

‖
C = D⊥

C = F⊥ = 0,
the Langevin equations (19) are equivalent to the Langevin
equation in Ref. [39]. An additional constraint on spherical
particles, which are able only to move along the x1 axis,
leads to the Langevin equations for a spherical self-propelled
particle on a substrate [40]. With similar simplifications it is
also possible to obtain the Langevin equations for spherical
or anisotropic uniaxial self-propelled particles in two spatial
dimensions, which are discussed in Ref. [41], from Eqs. (19).

C. Orthotropic particles

Another possibility to simplify the Langevin equation (1)
considerably is the exclusive consideration of orthotropic
particles. All geometric bodies with three pairwise orthogonal
planes of symmetry like spheres, spheroids (ellipsoids of
revolution), biaxial (or triaxial) ellipsoids, cylinders, cuboids,
and some prisms belong to this important class. Orthotropic
particles have no translational-rotational coupling so that the
coupling tensor CS vanishes. Furthermore, the translation
tensor K and the rotation tensor �S are diagonal for orthotropic
particles. These properties of K, CS, and �S can be derived
from the circumstance that the center of mass, which should
be chosen as reference point S, and the mutual point of
intersection of the three planes of symmetry of an orthotropic
particle coincide [52]. The vanishing of the coupling tensor
CS results from the fact that the point of intersection of
the three pairwise perpendicular planes of symmetry of
the particle is identical with the center of hydrodynamic
reaction for orthotropic bodies. With these considerations, the
Langevin equation (1) simplifies to the Langevin equations for
orthotropic particles:

�̇r = βDTT( �� )[R−1( �� ) �F0 − �∇�rU + R−1( �� )�k1],

�ω = βDRR( �� )[R−1( �� ) �T0 − �∇ ��U + R−1( �� )�k2]

+ �∇ �� · DRR( �� ). (34)

Here the Gaussian white noises �k1 and �k2 are independent
and defined as the first and second parts of �k = (�k1,�k2),
respectively. The Langevin equations for spherical or uniaxial
particles, which are considered in Ref. [41], are special cases

of the more general Langevin equations (34) for biaxial
orthotropic particles. To be able to solve these Langevin
equations analytically, it is at first necessary to neglect �k1 and
�k2, i.e., to consider the case T = 0. A further negligence of
the drive or the external potential leads to two special cases,
which are analytically solvable.

1. Settling orthotropic passive particle

A particle without drive, i.e., with �F0 = �T0 = �0, at T = 0
moves only under the influence of the external potential
U (�r, �� ) at T = 0. In the case of a constant gravitational
field, only the constant external force �Fext = −�∇�rU acts on
the particle and the external torque −�∇ ��U vanishes. The
motion of such a sedimenting particle is well known from
the literature [52]. It is characterized by a constant velocity �̇r
and a constant orientation �� :

�̇r = βDTT( ��0) �Fext = const, �� = ��0 = const. (35)

2. Self-propelled orthotropic particle

If the external potential U (�r, �� ) is neglected instead of the
drive in Eqs. (34) for T = 0, they describe the helical motion of
an arbitrary orthotropic self-propelled particle in the absence
of external and random forces and torques:

�̇r = R−1( �� ) K−1 1

η
�F0, �ω = R−1( �� ) �−1

S

1

η
�T0 . (36)

These equations of motion are trivial in the body-fixed
coordinate system, where the velocities �̇r and �ω are constant.
Since the angular velocity �ω with the initial orientation
��0 = �� (0) is constant in body-fixed coordinates, it is also

constant in the space-fixed system. This means that one expects
a helix for the center-of-mass trajectory as is known from the
motion of protozoa like Euglena gracilis [38] and bacteria like
Thiovulum majus [48]. The analytical solution of Eqs. (36) is
in fact the circular helix

�r(t) = �r0 + ( �ω × �v0) × �ω
| �ω|3 sin(| �ω|t)

+ �ω × �v0

| �ω|2 [1 − cos(| �ω|t)] + �ω · �v0

| �ω|2 �ωt (37)

with axis

A = �r0 + �ω × �v0

| �ω|2 + �ωR (38)

along �ω, radius

r =
∣∣(K−1 �F0) × (

�−1
S

�T0
)∣∣

η2| �ω|2 , (39)
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RAPHAEL WITTKOWSKI AND HARTMUT LÖWEN PHYSICAL REVIEW E 85, 021406 (2012)

