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Recently, a density functional theory for hard particles with shape anisotropy was developed, the
extended deconvolution fundamental measure theory (edFMT). We apply edFMT to hard dumbbells,
arguably the simplest non-convex shape and readily available experimentally in the form of colloids.
We obtain good agreement between edFMT and Monte Carlo simulations for fluids of dumbbells
in a slit and for the same system under gravity. This indicates that edFMT can be successfully ap-
plied to nearly all colloidal shapes, not just for the convex shapes for which edFMT was originally
derived. A theory, such as edFMT, that allows a fast and general way of mapping the phase behav-
ior of anisotropic colloids, can act as a useful guide for the design of colloidal shapes for various
applications. © 2011 American Institute of Physics. [doi:10.1063/1.3664742]

I. INTRODUCTION

Density functional theory (DFT) (Refs. 1 and 2) is nat-
urally applicable whenever the density profile is inhomoge-
neous, such as under applied external fields1, 3, 4 and in the
case of bulk freezing.5–7 Hard spheres represent a classi-
cal and quite tractable system to which density functional
theory has been applied in many studies. One of the most suc-
cessful versions of DFT for hard spheres is fundamental mea-
sure theory (FMT), which is based on the fundamental mea-
sures of a sphere, its radius, area and volume.8 A version of
FMT derived from the 0-dimensional limit9, 10 has proven to
be very successful in predicting the properties of the crystal.6

This FMT has been further modified to yield the excellent
Carnahan-Starling equation of state11 for the homogeneous
fluid, and the resulting FMT predicts the hard sphere freezing
transition very accurately.12, 13

Simultaneously, the interest in liquid crystals has been
a motivation to apply DFT to anisotropic particles, for in-
stance, hard spherocylinders, idealized rod-like molecules.
The isotropic–smectic and nematic–smectic phase transitions
of these rods were determined using a weighted density ver-
sion of DFT for anisotropic particles14, 15 and showed reason-
able agreement with the essentially exact simulations results
of Ref. 16. However, the construction of the free energy func-
tional of this theory is ad hoc and we would like to use a
functional based solely on the geometry of the particles. Such
density functional theories have been constructed for specific
shapes with zero volume, namely infinitely thin rods17 and
disks.18

Rosenfeld extended his version of FMT for spheres to
general anisotropic particle shapes.19 However, this version
did not predict a stable nematic phase for any particle-shape.
This deficiency was repaired recently by Hansen-Goos and
Mecke,3, 4 who derived the so-called extended deconvolution
FMT (edFMT) from the low-density limit in a more pre-

a)Electronic mail: hlowen@thphy.uni-duesseldorf.de.

cise manner. The resulting isotropic-nematic transition shows
excellent agreement with simulations.4, 20 In another recent
study, the theory has been applied to fluids of spherocylinders
under the influence of an external field that couples to the ori-
entations of the particles and a dynamic version of edFMT has
been derived for time dependent external fields.20, 21

Although a version of FMT has been proposed for spher-
ically symmetric soft interactions,22, 23 it is not as success-
ful as the fundamental measure theories for hard particles.
Historically, hard-core interaction potentials have been very
useful as the basis for theories that apply to more general
atomic and molecular systems. More recently, the realization
of hard-particle systems in the form of colloidal suspensions
has given the study of anisotropic hard particles a new incen-
tive. Colloids have been synthesized in an impressive number
of shapes,24 many of which have no atomic or molecular ana-
logue. Many of these colloidal shapes are non-convex and a
theory predicting the phase behavior of non-convex particles
would be of great value. Although convexity of the particle-
shape is assumed in their derivations and so far only convex
shapes have been studied, the recent edFMT4 and the older
version of FMT19 for anisotropic particles are expected to ap-
proximately hold for non-convex particles as well. The pri-
mary goal of this paper is to test this expectation by investi-
gating the accuracy of edFMT for non-convex particles.

Dumbbells, that consist of two fused hard spheres, are ar-
guably the simplest non-convex colloids. A reason for inves-
tigating this model, apart from its simplicity, is that colloids
with the exact shape of the dumbbell can be fairly easily syn-
thesized. In fact, quite a few different synthesis methods have
been successfully applied.25–27 Colloidal dumbbells have
been used to experimentally investigate bulk crystallization,28

quasi-two-dimensional degenerate crystals27, 29, 30 and the ef-
fects of charge and an external electric field on a bulk
crystal.31 Furthermore, the phase behavior of bulk systems of
the dumbbells is well-known from simulations,32–36 which is
convenient for further studies.
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Wall effects and effects of gravity are typically very im-
portant in colloidal suspensions, which can be exploited to
steer crystallization, for instance by sedimentation onto a
substrate.37–39 Therefore, it is paramount to investigate the ef-
fects of gravity and of the confining walls on colloidal suspen-
sions. Simulation studies on crystallization of spheres,40, 41

spherocylinders42 and dumbbells43 have shown that the phase
behavior of the system under gravity can be understood by
a mapping onto the bulk phase diagram. Comparisons be-
tween the density profiles for fluids in the presence of ex-
ternal fields obtained from DFT calculations and those mea-
sured in simulations are often used to validate the theoret-
ical approach. For instance, the FMT for hard spheres has
been very successful in describing the density profile near
a hard wall12 and edFMT is equally successful for (convex)
spherocylinders.3, 4 The density profile obtained from an older
semi-empirical weighted density approach, specifically tai-
lored to dumbbells, has also shown quite good agreement
with simulation results.44 However, the deviation between the
simulations and the semi-empirical DFT for dumbbells44 is
larger than the deviation between results from simulations and
edFMT for spherocylinders.4 In this work, we will compare
density profiles of dumbbell fluids in between two walls or
under gravity obtained from edFMT to those measured in sim-
ulations. We will show that the edFMT performs better than
the semi-empirical DFT for dumbbells, but results in some-
what less good agreement with our simulations for the non-
convex dumbbells than for the convex spherocylinders.4

The paper is organized as follows: First, we will describe
the model we use for the dumbbell and define its aspect ra-
tio. Next, the general frame work as derived in Ref. 4 will
be summarized. In the following section, we will point out
the additional approximation which is made when consider-
ing non-convex particles, instead of convex particles. We will
also briefly describe the details of the Monte Carlo simula-
tions and define the density and orientational order profiles
which we employ. Turning to the results, we will first show
the reasonable agreement between edFMT results and sim-
ulation data for a dumbbell fluid near a wall when the ad-
justable parameter ζ in edFMT is set to zero. The merits of us-
ing a (semi-empirical) nonzero value for ζ are discussed next.
The effect of wall spacing on the density profile of a fluid in
confinement is also shown. The effects of applying a gravita-
tional field are briefly discussed and, finally, we present some
conclusions.

II. MODEL AND SYSTEM PARAMETERS

We consider a system of hard dumbbells consisting of
spheres of diameter σ whose centers are separated by a dis-
tance L ≤ σ . Accordingly, L* ≡ L/σ = 0 corresponds to a
single sphere, while the dumbbell consists of the touching
spheres for L* = 1. In Fig. 1, the dimensions L and σ of a
dumbbell are indicated. Three values for L* = 0.3, 0.6, and
0.9 will be considered in this work; the shape of the corre-
sponding dumbbells varies from basically convex and similar
to a spherocylinder for L* = 0.3, to highly non-convex for
L* = 0.9. We have briefly investigated a few other values of
L* and found no qualitative differences. We will consider sys-

FIG. 1. The dimensions of a dumbbell: the diameter σ of its constituent
spheres and the distance L between the centers of the spheres. The aspect
ratio is defined as L* ≡ L/σ .

tems which are inhomogeneous due to the presence of an ex-
ternal potential resulting either from a gravitational field and
a hard bottom wall or from two hard walls. Only densities
or chemical potentials below the crystallization transition36, 43

will be considered, such that the system is fluid-like at all
heights. The direction of gravity and the normals to the
walls are along the z-direction. When the external potential
is only due to two hard walls, the averaged packing fraction
η = vdbN/(HA) is fixed, where N is the number of particles,
vdb = π

