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Abstract
The anisotropic phase-field crystal model recently proposed and used by Prieler et al (2009
J. Phys.: Condens. Matter 21 464110) is derived from microscopic density functional theory for
anisotropic particles with fixed orientation. Its morphology diagram is also explored. In
particular we have investigated the influence of anisotropy and undercooling on the process of
nucleation and microstructure formation from the atomic to the microscale. To that end
numerical simulations were performed varying those dimensionless parameters which represent
anisotropy and undercooling in our anisotropic phase-field crystal model. The results from
these numerical simulations are summarized in terms of a morphology diagram of the stable
state phases. These stable phases are also investigated with respect to their kinetics and
characteristic morphological features.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the late 1970s Swift and Hohenberg formulated an amplitude
approach to describe systems where the stable states are
periodic such as, for example, the case for Rayleigh–Bénard
convection [1]. More recently this idea has been taken up
by the materials science community to model crystals at the
atomic scale. Elder et al proposed a functional for a scalar
dimensionless field φ of the form

F =
∫

V

(
1
2φ

[
(q2

0 + ∇2)2 − ε
]
φ + 1

4φ
4
)

dr, (1)

with two phenomenological parameters q0 and ε and a
corresponding dynamical equation

∂φ

∂ t
= ∇2 δF

δφ
(2)

for this purpose [2]. Since its introduction, this phase-field
crystal (PFC) method [2–6] has emerged as a computationally
efficient alternative to molecular dynamics (MD) simulations

for problems where the atomic and the continuum scale are
tightly coupled. The reason is that it operates for atomic
length scales and diffusive timescales. Thus for a simple
application such as diffusion in gold or copper it runs 106–
108 times faster than the corresponding MD calculation [7].
In that sense it provides, from the point of view of multiscale
materials modelling, an interesting link between the traditional
phase-field method and MD. Moreover, a connection between
the classical density functional theory of freezing and PFC
modelling was identified in [4, 8]. Thereby a second theoretical
foundation besides the Swift–Hohenberg amplitude equation
approach could be established. Essentially it motivates the
application of PFC models also for spatially non-uniform non-
periodic states.

Recently the PFC method has been applied to a variety
of different growth phenomena. One of its interesting features
is that other than the phase-field method, in which elasticity
explicitly needs to be integrated in the functional to be taken
into account [9], it includes elastic effects inherently. Thus
it allows one to simulate, for example, features of crack
propagation [4] and plasticity [3, 10] from the atomic to the
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microscale. To model the elastic behaviour of different kinds
of materials, the parameters of the PFC model equation can be
adjusted to match the elastic moduli of a given experimental
system. However, in its most simplistic form, in which it is
a reformulation of the Swift–Hohenberg equation [1] with a
conserved dynamics as introduced by Elder et al [2, 3], the
Poisson ratios which can be modelled are restricted to 1/3
(in the one mode approximation). Moreover, since in the
simplistic PFC model the material is defined by only three
parameters, it is restricted with respect to the crystal lattice
structures which it can describe as well. These are triangular
symmetries in two dimensions and BCC symmetry in three
dimensions [11, 12]. Another crystal symmetry applying to
protein crystals in a membrane could be obtained by including
higher order correlation functions [13]. Moreover, liquid
crystals have been simulated by combining the original PFC
equation with an orientational field [14, 16, 15].

In [17] we followed the above direction to extend the
phase field to apply to a larger class of condensed matter
systems taking a different route: we derived a generalized
PFC model for isotropic as well as anisotropic crystal lattice
systems of arbitrary Poisson ratios as well as condensed matter
systems built up from non-spherical units such as, for example,
anisotropic colloids and liquid crystals. To this end we
extended the simplest PFC model proposed by Elder [2] to a
conservative, anisotropic Langevin equation and applied it to
the heterogeneous nucleation of colloids at a wall.