FIG. 1. (Color online) The center-of-mass trajectory of an or-
thotropic particle for a constant external potential and T = 0 is a
circular helix with radius r and pitch h, which evolves from the rota-
tion of the orthotropic particle with the constant angular velocity �ω.

and pitch

h = 2π

∣∣(K−1 �F0) · (
�−1

S
�T0

)∣∣
η2| �ω|2 , (40)

where �r0 = �r(0) is the initial position, �v0 = �̇r(0) =
R−1( ��0) K−1 �F0/η is the initial velocity, and | �ω| = |�−1

S
�T0/η|

is the modulus of the angular velocity. This helical trajectory is
shown schematically in Fig. 1. When a constant gravitational
field also is taken into account, the helix becomes deformed,
and, for example, its cross section might become elliptic, but
the axis of the helix remains a straight line. In the case T > 0,
where we have to consider the stochastic contributions in the
Langevin equations (34), it is, however, no longer possible
to find analytical solutions. This case requires the usage of
appropriate numerical integrators for stochastic differential
equations and is studied in the next paragraph.

IV. NUMERICAL CALCULATIONS

In general situations, where analytical solutions do not
exist, the Langevin equation (1) can be investigated only
with the help of numerical methods. Appropriate numerical
methods in increasing order of the truncation error are the
Euler-Maruyama method, Milstein method, and stochastic
Runge-Kutta methods [56], which have to be derived in the Itô
sense in order to be compatible with the Langevin equations
in this paper. If there are no thermal fluctuations (T = 0), the
stochastic Langevin equation (1) becomes deterministic and a
standard Runge-Kutta scheme of high order can be applied.

The numerical results for T = 0 and T > 0, which are
presented in the following, have been obtained with an ex-
plicit fourth-order deterministic Runge-Kutta scheme [57–60]
and with a multidimensional explicit stochastic Runge-Kutta
scheme of weak order 2.0 for Itô stochastic differential
equations [56], respectively. This stochastic Runge-Kutta
scheme was chosen for the numerical solution of the Langevin
equations in this paper, since it has a higher order than the

most other schemes for numerical stochastic integration and
since it is simple to use. Through its multidimensionality, it
can directly be applied simultaneously to a system of coupled
stochastic differential equations, and since this scheme is
explicit, the computational effort for one evaluation is rather
small. Implicit schemes are in contrast computationally much
more expensive. The application of an implicit scheme is in
general necessary, if a stiff stochastic differential equation
has to be solved, which is not the case here. Furthermore,
the chosen stochastic Runge-Kutta scheme does not involve
the evaluation of time derivatives of parts of the stochastic
differential equation, which would have to be approximated
numerically in turn. This is very convenient and a general
feature of Runge-Kutta schemes. More information about
numerical methods for the solution of stochastic differential
equations is described in Ref. [56].

In the whole section, �F0, �T0, �Fext = −�∇�rU , and �Text =
−�∇ ��U are assumed to be constant vectors, which do not
depend on �r or �� . Furthermore, arbitrary Brownian particles
with a hydrodynamic translational-rotational coupling and or-
thotropic particles without a translational-rotational coupling
in two and three spatial dimensions are considered for T = 0
and T > 0. In parallel to the previous section, this section
is divided into a first subsection about the general Langevin
equation for three spatial dimensions, a second subsection
about two spatial dimensions, and a third subsection about
orthotropic particles.