6 (σ 3 + 3
2Lσ 2 − 1

2L3) is the volume of a dumbbell, H
is the distance between the walls and A is the area of the sys-
tem perpendicular to the z direction. The chemical potential
μ is held fixed when the system is subjected to a gravitational
field (η is then zero because the system extends up to infin-
ity in the positive z-direction). The dimensionless chemical
potential μ* is defined as μ∗ = β[μ − log(V/4πσ 3)], where
V is the thermal volume and β = 1/kBT (kB is Boltzmann’s
constant and T the temperature). The shift − log(V/σ 3) re-
moves the terms in the chemical potential that result from the
integrals over the translational and angular momenta in the
partition sum. The value of the thermal volume has no ef-
fect on velocity-independent properties in equilibrium, such
as the ones investigated here. The dimensionless strength of
the gravitational field is defined as g* = mgσ /kBT, where m
is the (buoyant) mass of the dumbbell and g is the gravita-
tional acceleration. The definitions of μ* and g* are such that
the density ρ(z) at large height z is given by limz → ∞ρ(z)σ 3

= exp (μ* − g*z/σ ), a dimensionless form of the barometric
formula.

III. METHODS

A. Theory

Density functional theory is based on the exact result that
the density profile can be obtained by minimizing an expres-
sion of the form1

�[ρ] = Fint[ρ] +
∑

ν

∫
ρν(r)(V ext

ν (r) − μν)dr, (1)

with respect to the density profile ρν(r) itself, where μν is the
chemical potential of species/orientation ν (μo = μν for all
o that denote rotated copies of ν), V ext

ν is the external poten-
tial experienced by a particle of species/orientation ν at posi-
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tion r. We will use the notation of Ref. 19, where ν denotes a
specific shape, size, and orientation for brevity. Accordingly,
the sum over ν denotes a sum over all species and, for each
anisotropic species, an integral over its orientations. We will
only consider one-component systems in this work, but write
down the general framework of edFMT for the more gen-
eral case of mixtures of anisotropic particles. The functional
Fint[ρ] is independent of V ext

ν (r), allowing reliable approx-
imations based solely on the bulk phase behavior. We will
first describe the extended deconvolution fundamental mea-
sure theory (edFMT),3, 4 for general particle shapes and sub-
sequently apply it to dumbbells.

1. General framework of fundamental measure theory

The bulk free energy of edFMT is3, 4

Fint = Fid + Fexc = kBT

∫
(
id + 
exc)dr, (2)

where 
id = ∑
ν ρν log(ρνV) − ρν and


exc = −n0 log(1 − n3)

+ n1n2−→
n 1 ·→

n 2 −ζ
↔
n1:

↔
n2

1 − n3

+ 3

16π

→
n 2 ·↔

n2 ·→
n 2 −n2| →

n 2 |2 − Tr [
↔
n2

3] + n2
↔
n2:

↔
n2

(1 − n3)2
,

(3)

with Tr[A] equal to the trace of a matrix A and A : B ≡ Tr[AB].
While the ideal gas part of the free energy density 
id is a
function of the local one-body density ρ(r) at position r, the
excess free energy density 
exc({nα[ρ](r)}), depends only on
the weighted densities

nα(r) ≡
∑

ν

∫
ρν(r′)w(α)

ν (r − r′)dr′, (4)

where w(α)
ν (r) are the weight functions of species/orientation

ν. The set {w(α)(r)} consists of four scalar weight functions,

w(3)
ν (r) = �(|r| − Rν(r̂)), (5)

w(2)
ν (r) = 1

n(r̂) · r̂
δ(|r| − Rν(r̂)), (6)

w(1)
ν (r) = Hν(r̂)

4π
w(2)

ν (r), (7)

w(0)
ν (r) = Kν(r̂)

4π
w(2)

ν (r), (8)

two vectorial weight functions,

→
w

(2)

ν (r)= nν(r̂)w(2)
ν (r), (9)

→
w

(1)

ν (r)= nν(r̂)w(1)
ν (r), (10)

FIG. 2. (a) The surface ∂Bν of a body Bν is parametrized by a unit vector
r̂ , such that the corresponding point on the surface is Rν (r̂)r̂ . The normal at
this point is denoted by nν (r̂). (b) The kink in the surface of a dumbbell is
regularized by replacing it by a section of a torus, as indicated by the small
arcs. The torus has a tube radius of b and the dumbbell is recovered in the
limit b → 0.

and two tensorial weight functions of rank two,

↔
w

(2)

ν (r)= nν(r̂)nν(r̂)T

↔
w

(1)

ν (r)= �κν(r̂)

4π

× [
vI

ν(r̂)vI
ν(r̂)T − vII

ν (r̂)vII
ν (r̂)T

]
w(2)

ν (r).

(11)

Here, the unit vector r̂ = r/|r|, Rν(r̂) is the distance
along r̂ from a conveniently chosen point r(0)

ν inside the
volume of the particle ν to the surface and nν(r̂) is the
normal to the surface at Rν(r̂) r̂ , see Fig. 2(a). Moreover,
Kν(r̂) = κI

ν (r̂)κII
ν (r̂) denotes the Gaussian curvature,

Hν(r̂) = 1
2 (κI

ν (r̂) + κII
ν (r̂)) is the mean curvature and

�κν(r̂) = 1
2 (κI

ν (r̂) − κII
ν (r̂)) denotes the deviatoric curvature,

where κI
ν (r̂) and κII

ν (r̂) are the principal moments of the
curvature in the directions vI (r̂) and vII (r̂), respectively, at
the point Rν(r̂) r̂ on the surface of the body ν, see Fig. 2. We
show that the free energy functional (2) can also be derived
from the zero-dimensional limit in Appendix B.

Hansen-Goos and Mecke3, 4 derived an expansion of the
Mayer function fνo(ro − rν), which is −1 upon overlap of
bodies ν and o and zero otherwise, in terms of ever higher
rank tensorial weight functions. The parameter ζ is a renor-
malization factor introduced by Hansen-Goos and Mecke3, 4

to correct for the truncation of this expansion of the Mayer
function after the term involving rank two tensors. The factor
ζ should be independently determined for every particle shape
by minimizing the mean squared difference between the exact
excluded volume vexcl

ν,o and the edFMT approximation vedFMT
ν,o ,

where the excluded volume is given by

vexcl
ν,o = − 1

V

∫
V

∫
V

fνo(rν − ro)drνdro, (12)

and the edFMT approximation, vedFMT
ν,o , is obtained in the

same way with fνo(rν − ro) replaced by the approximated
Mayer function f edFMT

νo (rν − ro), which depends on ζ . The
structure of very elongated particles is determined to a large
degree by the excluded volume, which justifies its use for
determining ζ for the spherocylinders with total-length-over-
diameter ratio larger than 3.5 to which edFMT was applied
in Refs. 3, 4, 20, and 21. For less elongated particles, the
excluded volume is not the only important quantity as the
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structure is determined by both translational and positional
ordering. Therefore, it is somewhat arbitrary to fit ζ by mini-
mizing the difference between the exact and edFMT excluded
volumes. Furthermore, other approximations are made than
the truncation of the tensor-expansion at first order when
edFMT is applied to non-convex particles, as described in the
next section. We will show that the most pronounced effects
of these additional approximations can not be decreased by
choosing an appropriate value for ζ . Therefore, we set ζ to
zero unless indicated otherwise. We will show that edFMT
still yields reasonable results for inhomogeneous fluids of
dumbbells even with ζ = 0.

2. Effect of the non-convexity

In this subsection, we will explicitly write down the dif-
ficulties arising when edFMT is applied to non-convex parti-
cles. In the Results section, we will show that edFMT is still
a surprisingly good density functional theory, in spite of these
difficulties.