Whereas our previous work [17] was devoted to a mere
introduction of our model and its application to heterogeneous
nucleation at a wall, here we show for the first time how its
parameters can be derived from dynamical density functional
theory (DDFT) (see section 2). Further we report for the
first time in detail on its morphology diagram. To do so, we
proceed as follows. First we give a thorough derivation of our
anisotropic phase-field model based on the DDFT in section 2.
We then—after a brief summary of the model in section 2—
study the influence of anisotropy and undercooling on the
morphology of the final states. We analyse these morphologies
and summarize our results in terms of a morphology diagram in
section 4. Finally we conclude with a summary and an outlook
of our study in section 5.

2. The anisotropic phase-field crystal model

2.1. The model

Currently PFC modelling is widely used to predict crystal
nucleation growth and to model microstructural pattern
formation during different physical phenomena such as
solidification. As usual, the PFC model used in this study is
based on a free energy functional F[φ(r, t)] of the phase field
φ(r, t) and a dynamical equation which represents the time
evolution of the phase field. In this PFC model, the periodic
nature of a crystal lattice is incorporated by using a free energy
functional which is minimized by a periodic density field. The
equation of motion used in this model was introduced in [2] for
the case of the simplest phase-field crystal (SPFC) model, and

is given by

ρ
∂φ

∂ t
= �[{(q2

0 + �)2 − ε}φ + φ3]. (3)

Here, q0 and ε are constants. In order to simplify the model, a
dimensionless parameter τ is introduced which is defined as

τ = −(q2
0 − ε). (4)

In our model τ represents undercooling in the same manner as
r is defined in [3]; therefore, τ can be written as

τ ∝ �T . (5)

The anisotropic version of the phase-field crystal model
(APFC) originally introduced in [18] is used in this study. This
PFC model is basically an extension of the SPFC model which
is derived in [19]. The APFC model is capable of simulating
isotropic and anisotropic crystal lattice systems of any arbitrary
Poisson ratio as well as condensed matter systems such as
colloids and liquid crystals. The free energy functional used
in this model is given by

F =
∫

V

(
1

2
φ

[
− τ + ai j

∂2

∂xi∂x j

+ bi jkl
∂4

∂xi∂x j∂xk∂xl

]
φ + 1

4
cφ4

)
dr, (6)

where ai j is a symmetric matrix and bi jkl is a fourth rank tensor
with the symmetry of an elastic tensor: i ↔ j, k ↔ l, (i, j) ↔
(k, l). From the free energy functional defined in equation (6),
the corresponding Langevin differential equation of motion for
an anisotropic lattice system can be written as follows:

ρ
∂φ

∂ t
= �

([
− τ + ai j

∂2

∂xi∂x j

+ bi jkl
∂4

∂xi∂x j∂xk∂xl

]
φ + cφ3

)
. (7)

2.2. Derivation of the anisotropic phase-field crystal model
from dynamical density functional theory

The coefficients occurring in the APFC model proposed
in [17] can be derived from microscopic density functional
theory [20–23]. Here we follow a similar route as proposed
recently by van Teeffelen et al [8] for radially symmetric
interactions. We generalize this route here to anisotropic
interactions.

We assume that the anisotropic colloids are completely
aligned in space. Cartesian coordinates r = (x1, x2, . . . , xd)

will be used in the following derivation, where d denotes
the spatial dimension. By scaling, hard ellipsoids with fixed
orientation are formally equivalent to hard-sphere systems.
This is no longer true if the interactions are soft and involve
an explicit energy scale. The interaction pair potential
between two aligned particles is u(r). The latter function
is anisotropic, in general, i.e. it does not only depend on
|r|. Other examples for these anisotropic interactions with
fixed orientations are oriented hard spherocylinders [24] and
charged rods [25, 26], anisotropic Gaussian potentials [27],
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board-like colloidal particles [28], colloidal molecules [29], as
well as patchy colloids [30] and proteins [31, 32]. Henceforth
inversion symmetry is assumed

u(−r) = u(r). (8)

The DDFT for anisotropic situations [33] is now generalized
from the isotropic case as follows. The dynamical evolution of
the time-dependent one-particle density field ρ(r, t) is

ρ̇(r, t) = (kBT )−1∇ ·
[
Dρ(r, t)∇ δF [ρ(r, t)]

δρ(r, t)