A. Three spatial dimensions

For arbitrarily shaped particles in three spatial dimensions,
one finds various differently shaped trajectories as solutions
of the Langevin equation (1). Figure 2 gives a selection of
typical trajectories that can be observed for arbitrarily shaped
particles with an arbitrary drive at T = 0. In order to sample
some typical solutions, we have randomly chosen the 21
shape-dependent parameters for the matrix H, the components
of the internal force �F0 and torque �T0, the components of the
external force �Fext and torque �Text, and the initial conditions.
More than 100 random parameter combinations were con-
sidered. In doing so, four different cases with vanishing and
nonvanishing vectors for �Fext and �Text were distinguished (see
Fig. 2). Depending on the choice of �Fext and �Text, the observed
trajectories appeared to share features and to be distinguishable
into four different classes. The four trajectories that are shown
in Fig. 2 are representatives of these classes. They can be
characterized as follows: If there are both an external force
and an external torque, self-propelled particles that start with
an irregular transient regime and end up in a simple periodic
center-of-mass trajectory are usually observed [see Fig. 2(a)].
Note that the length of the initial transient regime as well
as the periodicity length of the final periodic motion depend
on the particular parameters and may become rather long. In
the case of no external torque, the periodic motion after the
transient regime is a circular helix with its axis being parallel
to the direction of the external force vector. This situation is
illustrated in Fig. 2(b). The analog case of an external torque
but no external force is schematically shown in Fig. 2(c). There
a superhelix-like curve with the orientation parallel to the
direction of the external torque vector and without a preceding
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(a) Fext �= 0, Text �= 0 (b) Fext �= 0, Text = 0

(c) Fext = 0, Text �= 0 (d) Fext = 0, Text = 0

no transient regime

transient regime

FIG. 2. (Color online) Typical trajectories of arbitrarily shaped
active particles in three spatial dimensions for constant vectors
�F0 �= �0, �T0 �= �0, and temperature T = 0. The external force �Fext =
−�∇�rU and torque �Text = −�∇ �� U are constant too. For a nonvanishing
external force, the particle’s center-of-mass trajectory starts with an
irregular transient regime and changes into a periodic motion, as is
shown in plots (a) and (b). The general periodic motion (a), which
is observed if there is also a nonvanishing external torque, reduces
to a circular helix (b) parallel to the external force if there is no
external torque. The other two plots (c) and (d) show the situation for
a vanishing external force, where a transient regime is not observed.
There, the trajectory is either a superhelix-like curve (c) parallel to
a nonvanishing external torque or a circular helix (d) if there is no
external torque. However, the trajectories (a)–(c) can also be irregular.
Straight trajectories, which are preceded by a transient regime for
�Fext �= �0, can be observed too.

transient regime is observed. In contrast to the trajectory in
Fig. 2(a), the complicated superhelix-like curve does not turn
into a simpler periodic curve after some time, since there is
no transient regime for �Fext = �0. As a fourth case, the motion
in the absence of both external forces and torques is shown in
Fig. 2(d). It appears to be a circular helix. Also in this case, a
transient regime is not observed. In the situation of Fig. 2(a)
and 2(b), completely irregular trajectories can appear, when
the transient regime is very long. Even in the transient-free
situation of Fig. 2(c), irregular trajectories are observed, when
the rotational frequency ratio between the immanent rotation
of the self-propelled particle and the rotation due to the
external torque is irrational. Furthermore, straight trajectories
appear as a special case. They are preceded by a transient
regime if �Fext �= �0. A complete and detailed classification of

all trajectories that can be observed in three spatial dimensions
is, however, not possible, since the number of the parameters
that define the shape of the particle and all further relevant
quantities like internal and external forces and torques is quite
big, but this number is much smaller in two spatial dimensions,
where a more detailed classification is possible.

B. Two spatial dimensions

The Langevin equations (19) for two spatial dimensions
were solved analytically in Sec. III B for U (�r,φ) = 0 and
T = 0. Here we consider the case T = 0 too, but now for a
constant nonvanishing external force �Fext = −�∇�rU , since the
external force leads to various different nontrivial trajectories.
The observed trajectories are classified with respect to the
shape and the kind of self-propulsion of the particle in
Table II. Since the drift coefficients B

‖
I and B⊥

I can be
neglected for T = 0, the shape of the particle is described
only with the six parameters D1, D2, D3, D