A crucial part of the derivation of the free energy (2) in
Ref. 4 is to express the Mayer function fνo(rν − ro) in terms
of the weight functions listed above by a deconvolution. This
deconvolution is performed with the aid of the Gauss-Bonnet
theorem,45 which reads∫

S

KdA +
∫

∂S

κgds = 2πχ (S), (13)

where S is a compact surface, K is the Gaussian curvature and
κg the geodesic curvature along the edge ∂S of surface S. The
Euler characteristic χ (S) describes the topology of S; the χ (S)
values of the shapes relevant for this work will be mentioned
as we encounter them. In the case of two intersecting con-
vex particles, it is easy to show that the intersection Bν ∩ Bo

is again a convex body, which has an Euler characteristic of
two (it is topologically equivalent to the surface of a sphere).
If Bν and Bo do not overlap χ (∂[Bν ∩ Bo]) is equal to the
Euler characteristic of the empty set, which is zero. In other
words, the Mayer function fνo is equal to −χ (∂[Bν ∩ Bo])/2
for convex Bν and Bo. The surface of the intersection consists
of two parts: ∂Bν ∩ Bo, the part of the surface of Bν in Bo,
and Bν ∩ ∂Bo. For the type of surfaces we are interested in,
the Euler characteristic of a union is equal to χ (A∪B) = χ (A)
+ χ (B) − χ (A∩B). Consequently,

χ (∂[Bν ∩ Bo])=χ (∂Bν ∩ Bo)+χ (Bν ∩ ∂Bo)−χ (∂Bν ∩ ∂Bo)

= χ (∂Bν ∩ Bo) + χ (Bν ∩ ∂Bo), (14)

where the last equality holds because ∂Bν ∩ ∂Bo consists of
one or more loops, with Euler characteristic zero. Conse-
quently, the Gauss-Bonnet theorem, with S = ∂Bν ∩ Bo and
Bν ∩ ∂Bo can be used to write the Mayer function, written as
−χ (∂[Bν ∩ Bo])/2, in terms of the integrals on the left hand
side of (13). These integrals can be expressed in terms of the
weighted density functions of Eqs. (5)–(11) plus terms involv-
ing tensors of rank higher than two, see Ref. 4. Again, these
higher rank tensors are ignored in most of Ref. 4, and in the
whole of this work.

The intersection of two non-convex particles is not al-
ways a single, convex body.46 For example, the intersection
between two dumbbells can consist of n disjoint convex bod-
ies for n = 1, 2, 3, 4, with χ (∂[Bν ∩ Bo]) = 2n and it can also
be a single body with a hole in it, leading to χ (∂[Bν ∩ Bo])
= 0. So setting the Mayer function equal to −χ (∂[Bν ∩
Bo])/2, as is done in edFMT, is an approximation for non-
convex particles. However, this is not a bad approximation
as long as the intersection between the particles in most of
the possible configurations is a single simply connected body
(i.e., without any holes) with Euler characteristic two.

Finally, the deconvolution of the Mayer function in terms
of weight functions can be used to derive Eq. (2) using meth-
ods developed by Rosenfeld8 and Tarazona.6, 10 This proce-
dure is described in sufficient detail in Ref. 4 and we will not
repeat this derivation here.

Finally, we note that the definition of surface in terms of
the distance Rν(r̂) from the surface to the reference point r(0)

ν

along a ray r̂ is ambiguous for some non-convex particles, as
some rays may cross the surface of the particle in more than
one point. In this case, the weighted densities can no longer
be written as the convolution (4), and should be defined as

nα(r) ≡
∑

ν

{∫
Bν

ρν(r − r′)dr′ α = 3,∫
∂Bν

ρν(r − Rν(s))w̄(α)
ν (s)d2s otherwise,

(15)
where Bν is the particle of species/orientation ν, while ∂Bν is
its surface, parametrized by s and with surface element d2s.
Furthermore, the function w̄(α)

ν (s) denotes the weight func-
tions w(α)

ν for α �= 3 as listed above with the factor w(2)
ν re-

moved (w̄(2)
ν (s) = 1). The weighted densities are also written

in this form in this work—although this is not necessary for
dumbbells—because it leads to simpler expressions for the
weight functions.

3. Application to dumbbells

We will now consider one-component systems of dumb-
bells. Accordingly, we replace the sum over ν by

∫
du, where

u is the orientation of a dumbbell, such that the density profile
becomes ρ(r, u). For dumbbells, a difficulty arises in evalu-
ating the weight function at the “neck” of the dumbbell, i.e.,
the intersection circle between the partial spherical shells that
the surface of the dumbbell consists of, since the curvature on
this circle is ill-defined. To circumvent this problem, we re-
define the dumbbell as the limit of a particle with a smooth
surface for which the “neck” is replaced by some inner sec-
tion of a torus, see Fig. 2(b). After performing this limit, the
scalar, vector and tensor weighted densities nα(r) for α = 0,
1, 2 can be expressed as∫ ∑

m=+,−

∫
Sm(u)

R2 w̄
(α)
h (s, u)ρ

(
r − m

L

2
u − Rs, u

)
d2s

+
∫

C(u)
w̄(α)

c (l, u)ρ(r − Rcnc(l, u), u)dl du, (16)

where Sm(u) consist of all s on the unit sphere, such that
ms · u > −L/σ , C(u) is the circle where the curvature has
a singularity, l parametrizes C(u), Rc ≡

√
R2 − L2/4 is the
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radius of C(u) and nc(l) is the normal to this circle in the
plane perpendicular to u. The functions w̄

(α)
h , that are inte-

grated over one half of the surface of a dumbbell in Eq. (16),
are

w̄
(0)
h (s, u) = 1/(4πR2), (17)

w̄
(1)
h (s, u) = 1/(4πR), w̄

(2)
h (s, u) = 1, (18)

→
w̄

(1)

h (s, u) = s/(4πR),
→
w̄

(2)

h (s, u) = s, (19)

↔
w̄

(1)

h (s, u) =↔
0 ,

↔
w̄

(2)

h (s, u) = s sT , (20)

which are just the weight functions of a sphere, while the
functions w̄(α)

c , that are integrated over the “neck” of the
dumbbell, are given by

w̄(0)
c (l, u) = −L∗/(2πRc), (21)

w̄(1)
c (l, u) = −α0/(4π ), (22)

w̄(2)
c (l, u) = 0, (23)

→
w̄

(1)

c (l, u) = −nc(l)L∗/(4π ) (24)

→
w̄

(2)

c (l, u) = 0 (25)

↔
w̄

(1)

c (l, u) = 1

4π

[
α0I −

(
3

2
α0 + 1

4
sin(2α0)

)
uuT (26)

−
(

3

2
α0 − 1

4
sin(2α0)

)
nc(l) nc(l)T

]
(27)

↔
w̄

(2)

c (l, u) =↔
0 , (28)

(29)

where L* = L/σ , α0 = limb→0 α(b) = arcsin(L/σ ) and I is
the 3 × 3 identity matrix.

We will restrict ourselves to inhomogeneous fluids in the
presence of a one-dimensional external potential Vext(z), for
which the density profile only depends on z and the angle θ

between ẑ and the direction vector of a particle, where ẑ is the
direction in which the external potential varies. The integrals
in (16) reduce to integrals over z′ and θ

nα(z) =
∫ ∫

v(α)(z′, θ )ρ(z − z′, θ )dz′dθ (30)

where the modified weight functions v(α) are obtained analyti-
cally by splitting the integrals in (16) into slices perpendicular
to the z-axis, over which the weight functions can be inte-
grated as the density only depends on z. The density profile
is normalized such that A

∫∫
ρ(z, θ )dzdθ = N , where θ runs

from 0 to π /2 due to the up–down symmetry of the dumbbells.
The minimization of the grand potential � is performed

iteratively, using

ρ(z, θ )σ 3 = exp
[
μ∗ − βVext(z, θ ) − β

δFexc

δρ(z, θ )

]
. (31)

which is equivalent to the minimization criterion δ�/δρ = 0.
The functional derivative can be written in terms of convolu-
tions over the weight functions, as described in Ref. 4.