]
. (9)

Here kBT is the thermal energy, and ∇ = (∂/∂x1, ∂/∂x2, . . . ,

∂/∂xd) is the d-dimensional gradient. D = diag(D1, D2, . . . ,

Dd) denotes the diagonalized diffusion tensor with the
anisotropic short-time translational diffusivities of the aniso-
tropic particle. For a given (hydrodynamic) shape of the
particle, explicit expressions for Di are available [34, 35].
Furthermore, in equation (9), F[ρ(r, t)] is the equilibrium
density functional which can be split as

F[ρ(r)] = Fid[ρ(r)] + Fex[ρ(r)] + Fext[ρ(r)], (10)

where

Fid[ρ(r)] = kBT
∫

dr ρ(r){ln[ρ(r)
d] − 1}, (11)

with 
 denoting the thermal de Broglie wavelength. The
external part involves an external one-body potential V (r, t)
and is given by

Fext[ρ(r)] =
∫

dr ρ(r)V (r, t). (12)

Finally, the excess part, Fex[ρ(r)], embodies the nontrivial
correlations between the particles and must be further
approximated. Henceforth we assume small deviations of
the inhomogeneous density profile around a homogeneous
reference density ρ. In this limit, the leading approximation
for Fex[ρ(r)] is given by the Ramakrishnan and Yussouff [36]
expression:

Fex[ρ(r)] � Fex(ρ)

− kBT

2

∫ ∫
dr dr′�ρ(r)�ρ(r′)c(2)

0 (r − r′; ρ), (13)

where c(2)
0 (r − r′; ρ) is the anisotropic direct correlation

function of the fluid at density ρ which possesses the same
symmetry as the underlying pair potential u(r). In particular,
it is inversion symmetric

c(2)
0 (−r, ρ) = −c(2)

0 (r, ρ). (14)

Moreover, �ρ(r) = ρ(r) − ρ. In Fourier space equation (13)
reads

Fex[ρ(r)] = Fex(ρ)

− kBT (2π)d

2

∫
dk �ρ̃(k)�ρ̃(−k)c̃(2)

0 (k, ρ), (15)

with ∼ denoting a Fourier transform. We now expand the direct
correlation function c(2)

0 (k, ρ) in terms of k around k = 0.

(Alternatively fitting procedures can be used, e.g. around the
first peak of c(2)

0 (k, ρ).) This leads to the Taylor expansion in
Fourier space

c̃(2)
0 (k, ρ) = Ĉ0 +

d∑
i, j=1

ai jki k j +
d∑

i, j,k,l=1

bi jklki k j kkkl + · · · ,
(16)

corresponding to a gradient expansion in real space. The
inversion symmetry equation (14) enforces the vanishing of all
odd orders. Possible additional symmetries in the shape of the
particles will lead to corresponding restrictions on the tensorial
coefficients ai j and bi jkl , as discussed below.

Inserting this expansion into equation (9), one gets

ρ̇(r, t) = ∇ · D∇ρ(r, t) + ∇ · D∇
[
(kBT )−1V (r, t)

−
(

Ĉ0 −
d∑

i, j=1

ai j
∂2

∂xi∂x j

+
d∑

i, j,k,l=1

bi jkl
∂4

∂xi∂x j∂xk∂xl

)
ρ(r, t)

]
. (17)

If one further uses the constant mobility approximation,
ρ(r, t) = ρ, in front of the functional derivative in equation (9)
and if one approximates

Fid[ρ(r)] ≈ kBTρ

∫
dr { 1

2φ(r, t)2 − 1
6φ(r, t)3

+ 1
12φ(r, t)4 − const.} (18)

with φ(r, t) = �ρ(r, t)/ρ, one arrives at

φ̇(r, t) = ρ∇ · D∇
[
φ(r, t) − 1

2φ(r, t)2 + 1
3φ(r, t)3

+ (kBT )−1V (r, t) − ρ

(
Ĉ0 −

d∑
i, j=1

ai j
∂2

∂xi∂x j

+
d∑

i, j,k,l=1

bi jkl
∂4

∂xi∂x j∂xk∂xl

)
φ(r, t)

]
. (19)

This exactly reduces to the anisotropic phase-field model as
used in [17] for the special case d = 2, D = D0∞, and a
neglected cubic term in the ideal gas functional expansion in
equation (18). As a remark, the latter was retained in other
variants of the PFC model [4, 37].