‖
C, D⊥

C , and
DR, where D1 and DR can be set to one by a suitable
rescaling of the length and time scales. For the remaining
parameters, particles with a translational-rotational coupling
and particles without a translational-rotational coupling as
well as asymmetric particles, particles with one axis of
symmetry, particles with two mutually perpendicular axes of
symmetry, and isotropic particles with rotational symmetry are
distinguished. Moreover, the constant parameters F‖, F⊥, and
Meff = M − ∂φU are used to describe the self-propulsion of
the particle. Four situations of a nonvanishing internal force
�FA and torque M , a drive only by either an internal force

or an internal torque, and a passive particle with a vanishing
drive are considered. A further distinction with respect to the
external force and torque is not necessary, because the external
force can always be chosen bigger than zero, since the case of
a vanishing external force has been proven to lead to a trivial
circular trajectory in Sec. III B, and the external torque −∂φU

is already included in the effective torque Meff and can be
neglected. In general, straight lines with an aperiodic transient
regime, arbitrary periodic curves, cycloids, and simple straight
lines were found as trajectories in two spatial dimensions
by random choices of the parameters. These trajectories still
have the basic features of their three-dimensional analogs, but
are much simpler to describe. It is only for particles with
translational-rotational coupling, i.e., particles where at least
one of the coefficients D

‖
C and D⊥

C does not vanish, that
the straight trajectories are preceded by an initial transient
regime. These trajectories are characterized by a monotonous
rotation of the particle when it starts moving and an ensuing
rotation-free straight motion. In the transient regime, the
particle rotates until the internal torque, the external torque,
and the additional torque due to the translational-rotational
coupling compensate each other. For active particles with
translational-rotational coupling, periodic trajectories also are
observed, where a canceling of the total torque does not happen
during the initial rotation. This is not the case for symmetric
particles with a vanishing effective torque Meff and for passive
particles, for which a periodic trajectory is not observed. The
motion of symmetric particles without translational-rotational
coupling is always periodic or constant. In both cases, the
trajectory is parallel to the direction of the external force, if the
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TABLE II. (Color online) Detailed classification of the trajectories of arbitrarily shaped particles in two spatial dimensions for T = 0
with respect to the symmetries that are summarized in Table I. For the external force, �Fext �= �0 is chosen, since all trajectories become circles
otherwise. In the plots below, �Fext is always oriented downward, i.e., in the negative x2 direction. Internal and external torque are combined to
the effective torque Meff = M − ∂φU .

no symmetry
x1-axis or x2-axis is
axis of symmetry

x1-axis and x2-axis are
axes of symmetry

rotational symmetry

p
a
rt

ic
le

sh
a
p
e

D2 = 0, D3 = 0,

DC = 0, D⊥
C = 0

D2 = 0, D3 = 0,

DC = 0 D⊥
C = 0

D2 = 0, D3 = 0,

DC = 0, D⊥
C = 0

D2 = 0, D3 = D1,

DC = 0, D⊥
C = 0

F
=

0
,
F
⊥

=
0
,
M

e
ff

=
0

straight line after transient
regimea or periodic curveb

straight line after transient
regimea or periodic curveb periodic curvec Fext cycloidc Fext

F
=

0
,
F
⊥

=
0
,
M

e
ff

=
0

straight line after transient
regimea or periodic curveb

straight line after
transient regimea

straight lined straight lined

F
=

0
,
F
⊥

=
0
,
M

e
ff

=
0

straight line after transient
regimea or periodic curveb

str. line after trans. regimea

or periodic curveb Fext
cycloidc Fext straight linec Fext

F
=

0
,
F
⊥

=
0
,
M

e
ff

=
0

straight line after
transient regimea

straight line after
transient regimea Fext

straight lined straight lined Fext

aThe particle rotates monotonously until it reaches its final orientation. Then the angle φ remains constant.
bThe angle φ and the center of mass of the particle describe periodic curves with the same periodicity.
cThe particle rotates with a constant angular velocity, i.e., φ ∝ t .
dThe orientation of the particle is constant: φ = const.
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(a) T ′ = 0 (b) T ′ = 0.05 (c) T ′ = 0.1 (d) T ′ = 0.3

FIG. 3. (Color online) Mean trajectories of a self-propelled orthotropic particle in the absence of external forces and torques for the
dimensionless temperatures T ′ = 0, T ′ = 0.05, T ′ = 0.1, and T ′ = 0.3. In the left two plots, the trajectories are shown for the time interval
0 � t ′ � 40, while the right two plots show mean trajectories with 0 � t ′ � 80.

effective torque Meff is not zero. Without the effective torque,
only straight trajectories are observed for these particles.
Solely in the case of passive rotationally symmetric particles,
the orientation of these straight trajectories is parallel to the
external force.