B. Simulations

We use standard Monte Carlo (MC) simulations in the
NVT ensemble47 for dumbbells between two walls. In the case
of nonzero gravity, we fix the chemical potential μ by per-
forming standard47 particle insertion and deletion moves in
addition to the usual MC moves that modify the positions and
orientations of the dumbbells. The system has two hard walls
separated by a distance H, such that MC moves that result in
zi, τ < R = σ /2 or zi, τ > H − R are rejected for any sphere
τ of any dumbbell i, where zi, τ denotes the z-component of
the center of the sphere. We employ periodic boundary condi-
tions in the lateral directions in our simulations. We required
around 107 MC cycles to obtain enough statistics, preceded
by a slightly shorter equilibration, where a cycle consisted of
N MC moves. The number of particles in our simulations var-
ied, but was always of the order of a thousand particles, which
is sufficient to avoid finite size effects in a fluid phase. Finally,
the bulk equation of state of the fluid was measured using NPT
Monte Carlo simulations47 without hard walls and with peri-
odic boundary conditions in all three directions.

C. Density and orientational order parameter profiles

From edFMT, the density profile ρ(z, θ ) as a function of
z and θ is obtained. In principle, this profile can also be mea-
sured in Monte Carlo simulations, but as this is a function
of two variables, plotting the results from Monte Carlo and
edFMT in the same figure is difficult. Instead, we will make
use of the center-of-mass density profile, that is only a func-
tion of z,

ηcom(z) ≡
〈

vdb

A

∑
i

δ(z − zi)

〉

=
∫

dθ sin θ η(z, θ ), (32)

where the first line denotes the method by which ηcom is mea-
sured in the simulations and the second the way of obtaining
it from the η(z, θ ) ≡ vdbρ(z, θ ) obtained from edFMT.

The zz component of the nematic order tensor can also be
obtained similarly:

Qzz(z) ≡
〈 ∑

i

[
3

2
cos2 θi − 1

2

]
δ(z − zi)

〉/〈 ∑
i

δ(z − zi)

〉

=
∫

dθ sin θ

(
3

2
cos2 θ − 1

2

)
η(z, θ )/ηcom(z). (33)

This parameter Qzz(z) measures the alignment of the particles
along the z axis at height z. The orientational order parameter
Qzz(z) = −1/2 when the orientations of all particles at height
z lie in the x − y plane, while Qzz(z) = 1 implies perfect align-
ment with the z-axis for all particles at height z.
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IV. RESULTS AND DISCUSSION

A. Fluid equation of state

The edFMT equation of state (EOS) for the homogeneous
fluid can be obtained from the free energy (2) for a density
profile with η(r, u) ≡ vdbρ(r, u) = η/4π . For such a constant
density profile, the weighted densities can easily be calculated
analytically,

n0 = ρ, (34)

n1 = ρR

(
1 + L∗ − 1

2
arcsin(L∗)

)
, (35)

n2 = ρ4πR2(1 + L∗), (36)

n3 = ρ
4π

3
R3

(
1 + 3

2
L∗ − 1

2
L∗3

)
vdb, (37)

↔
n2 = n2I/3, (38)

while all other weighted densities are zero. Note in particular,
that the term proportional to ζ in the free energy (3) is equal

to zero, since the
↔
n1 tensor vanishes. Using these weighted

densities, the edFMT equation of state reads

zFMT ≡ βP

ρ
= 1

1 − η
+ α

η

(1 − η)2
+ α′ η2

(1 − η)3
, (39)

where α = m1m2/m3 and α′ = m3
2/m2

3 with mα = nα/ρ. The
form (39) of the FMT equation of state is the same for all par-
ticle shapes, where the mα are the fundamental measures of
the particle: m3 is the volume of the particle, m2 its surface
and, m1, a characteristic length. The characteristic length m1

is equal to the mean half width of the particle50, 51 for convex
particles. For non-convex particles, the mean half width of a
particle is not equal to m1 = n1/ρ = ∫

K/(4π )dA in general.
For instance for a dumbbell, the mean half width is equal to
R + L/4, the mean half width of a spherocylinder with the
same aspect ratio, instead of n1/ρ, see Eq. (35). Rosenfeld49

derived a fundamental measure equation of state from a scaled
particle (SP) approach combined with a diagrammatic Percus-
Yevick-like theory (PY). This work was performed before
Rosenfeld developed the density functional theory version of
FMT. Hansen-Goos and Mecke’s edFMT is consistent with
the SP-PY approach in the sense that for convex particles the
same equation of state is obtained. The generalization to non-
convex particles can be performed, for the isotropic fluid, ei-
ther by using the edFMT result from Eq. (35) for the char-
acteristic length, as we have done, or the mean half width,
which was Rosenfeld’s choice. Furthermore, Rosenfeld also
combined his scaled particle theory with the emperical mod-
ification to the hard sphere EOS by Carnahan and Starling,
resulting in a EOS (SP-CS) that differs from Eq. (39) by an
additional term −(α′/3) η3/(1 − η)3.

The equation of state, as measured in Monte Carlo
NPT simulations is compared to the results from edFMT
and Rosenfeld’s generalization of Carnahan-Starling (SP-
CS), as well as the semi-empirical Tildesley-Streett (TS) EOS
(Ref. 48) in Fig. 3. As the TS equation of state is obtained
by fitting the exact second virial coefficient and Monte Carlo

FIG. 3. The fluid equations of state (EOS) of dumbbells with aspect ra-
tios L/σ = 0.3 (triangles), L/σ = 0.6 (circles) and L/σ = 0.9 (squares): the
compressibility factor βP/ρ versus the packing fraction. We subtracted the
Carnahan-Starling equation of state11 ZCS for hard spheres to clearly show
the effect of finite elongation and the results for L/σ = 0.6 and L/σ = 0.9
have been shifted upwards for clarity by 1 and 2 respectively. The points are
results from NPT Monte Carlo simulations, the solid line denotes the edFMT
result from this work, the dashed line the semi-empirical Tildesley-Streett
EOS (TS) (Ref. 48) and the dotted line, Rosenfeld’s scaled particle-Carnahan
Starling EOS (SP-CS) (Ref. 49) (see text for a description of the equations
of state). The SP-CS EOS is difficult to distinguish from the TS EOS for L/σ
= 0.3. In the inset, we show the unmodified EOS from this work (βP/ρ)FMT
are shown, again for L* = L/σ = 0.3 (dotted line), L* = 0.6 (dashed line)
and L* = 0.9 (drawn line).

data, it also fits our simulation results perfectly. The agree-
ment between both the SP-CS and edFMT equations of state
and the MC results is good for the smaller aspect ratios, espe-
cially at low densities. Being an extension of the Carnahan-
Starling equation of state, the SP-CS gives a better fit to the
simulation results as the edFMT EOS for high densities and
low aspect ratios. For the largest aspect ratio L* = 0.9, the
edFMT EOS agrees less well with the MC results, and the
agreement with the SP-CS is also not as good as for the lower
aspect ratios. For completeness, we note that Nezbeda52 also
obtained an equation of state for dumbbells using a scaled
particle approach, but we do not show this EOS in Fig. 3 as it
performs worse than the other equations of state.

We have determined that the FMT EOS overestimates the
simulation results at low densities primarily because it over-
estimates the second virial coefficient, which is equal to α

+ 1. We could have added a strictly negative additional term
−(α′/3) η3/(1 − η)3 to the edFMT equation of state to obtain
a Carnahan-Starling version of FMT. The resulting EOS (not
shown) fits the simulation data considerably better than the
SP-CS EOS for η � 0.3, especially for L* = 0.6. However,
the SP-CS second virial coefficient is much closer to the ex-
act virial coefficient than the edFMT virial coefficient (that is
not modified by the additional term). Apparently, the overesti-
mation of the second virial coefficient by edFMT is canceled
by the additional −(α′/3) η3/(1 − η)3 term. However, it seems
unlikely that the overestimation of the second virial coeffi-
cient, which increases with the non-convexity of the particles,
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will be canceled by the −(α′/3) η3/(1 − η)3 for other particle
shapes than dumbbells. Because we wish to conclude some-
thing about general non-convex shapes, we only consider the
original edFMT in this work to avoid this (most likely) fortu-
itous cancellation for dumbbells. However, adjusting edFMT
to yield a Carnahan-Starling-like EOS for the isotropic fluid
along the lines of Refs. 12 and 53 for anistropic particles and
applying it to isotropic and homogeneous fluids of a number
of non-convex shapes is certainly an interesting topic for fu-
ture work.

B. Hard walls

The structure of a fluid confined between two hard walls
has been investigated by means of simulations and edFMT.
The resulting center-of-mass density profiles are shown in
Fig. 4 for three different packing fractions η and three dif-
ferent aspect ratios L/σ . We have used ζ = 0 for the edFMT
results. At the lowest packing fraction, the main effect of the
elongation of the particles is an entropy reduction when par-
ticles are close to the wall due to a decrease in the available
orientations. This effect pushes the particles away from the
wall, while the presence of the other particles pushes the par-
ticles towards the wall. This competition causes the first peak
to be located slightly away from z = σ /2, which is the posi-
tion of the first peak for hard spheres near a hard wall. As
the density increases more peaks in the density profile ap-
pear, indicative of layering. For the larger aspect ratios L/σ
= 0.6 and 0.9 and at the highest packing fraction η = 0.5,
the density profile shows an intricate structure as the layering
of the spheres of which the dumbbells consist competes with
the layering of the center of mass.43 This causes a splitting of
the first peak near the wall, where the two resulting peaks can
be ascribed to the primarily horizontal (z � σ /2) and vertical
(z � [σ + L]/2) orientations. When comparing the profiles for
η = 0.5 and varying L, we note that the layering seems to ex-
tend the furthest from the walls for the shortest dumbbells
with L* = 0.3. Apparently, the randomness induced by the
orientations of the more elongated dumbbells disrupts the
layers.

All peaks observed in the profiles obtained from the sim-
ulations are reproduced in the FMT results and for all but
the highest density, near the wall, the agreement between
the two profiles is excellent. Note, that the highest density η

= 0.5 is considerably higher than the densities investigated by
Hansen-Goos and Mecke3, 4 for hard spherocylinders, 0.346 at
most. Therefore, we cannot be certain that the deviations from
the MC results are due to the non-convex nature of the dumb-
bell, as the theory has not been tested for inhomogeneous sys-
tems of convex particles at such high densities.

When we compare our results for the center-of-mass
profile with the results obtained by Henderson et al.44 (not
shown), we see that both DFTs give a reasonable qualitative
agreement for all aspect ratios and densities considered, al-
though it seems that the characteristic splitting of the first
peak is absent in the theory of Ref. 44 for the larger aspect
ratios. Quantitatively, edFMT also seems to perform a bit bet-
ter than the older DFT.44

C. Nonzero ζ

The edFMT density profiles near a hard wall showed ex-
cellent agreement with MC results for spherocylinders with
L/D = 2.5 and 5, where L is the cylinder length and D the
cylinder diameter.4 The density profiles for the dumbbells
from edFMT for ζ = 0 do not show quite as good an agree-
ment with the MC results, see Fig. 5, as in Ref. 4, where the
relative deviation was less than 2% for all z > (L + σ )/2 at η

= 0.346. Our results for higher packing fraction η = 0.5 have
an order of magnitude higher deviation, see Fig. 5. However,
the large peak in the relative deviation around z = 1.2σ is
mainly caused by the small value of the density profile at that
position; the absolute value of the deviation at z � 1.2σ is not
much larger than the deviation at other z positions. As men-
tioned in Sec. III A 1, the approach for obtaining a nonzero
value for ζ proposed by Hansen-Goos and Mecke4 is to fit the
exact excluded volume with the edFMT result. The edFMT
excluded volume in the isotropic dumbbell fluid reads

vedFMT(γ ) = 2vdb + 2m1m2 + ζ m̄

(
3

2
sin2 γ − 1

)
, (40)

where m1 and m2 were defined in Sec. IV A and γ , the angle
between the two dumbbells replaces the indices ν and o in the
definition (12). Furthermore, the factor m̄ is given by

m̄ = π

16
Lσ 2[2α0 + sin(2α0)](1 − L∗2)3/2. (41)

FIG. 4. The center-of-mass density profiles of dumbbells with three different aspect ratios L* = 0.3 (a), L* = 0.6 (b), and L* = 0.9 (c) for three different
packing fractions: η = 0.1, 0.3 and 0.5. The black lines denote the edFMT results, while the circles denote the MC results. The results for η = 0.3 and 0.5 are
shifted upwards by 0.5 and 1.5 respectively for clarity of display.
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FIG. 5. The difference between the center-of-mass density profiles from
edFMT and from simulations divided by the edFMT results for dumbbells
between two hard walls and ζ = 0 (dashed line), 5/4 (solid line) and 2.508
(dotted line). Parameters are the same as in Fig. 4(b) except that for (a) η

= 0.346 and for (b) η = 0.5. Note the difference in scale between (a) and (b).

The exact excluded volume is somewhat involved and is writ-
ten down in appendix A. One can see from the edFMT ex-
cluded volume (40) why fitting the edFMT excluded volume
to the exact vexc leads to unphysical values by considering
the limit L → σ . The exact excluded volume is an increasing
function of γ for all nonzero L, while the monotonic increase
of Eq. (40) with increasing γ is due to the ( 3

2 sin2 γ − 1) term.
The factor m̄ goes to zero for L* → 1, due to the (1 − L*2)3/2

factor. As a result, the value for ζ ∼ 1/m̄ obtained by fitting
Eq. (40) to the exact vexc goes to infinity as L* → 1.

Nevertheless, we can still attempt to minimize the dif-
ference between the edFMT and FMT results for the density
profile by varying ζ . In Fig. 5, we plot the relative devia-
tion of the edFMT density profile from the results of the MC
simulations for L* = 0.6, η = 0.346 and 0.5 and varying ζ

= 0, 5
4 and 2.508. The latter value for ζ was obtained by mini-

mizing the difference between Eq. (40) and the exact vexc. For
any non-convex shape we can define ζCE as the value for ζ

that minimizes the difference between the exact and edFMT
excluded volumes for its convex envelope (CE). This value
ζCE = 5/4 turns out to be the value that gives the smallest de-
viation for dumbbells, where the convex envelope of a dumb-
bell is a spherocylinder. However, the result for ζ = 1 (not
shown) is nearly indistinguishable from the result for ζ = 5/4.
It would be interesting to consider other non-convex shapes to
investigate the conjecture that ζCE is the optimal value for ζ

for any non-convex particle.
The largest relative deviation in the density profile around

z = 1.2σ does not seem to be improved much by changing ζ .
Furthermore, considerably less overall improvement could be
achieved by choosing a nonzero ζ for L* = 0.3 and 0.9 than
for L* = 0.6, although ζ = 5/4 at least did not deteriorate

the results significantly. The
↔
n1 tensor does not have to be

calculated if ζ is zero. Considering the limited improvement
achieved by a non-zero ζ , we do not think that choosing a

non-zero ζ is worth the extra effort of calculating
↔
n1 for in-

homogeneous fluids of dumbbells. Therefore, we use ζ = 0
in the remainder of this paper.