C. Orthotropic particles

To regard the influence of thermal fluctuations on the
motion of a biaxial self-propelled Brownian particle, the
Langevin equations (34) for orthotropic particles are solved
numerically for T > 0 in this section. For this purpose, first,
characteristic quantities for the length scale, time scale, and
force scale are chosen, and the Langevin equations (34) are
rescaled to dimensionless units. A suitable choice for the
characteristic length lc, the characteristic time tc, and the
characteristic force Fc is

lc =
√

λmax(DTT)

λmax(DRR)
, (41)

tc = 1

λmax(DRR)
, (42)

Fc = ηl2
c

tc
= η λmax(DTT), (43)

where λmax( · ) denotes the biggest eigenvalue of the re-
spective matrix. These characteristic quantities are used to
express the position �r = �r ′lc, time t = t ′tc, forces �F0 = �F ′

0Fc,
�Fext = �F ′

extFc, torques �T0 = �T ′
0Fclc, �Text = �T ′

extFclc, transla-
tion tensor K = K′lc, and rotation tensor �S = �′

Sl
3
c by the

dimensionless position �r ′ = (x ′
1,x

′
2,x

′
3), time t ′, forces �F ′

0, �F ′
ext,

torques �T ′
0, �T ′

ext, translation tensor K′, and rotation tensor �′
S,

respectively. In the rescaled Langevin equations, the parameter

T ′ = 2tc

ηβ l3
c

= 2

ηβ

√
λmax(DRR)

λ3
max(DTT)

∝ T (44)

appears as a dimensionless temperature. This parameter is
varied and fluctuation-averaged trajectories are calculated
for different temperatures with fixed initial conditions �r ′

0

and �� ′
0. The results for the case of vanishing external

forces and torques, where the trajectory for T ′ = T = 0 is
known from the analytical solution in Sec. III C to be a
circular helix, are shown in Fig. 3. For this figure we chose
the dimensionless forces �F ′

0 = (−0.5,0,3), �F ′
ext = �0, torques

�T ′
0 = (−1,0,0), �T ′

ext = �0, translation tensor K′ = diag(1,2,3),
rotation tensor �′

S = diag(1,3,4), initial conditions �r ′
0 =

(x ′
1,0,x

′
2,0,x

′
3,0) = �0, �� ′

0 ≡ ��0 = (0,π/2,0), and temperatures
T ′ = 0,0.05,0.1,0.3. It is apparent that the center-of-mass
trajectory for T ′ = 0 and the fluctuation-averaged center-
of-mass trajectories for T ′ > 0 have no transient regime in
Fig. 3. This is also the case for nonvanishing constant external
forces and torques and a general feature of orthotropic particles
in contrast to less symmetric particles with a translational-
rotational coupling. In the presence of thermal fluctuations,
the helical motion of the self-propelled orthotropic particle is
damped exponentially with time, and the fluctuation-averaged
center-of-mass trajectory becomes a concho-spiral [49],
whose radius and pitch decay exponentially with time [see
Figs. 4(a) and 4(b)]. This result was confirmed by a fit of
the numerical solutions with the general parametrization of a
concho-spiral and agrees with the observation of a logarithmic
spiral, also named spira mirabilis by Jacob Bernoulli, in
the two-dimensional special case of our Langevin equations,
which is investigated in Ref. [39]. In the situation of Fig. 3,
the axes of the concho-spirals are parallel to the x ′

3 axis and
can be parametrized by [39,49]

x ′
1(t ′) = x ′

1,0 + α′
1{cos(φ0) − cos[φ(t ′)]e−γ ′

1t
′ }

−α′
2{sin(φ0) − sin[φ(t ′)]e−γ ′

1t
′ }, (45)

x ′
2(t ′) = x ′

2,0 + α′
1{sin(φ0) − sin[φ(t ′)]e−γ ′

1t
′ }

+α′
2{cos(φ0) − cos[φ(t ′)]e−γ ′

1t
′ }, (46)

x ′
3(t ′) = x ′

3,0 + H ′
max[1 − (1 − ε′t ′)e−γ ′

2t
′
], (47)