D. Confinement

The effect of the wall spacing H has been studied in
edFMT by systematically varying H/σ between 1.025 and
4.975 with steps of 0.05. Furthermore, the edFMT results are
compared to the MC results for a few of the smaller spac-
ings, H/σ=1.6, 2 and 2.6, where the effects of the confine-
ment are the largest and, therefore, the theory and the simula-
tions are expected to differ the most. The agreement between
results from MC and edFMT is surprisingly good, as shown in
Fig. 6(a), which agrees with the observations in the previous
section for this aspect ratio L* = 0.6 and packing fraction η

FIG. 6. (a) The center-of-mass density profiles for dumbbells with L* = 0.6 in thin slits with H/σ = 1.6 (solid), 2 (dashed) and 2.6 (dotted) as a function of z
− H/2, such that the center of the slit always lies at zero. The black lines denote the edFMT results, while the circles denote the MC results. (b) A color plot of
the density from edFMT as a function of z − H/2 and the wall separation H, such that each vertical slice corresponds to a density profile for a different value of
H. (c) A color plot of the orientational order parameter from edFMT, where Qzz(z) = 1 (red) denotes perfect alignment with the z axis and Qzz(z) = −1/2 (blue)
for dumbbells with orientations in the x − y plane. The average orientation at z = H/2 oscillates between horizontal and vertical, starting from horizontal at H
∼ σ . For all three plots, the packing fraction η = 0.3 was used and the parameter ζ was set to zero.
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FIG. 7. The center-of-mass density profile, in units of the volume of a dumb-
bell, as a function of the height z for dumbbells under gravity with L* = 0.6,
μ* = 20 and g* = 2. Simulation results are denoted by the gray crosses and
the edFMT results (with ζ = 0) by the black line.

= 0.3. The good agreement allows us to study the depen-
dence of the structure on H in greater detail using only the
theory in Fig. 6(b). It can be seen that the positions of the
peaks in the density profile are complicated functions of the
height H.

For H ∼ σ , a single peak appears trivially and the par-
ticles have to be parallel to the wall. As H increases, the
peak broadens at first, as the particles start to sample more
orientations, see Fig. 6(c). However, the peak narrows again
when H ∼ σ + L. Simultaneously, the particles align with
the z-axis. For yet larger H, the middle peak splits, and seems
to be periodically appearing, splitting and disappearing as a
function of H. The orientations of the particles also seem to
oscillate between the vertical and the horizontal. The peri-
ods of the oscillations in both the density and the orienta-
tional order are both about σ , which indicates that the os-
cillatory behavior is related to the spheres that constitute the
dumbbells.

E. Gravity

In Fig. 7, we compare results from grand canonical
Monte Carlo simulations with edFMT for dumbbells under
gravity. To our knowledge, this is the first time density func-
tional theory is applied to this system. We show only the re-
sults for g* = 2, μ* = 20, and L* = 0.6, as the density profiles
for different gravitational force, chemical potential and L are
similar, except for the behavior at the wall. Furthermore, the
behavior at the wall is similar to the results obtained in the
absence of gravity in the sections above, compare Fig. 4(b)
for η = 0.5 with Fig. 7. The bulk density corresponding to
μ* = 20 is η = 0.491 for FMT and the MC bulk packing
fraction, which differs from the FMT packing fraction due to
the differences between the bulk equations of state, is 0.500.
The difference of about 0.01 between the volume fractions
causes a small additional error in the edFMT density profile
under gravity compared to the results with two hard walls,
where the average packing fraction was used as input param-
eter. However, this effect seems to be small, which can be seen
by comparing the deviation between the MC data and the the-

ory in the absence of gravity, shown in Fig. 4(b) for η = 0.5,
with that for dumbbells under gravity in Fig. 7.

V. CONCLUSIONS

We have applied the edFMT density functional theory,
recently developed for anisotropic hard particles by Hansen-
Goos and Mecke,3, 4 to inhomogeneous fluids of hard dumb-
bells in a slit and under gravity. The edFMT theory features
a free parameter ζ , which has to be nonzero for very elon-
gated particles to allow for a stable nematic phase. Adjusting
the free parameter ζ in edFMT by fitting the edFMT excluded
volume to the exact excluded volume has been shown to lead
to values for ζ that are unrealistically large, presumably be-
cause the full theory is not valid for non-convex particles, such
as dumbbells. Fortunately, the theory with ζ = 0 gives excel-
lent results when comparing with Monte Carlo simulations
for packing fractions similar to those studied before.4 The
agreement is somewhat worse than that obtained for sphero-
cylinders in Ref. 4, but it is better than the results obtained
for dumbbells in a slit with a previous density functional the-
ory study of hard dumbbells near a hard wall.44 At very large
packing fraction, η = 0.5, the theory still predicts the posi-
tions of the various peaks well, but does not always predict
the correct height for the peaks. We investigated the possi-
bility of choosing a nonzero value for ζ , and obtained some
improvement compared to ζ = 0. However, a nonzero value
for ζ leads to additional effort in evaluating the free energy
functional, which does not seem justified considering the lim-
ited effect for inhomogeneous fluids of particles which are
not very elongated, like dumbbells. For particles with more
extreme aspect ratios, we propose to set ζ equal to the value
of ζ which is optimal for the convex envelope of the particle.
Also, a nonzero ζ might be required to accurately model crys-
tals of anisotropic particles, which is beyond the scope of this
work. Finally, the density profile was shown to depend on the
separation between the two walls (in the absence of gravity) in
a non-trivial manner. Surprisingly, two walls with a separation
just above L + σ induce the dumbbells to align perpendicular
to the walls, while a single hard wall always causes alignment
parallel with the wall for any rod-like particle.

The FMT-density functional for hard dumbbells, which
was constructed and explored in this paper, can serve as a
starting point for further studies. These future topics should
include the full bulk freezing diagram including plastic and
full crystalline phases of hard dumbbells. The functional itself
might be improved by adjusting it such that it yields the ex-
cellent Carnahan-Starling equation for the homogeneous fluid
in the hard-sphere limit.12, 53 For an additional attractive inter-
action which possibly lead to gas-liquid phase separation, our
functional can be used as a reference system the attractions
being treatable within a mean-field perturbation theory.54–56

Furthermore, a dipolar interaction force57 can be added on
top of the dumbbell and can again be treated in DFT by
a mean-field theory.58 Moreover, Brownian dynamics (both
translational and orientational)59 can be explored by dynami-
cal density functional theory where a good static functional is
needed as an input.20, 21, 60 Finally other particle shapes, such
as platelets,61 cubes,62 tetrahedra,63 or helical particles64 can



234510-10 Marechal et al. J. Chem. Phys. 135, 234510 (2011)

be described using FMT-like functionals. This finally leads to
a full microscopic theory of the phase behavior of anisometric
particles.

Finally, it is important to note that a general theory which
connects the shape of particles to their phase behavior is im-
portant to predict new meso-structures with novel optical,
rheological and electric and magnetic properties. For exam-
ple, open diamond crystals are ideal candidates for photonic
crystals65 and one might tailor optical band-gap materials by
selecting colloidal particles with a certain shape66, 67 which
favor open crystalline phases. Conversely, one could force ex-
isting anisotropic particles to crystallize into high-symmetry
crystal structures such as BCC and FCC using external fields,
which may lead to a high-quality photonic crystal for specific
anisotropic particles. The excellent calculated photonic prop-
erties for oriented dumbbells on FCC (Refs. 68 and 69) and
BCC (Ref. 69) lattices are quite promising in that respect.
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APPENDIX A: THE EXCLUDED VOLUME
OF HARD DUMBBELLS

The second virial coefficient, one half times the integral
of the excluded volume over the angle between the dumbbells,
has been calculated by Isihara.70 The only modification in our
calculation of the excluded volume is to not integrate over this
angle. This leads to a rather complicated looking excluded
volume,

vexact
exc = vlens(2z0, 2σ ) − 2vlens(L, 2σ ) + 2z0L

2 sin γ

+ 4πσ 3 − 4I (r0, L) − 2I (r0, 2L sin(γ /2)),

(A1)

where r0 = L/[2cos (γ /2)], z0 =
√

σ 2 − r2
0 and vlens denotes

the volume of the lens shaped intersection between two
spheres of diameter σ at a distance d,

vlens(d, σ ) = π

12
(2σ 3 − 3dσ 2 + d3). (A2)

Furthermore, I(r, d) denotes an integral, which can be cal-
culated analytically using the results of Ref. 70. After some
simplification, the result is

I (r, d) = d

3

√
σ 2 − r2

√
4r2 − d2 + 4

3
σ 3 arctan

(σξ

d

)
− 2 arccos

( d

2r

)2σ 2 + r2

3

√
σ 2 − r2

− d(σ 2 − d2/12) arctan
(ξ

2

)
, (A3)

where ξ = √
4r2 − d2/

√
σ 2 − r2.

APPENDIX B: ZERO DIMENSIONAL CAVITIES

The fundamental measure theory for hard spheres by
Tarazona10 was derived from the condition that the the-
ory gives the correct result for the inhomogeneous densi-
ties that result in confining particles in a collection of zero-
dimensional cavities, each of which is just large enough
to hold a single particle. We will extend his derivation to
anisotropic hard particles. To be exact, we will consider the
external potential

V ext
ν (r) = lim

δ→0

∑
k

δν,ν(k) ×
{

0 |r − rk| ≤ δ

∞ otherwise
, (B1)

where a particle is tightly enclosed by cavity k if its position
is rk and its combined species and orientation is ν(k) and δν, o

is a generalization of the Kronecker delta, such that
∑

ν fνδν, o

= fo with
∑

ν a combination of a sum over the species and
integrals over the orientations as discussed in Sec. III A. The
resulting inhomogeneous density profile consists of a sum of
delta functions

ρν(r) =
∑

k

Nkδ(r − rk)δν,ν(k). (B2)

In the case of overlapping cavities, N ≡ ∑
kNk ≤ 1 and the

exact excess free energy is known to be9

ϕ0(N ) = N + (1 − N ) log(1 − N ). (B3)

To completely determine the functional we will need to con-
sider three overlapping cavities, but in the spirit of Ref. 10,
we will start with one cavity and add cavities one-by-one.

1. A single cavity

For a single cavity, the generalization of the free energy
functional of hard spheres9 is

F1 = −
∫

dr log[1 − n3(r)]

×
∑

ν

∫
dr0w2(r0)ρν(r − r0)

Kν(r̂0)

4π
. (B4)

The integral over r can be performed analytically, resulting in

F1 = ϕ0(N )
∫

∂B1

dA
K1

4π
, (B5)

where Bi is the body with the orientation, position and species
such that it just fits inside cavity i and ∂Bi is its surface. This
can be shown to be equal to ϕ0(N) for convex particles with
the use of the Gauss-Bonnet theorem, which we will write in
a slightly more general form here (cf. Eq. (13)),∫

S

KdA +
∑

k

∫
∂Sk

κgds +
∑

n

�
n = 2πχ (S), (B6)

where S is a surface of any body bounded by an oriented curve
∂S consisting of M smooth sections ∂Sk, while the curve turns
by � n at the intersection between sections ∂Sn − 1 and ∂Sn

(and ∂S0 ≡ ∂SM). Furthermore, K is the Gaussian curvature
and κg is the geodesic curvature on the smooth sections of
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∂S. If we take for S the surface ∂B1, the free energy F1 re-
duces to ϕ0(N )χ (∂B1)/2 (∂B1 has no boundary). All convex
shapes and many non-convex shapes B satisfy χ (∂B) = 2, no-
table exceptions being tori and other handle bodies that have
χ (∂B) = 2(1 − n), with n the number of handles. With these
exceptions, F1 reduces to the correct free energy for a sin-
gle zero-dimensional cavity. Furthermore, F1 can be written
in terms of the weighted densities n0 and n3,4 which allows
it to be evaluated efficiently for any density profile ρν(r). In
the remainder of this section, we will restrict the discussion
to shapes topologically equivalent to a sphere, that is, those
shapes that have χ (∂B1) = 2.

2. Two cavities

For two cavities, F1 does not give the correct zero di-
mensional free energy ϕ0(N) if B1 overlaps with B2. In fact,
the free energy F1 becomes

F1 = ϕ0(N ) + φ1(N1, N2)

[∑
i �=j

∫
∂Bi∩Bj

Kj

4π
dA − 1

]
, (B7)

where we have defined φ1(N1, N2) ≡ φ0(N1 + N2) − φ0(N1)
− φ0(N2). The Gauss-Bonnet theorem can be applied to
rewrite the difference between F1 and the exact free energy
ϕ0(N), where we use for S the surface ∂Bi ∩ Bj , i.e. the part
of the surface of i that is inside j. The boundary of this sur-
face, ∂Bi ∩ ∂Bj , is smooth (i.e. M = 1). Applying the Gauss-
Bonnet theorem in this way, the difference between the exact
free energy ϕ0(N) and F1 becomes

ϕ0(N ) − F1 = φ1(N1, N2)

[ ∫
∂B1∩∂B2

κ
g

1 + κ
g

2

4π
dl + 1

− 1

2

∑
i �=j

χ
(
∂Bi ∩ Bj

)]
. (B8)

For convex particles, it has been shown that∑
i �=j

χ (∂Bi ∩ Bj ) = χ
(
∂[B1 ∩ B2]

) + χ (∂B1 ∩ ∂B2) = 2

in Sec. III A 2. Therefore, the last two terms in the square
brackets cancel for convex particles in Eq. (B8). Using the
explicit expression for the geodesic curvature from Ref. 4, the
remaining term can be written as

ϕ0(N ) − F1 =
∫

dr[1 − n3(r)]−1
∑
ν1,ν2

∫ ∫
dr1dr2

×
[

2∏
k=1

w2(rk)ρνk
(r − rk)

]
K(1)

ν1,ν2
(r̂1, r̂2),

(B9)

where the “kernel” K(1)
ν,o is given by

K(1)
ν,o = Hν

4π
[1 − nν · no]

− �κν

4π

(vI
ν · no)2 − (vII

ν · no)

1 − nν · no

, (B10)

and it is to be understood that the quantities with subscript
τ = ν, o depend on the direction r̂τ . The kernel K(1)

ν,o can
be simplified by approximating 1/(1 − nν · no) � ζ with ζ

an adjustable constant. After this approximate simplifica-
tion, the free energy difference ϕ0(N ) − F1 can be written
in terms of weighted densities.4 Now, we can trivially cor-
rect the free energy functional F1 by adding a second term
F2 ≡ ϕ0(N ) − F1 which can be evaluated with similar ease
as the first term F1 for a general density profile ρν(r). For a
single cavity, F2 is zero (also after the approximation), as all
normals are equal and vI

1 and vII
1 are perpendicular to n1.