φ(t ′) = φ0 + ω′t ′ (48)
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(a) radius r (t ) = r(t)/lc

(b) pitch h (t ) = h(t)/lc

(c) height Hmax(T ) = Hmax(T )/lc

FIG. 4. (Color online) (a) Radius and (b) pitch of a trajectory that
is shaped as a concho-spiral decay exponentially with time t ′. In the
linear-logarithmic plots (a) and (b), the exponential decay is obvious
for the radius, but not for the pitch, where the exponential function
has a linear time-dependent prefactor [see Eq. (51)]. The numerical
data (red dots following a curved line) for these plots were taken from
the concho-spiral in Fig. 3(b). (c) The height of the concho-spirals
is inversely proportional to the temperature T ′. The parameters for
plot (c) are the same as in Fig. 3, but with more and different values
for T ′. In each plot, a blue line corresponding to Eqs. (49)–(52) was
fitted to the numerical data.

with the angular frequency ω′ = | �ω′| = |�′−1
S

�T ′
0| [see

Eqs. (36)] and the dimensionless fit parameters α′
1, α′

2, γ ′
1,

γ ′
2, H ′

max, and ε′. Equations (45), (46), and (48) describe a log-
arithmic spiral, which is the trajectory of the two-dimensional
circle swimmer in Ref. [39], while the parametrization (47)
of the third spatial variable x ′

3(t ′) is here more general than

in Ref. [49]. In Eq. (47) there is an additional term ∝
ε′, which makes sure that a helix is obtained as a special case
of the concho-spiral for T ′ = 0, i.e., for γ ′

1 = γ ′
2 = 0. This

is, however, not the case for the parametrization in Ref. [49].
Based on the parametrization (45)–(48), radius and pitch of
the concho-spirals can be derived. The fit parameters α′

1, α′
2,

and γ ′
1 determine the dimensionless radius r ′(t ′) = r(t)/lc of

the concho-spirals:

r ′(t ′) = r ′
0e

−γ ′
1t

′
, (49)

r ′(0) = r ′
0 =

√
α′2

1 + α′2
2 . (50)

Their dimensionless pitch h′(t ′) = h(t)/lc depends on the
remaining fit parameters γ ′

2, H ′
max, and ε′:

h′(t ′) = H ′
maxe

−γ ′
2t

′
[

(1 − ε′t ′)
(
1 − e− 2π

ω′ γ ′
2
)

+ ε′ 2π

ω′ e− 2π

ω′ γ ′
2

]
. (51)

Numerical values for radius and pitch are shown in
Figs. 4(a) and 4(b). Furthermore, the height Hmax(T ) of
the concho-spiral and its dimensionless analog H ′

max(T ′) =
Hmax(T )/lc, defined as the distance from the initial position
of the particle to its final position for t ′ → ∞ measured
along the axis of the concho-spiral, are finite and decrease
monotonously, when the temperature is increased. For the
numerical calculations that correspond to the results shown
in Fig. 3, the inverse power law

H ′
max(T ′) ≈ 0.82 T ′−1 (52)

was determined [see Fig. 4(c)]. When there is additionally
a constant external force, the helix for T ′ = 0 as well as
the concho-spirals for T ′ > 0 are deformed, and their cross
sections can become elliptic.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have studied the Langevin equation
governing the motion of a driven Brownian spinning top
describing a self-propelled biaxial colloidal particle. The
particle is driven by both internal and external forces and
torques, which are constant in the body frame and in the
laboratory frame, respectively. This equation is nontrivial due
to the geometric biaxiality and the hydrodynamic translational-
rotational coupling of the particle and can therefore only
be solved numerically. In the special case of an orthotropic
particle in the absence of external forces and torques, the noise-
free trajectory is analytically found to be a circular helix, and
the noise-averaged trajectory is a generalized concho-spiral.
The noise-free trajectory is confirmed numerically to be more
complex for a translational-rotational coupling involving a
transient irregular motion before ending up in a simple periodic
motion. By contrast, if the external force vanishes, no transient
is found and the particle moves on a superhelical trajectory. We
furthermore studied in detail the much simpler reduction of the
model to two spatial dimensions. In two spatial dimensions,
the noise-free trajectories are classified completely, and circles,
straight lines with and without transients, as well as cycloids
and arbitrary periodic trajectories are found.
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The Langevin equation derived here can be used as a starting
point to describe more complex situations. As examples, we
mention a particle in confinement of linear channels [24,34,61]
or cylindrical tubes [27,62]. A sliding motion can be expected
similar as in the two-dimensional reduction of our model [39].
In confinement, details of the propulsion mechanism are
getting relevant since they result in different hydrodynamic
interactions of the particle with the system boundaries [63].