3. Three cavities

The calculation for three delta functions is a bit involved.
The free energy becomes

F1 + F2 = ϕ0(N ) +
∑
{ij}

φ1(Ni,Nj )

[
χ (δ[Bi ∩ Bj ]

)
2

− 1

]

+φ2(N1, N2, N3)
∑
{ijk}

[ ∫
∂Bi∩Bj ∩Bk

Ki

4π
dA

+
∫

∂Bi∩∂Bj ∩Bk

κ
g

i + κ
g

j

4π
dl − 1

]
, (B11)

where {ij} denotes all pairs (1, 2), (2, 3), and (3, 1), while
{jkl} denotes all triplets (1, 2, 3), (2, 3, 1), and (3, 1,
2). Additionally, we defined φ2(N1, N2, N3) = ϕ0(

∑
iNi)

− ∑
{ij}ϕ0(Ni + Nj) + ∑

iϕ0(Ni). Expression (B11) is ob-
tained by applying the Gauss-Bonnet theorem (B6) in a sim-
ilar way as above with S = ∂Bi ∩ Bj and subsequently using
the equality Kν,o + Ko,ν = κ

g
ν + κ

g
o , which holds on the inter-

section between the surfaces of ν and o. The last term in Eq.
(B11) can also be simplified using the Gauss-Bonnet theorem
(B6) with S = ∂Bi ∩ Bj ∩ Bk ,∫

∂Bi∩Bj ∩Bk

Ki

4π
dA +

∫
∂Bi∩∂Bj ∩Bk

κ
g

i + κ
g

j

4π
dl

= 1

2
χ (∂Bi ∩ Bj ∩ Bk) −

∑
n

�
n

4π
. (B12)

where � n is the angle by which the curve ∂[∂Bi ∩ Bj ∩ Bk]
turns at the nth point in the intersection ∂Bi ∩ ∂Bj ∩ ∂Bk , see
Fig. 8. It remains to combine the χ (∂Bi ∩ Bj ∩ Bk), which,
for each triplet, is the Euler index of a bounded surface pos-
sibly consisting of multiple disconnected regions, into the
Euler index of a single surface. The intersection between
any number of convex bodies is also a convex body, so the
surface ∂[B1 ∩ B2 ∩ B3] = ⋃

{ijk} ∂Bi ∩ Bj ∩ Bk , will have
Euler characteristic 2 for convex Bi . Its Euler characteristic
can be written as

χ
(
∂[Bi ∩ Bj ∩ Bk]

)
=

∑
{ijk}

χ (∂Bi ∩ Bj ∩ Bk) −
∑
{ijk}

χ (∂Bi ∩ ∂Bj ∩ Bk)

+χ (∂Bi ∩ ∂Bj ∩ ∂Bk), (B13)
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FIG. 8. The intersection between the convex bodies Bi , Bj and Bk in the
simplest case, where the surface of the intersection consists of three parts,
two of which are denoted by the lighter and darker regions in this figure,
while the last part is obscured by the other two. The lines of intersection
between two parts of the surface, e.g., ∂Bi ∩ ∂Bj ∩ Bk are indicated by
the black lines, while the dots denote the intersection points ∂Bi ∩ ∂Bj ∩
∂Bk . The angle � n by which the curve ∂[∂Bi ∩ Bj ∩ Bk] turns is indicated
for n = 1.

which is similar to the Euler characteristic of a polyhedron: χ

= F − E + V, where F is the number of faces, E is the number
of edges and V is the number of vertices. Unlike polyhedra,
our surface ∂[Bi ∩ Bj ∩ Bk] has curved edges and faces in
general, which allows for the possibility of closed loop-like
edges, which have a vanishing contribution to the sum over
the edges as they have Euler characteristic zero. Furthermore,
a vertex is always connected by three edges, which makes it
possible to relate the number of edges E′ not forming a loop
to the number of vertices V for ∂[Bi ∩ Bj ∩ Bk]. In fact, each
edge connects two vertices, which it shares with two other
edges, so E′ = 3

2V . So finally,∑
{ijk}

χ (∂Bi ∩ Bj ∩ Bk) = χ
(
∂[B1 ∩ B2 ∩ B3]

) + V

2
.

(B14)

Inserting this expression and Eq. (B12) in the expression
(B11) for F1 + F2 and rearranging the sums over pairs {jkl}
to run over vertices v instead, we obtain

F1 + F2 = ϕ0(N ) +
∑
{ij}

φ1(Ni,Nj )

[
χ (δ[Bi ∩ Bj ]

)
2

− 1

]

+ φ2(N1, N2, N3)

[
χ

(
∂[B1 ∩ B2 ∩ B3]

)
2

− 1

− 1

4π

V∑
v=1

(
2π −

3∑
m=1

� m
v

)]
, (B15)

where v is a vertex and m runs over the three surfaces inter-
secting at v. The angle � m

v can be expressed in terms of the
normals n(m)

v on surface m and the ones on the other two sur-
faces nI

v and nII
v , by

� m
v = arccos

[ ̂(nI
v × n(m)

v ) · ̂(n(m)
v × nII

v )
]
. (B16)

This angle is the angle of the corner of surface m at v and is
equal to π minus the angle that the path along the boundary
of surface m makes in v. The interpretation of 2π − ∑3

m=1
� m

v

is the amount by which the three angles fail to add up to 2π

(which would be zero if surfaces m, I and II were co-planar).
Analogous to the two-shell problem, the free energy can

be corrected by adding a third term to the free energy involv-
ing three weight functions,

F3 =
∫

dr[1 − n3(r)]−1
∑

ν1,ν2,ν3

∫∫∫
dr1dr2dr3

×
[

3∏
k=1

w2(rk)ρνk
(r − rk)

]
K(2)

ν1,ν2,ν3
(r̂1, r̂2, r̂2),

(B17)

where the function K(2)
ν1,ν2,ν3

is given by

K(2)
ν1,ν2,ν3

= |nν1 · (nν2 × nν3 )|
24π

×
[

2π −
∑
{ijk}

arccos
[
( ̂nνi

× nνj
) · ( ̂nνj

× nνk
)
]]

.

(B18)

The sum of the three free energy terms F1 + F2 + F3 is ap-
proximately equal to the correct free energy ϕ0(N) for convex
particles which have χ (∂[Bi ∩ Bj ]) = χ (∂[Bi ∩ Bj ∩ Bk])
= 2. Note, that the kernel K(2) vanishes when any two of nν ,
no or n� are equal and, therefore, the free energy F3 vanishes
in the cases of one and two delta peaks. As F1 + F2 already
give the approximately correct result for one and two delta
peaks, this means that the sum F1 + F2 + F3 also gives the
correct result in this case.

The kernel K(2) can not be written in terms weighted den-
sities, because of the arccos and the | · |. Therefore, we expand
K(2) in powers of ni · nj up to terms of order (ni · nj )3. How-
ever, we must make sure that we do not lose the property that
F3 = 0 for one or two delta peaks. This means we have to ne-
glect some of the terms in the expansion which do not vanish
in this case. The final result for the approximated kernel is

K(2)
ν1,ν2,ν3

= ζ ′
1

∏
{ij}

(
1 − nνi

· nνj

) + ζ ′
2

[
nν1 · (

nν2 × nν3

)]2
,

(B19)

where the constants ζ ′
1 = (24π )−1 and ζ ′

2 = (π/2 − 1)ζ ′
1 are

introduced. For hard spheres, a similar expression, but with
different constants ζ ′

k , was derived by demanding that the
direct correlation function and the equation of state of the
isotropic and homogeneous fluid were equal to the Percus-
Yevick results. Note, that we did not have to consider the
direct correlation function of the fluid here, but rather de-
rived the form of the functional completely from the zero-
dimensional limit. However, as noted by Roth,71 the zero-
dimensional limit can lead to a functional which does not
give very good results for the fluid. In this case, we have
to renormalize both terms in the kernel K(2) to obtain the
Percus-Yevick equation of state and the corresponding direct
correlation function of the fluid in the hard sphere limit. The
corresponding values for ζ ′

k are ζ ′
1 = 1/(16π ) and ζ ′

2 = −ζ ′
1.

With these values for ζ ′
k , the functional F1 + F2 + F3 reduces

to the edFMT functional (2) of Hansen-Goos and Mecke.3

The resulting equation of state of the fluid is equal to the
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fundamental measure version of the scaled particle equation
of state,49 which shows good agreement with the results from
simulations. It remains to be seen if the direct correlation
function corresponding to the kernel obtained from the hard
sphere limit also reduces to the fundamental-measure scaled-
particle result.49

In this appendix, we have shown that the edFMT func-
tional gives an approximately correct free energy for collec-
tions of cavities containing convex particles. For non-convex
particles, the additional approximations χ (∂[Bi ∩ Bj ]) � 2
and χ (∂[Bi ∩ Bj ∩ Bk]) � 2 have to be made, which are not
bad approximations as long as there are relatively few config-
urations for which the Euler characteristics differ from 2.
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