A next level of complexity is given by an ensemble of
swimmers, i.e., a finite number density, which can interact
either directly by excluded volume or via hydrodynamic
interactions. Recently a dynamical density functional theory
has been proposed for biaxial particles [64] following the lines
given for uniaxial particles [65]. The collective properties
of self-propelled biaxial particles are assumed to be rich,
including turbulent states, swarming, and jamming [66,67].

Finally, one can impose a nonvanishing solvent flow, like
Couette shear flow [68], and study a self-propelled particle
there [69]. Our Langevin equation can be straightforwardly
generalized to this situation [45] and may lead to new
shear-induced tumbling phenomena of self-propelled biaxial
particles.
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APPENDIX: DERIVATION OF THE LANGEVIN EQUATION

In this appendix, we provide more details to derive the
Langevin equation (1). There are four forces and four torques
that act on the self-propelled Brownian particle. In the
laboratory frame, these forces and torques are the internal
force �Fint and torque �Tint, the external force �Fext = −�∇�rU
and torque �Text = −�∇ �� U due to the external potential U (�x),
the hydrodynamic friction force �FH and torque �TH, and the
Brownian force �FBr and torque �TBr due to thermal fluctuations.
The internal force and torque can be represented by constant

vectors �F0 and �T0 in the body-fixed frame, respectively, and are

given by �Fint = R−1( �� ) �F0 and �Tint = R−1( �� ) �T0 in the space-
fixed frame, respectively. Since the Reynolds number of the
considered system is very small, low Reynolds number hydro-
dynamics can be applied to determine the hydrodynamic fric-
tion force and torque. They are given as linear functions of the
translational velocity �̇r(t) and angular velocity �ω through [52]

�FH = −η[R−1( �� )KR( �� )�̇r + R−1( �� )CT
SR( �� ) �ω],

(A1)�TH = −η[R−1( �� )CSR( �� )�̇r + R−1( �� )�SR( �� ) �ω],

where the rotation matrix R−1( �� ) again transforms
body-fixed coordinates into space-fixed coordinates. Finally,
the Brownian force and torque are characterized by the
stochastic force �f0(t) and torque �τ0(t). These two stochastic
noise vectors describe random forces and torques due to
thermal fluctuations in the body-fixed frame. In terms of
�f0(t) and �τ0(t), the Brownian force and torque can be written

as �FBr = R−1( �� ) �f0 + �FD and �TBr = R−1( �� )�τ0 + �TD with the
additional contributions �FD and �TD, which are determined later.

The overdamped Brownian particle is force free and torque
free [1]. With the notation �K... = ( �F... , �T... ), this condition can
be expressed by

�KA + �Kint + �Kext + �KBr = �0. (A2)

This is equivalent to the Langevin equation

�v = βD(�x)[R−1(�x) �K0 − �∇�xU (�x) + R−1(�x)�k] + �B(�x)
(A3)

with �B(�x) = βD(�x) �KD. The vectors �k(t) and �B(�x) have still to
be defined. To do so, the stochastic noise �k(t) is assumed to
be the equilibrium Gaussian white noise, which acts on the
Brownian particle for T > 0. As a consequence of the general
fluctuation-dissipation theorem, the noise �k(t) is then defined
by Eqs. (15) and (16). The additional drift term �B(�x) has to be
taken into account to ensure that the definition of the Langevin
equation (A3) is consistent with the Boltzmann distribution
in thermodynamic equilibrium. It can be determined with the
help of the Smoluchowski equation, which is equivalent to
the Langevin equation (A3). A comparison of the equilibrium
special case with �K0 = �0 of this Langevin equation with the
Boltzmann distribution [1,53] leads to �B(�x) = �∇�x · D(�x) and
states that Eq. (A3) is equivalent to the Langevin equation (1).
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