Concluding this section, the APFC model as used in [17]
can be derived and justified from DDFT. The derivation points,
however, to more realistic approximations for anisotropic
diffusivities. Furthermore, if equation (18) is used, some
approximations can be avoided, but these were not found to
change the results significantly for spherical interactions [8].

2.3. Phenomenological symmetry considerations

We finally present phenomenological symmetry arguments for
the expansion coefficients ai j and bi jkl of the APFC model.
First we assume that the orientation of the fixed particles is
set by a single unit vector 	E only which is invariant under
space inversion (	r → −	r ). This is the case for d = 2
and for rotationally symmetric particles in d = 3. Then,
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Figure 1. Simulation results of crystal growth calculated for
τ = −3/4 with (a) s = 0 (isotropic case) and (b) s = 0.125
(anisotropic case). All other parameters are chosen as given in
section 3. As expected, the isotropic case shows a symmetric
morphology.

any gradient term in the scalar free energy functional must
involve an even number of gradients due to space inversion
symmetry. Rotational symmetry of space then requires that
only combinations of 	E · 	∇ and 	∇ · 	∇ are nonvanishing in
the functional. Therefore the only possibility for physically
relevant gradient terms is

d∑
i, j=1

ai j
∂2

∂xi∂x j
= λ1( 	E · 	∇)2 + λ2� (20)

and
d∑

i, j,k,l=1

bi jkl
∂4

∂xi∂x j∂xk∂xl
= λ3( 	E · 	∇)4

+ λ4( 	E · 	∇)2� + λ5�
2, (21)

where λ1, λ2, λ3, λ4, and λ5 are scalar prefactors. This reduces
the number of independent degrees of freedom in ai j and bi jkl

down to five.
In the case where there are different fixed vectors, say

	E and 	B, there are correspondingly more terms allowing for
more freedom in ai j and bi jkl . This is realized, e.g., for biaxial
colloidal particles in two crossed external fields along 	E and
	B.

3. Simulation parameters

As initial condition, a square domain is defined with a sphere
in the centre to initialize the nucleus. Periodic boundary
conditions are used in the square box in all directions. The
values used for the constant parameters are the same as defined
in [17], namely ρ = 1 (which sets the timescale), a11 =
a22 = 2, b1111 = b2222 = b1122 = 1, b1212 = 0 and
c = 1, respectively. However, this choice of parameters does
not correspond to a single field direction 	E but to two crossed
fields 	E and 	B as mentioned in section 2.3. A typical set of
values for τ and s is used for each simulation since our basic
objective is to study the dependence of the stable state phase on
these parameters. A simple explicit numerical scheme is used
to obtain a reasonably well approximated solution. A forward
Euler scheme is used for the time derivative with a sufficiently

Figure 2. Simulation results of crystal growth after 40 000 time steps
for s = 0 with (a) τ = −0.8 and (b) τ = −0.25.

small time step of �t = 0.000 75 to ensure the stability of
the scheme. The Laplace operator is approximated by using a
second order difference scheme given by

∇2φ = (φi+1, j +φi−1, j +φi, j+1+φi, j−1−4φi, j )/(�x)2. (22)

For the following simulations �x is chosen as π/4.
Convergence of our results is ensured via convergence studies.
The morphologies depicted in figures 1, 2 and 4 show
simulations of 256 × 256 numerical grid units. However, the
morphologies in figure 5 show a simulation of 128 × 256
numerical grid units.

4. Results and discussion

In this section we present the simulation results obtained
from our studies. These simulation results demonstrate
the following issues concerning nucleation and successive
microstructure formation:

(i) the effect of undercooling on crystal growth;
(ii) the dependence of anisotropy and undercooling on the

stable state phase;
(iii) the effect of anisotropy and undercooling on the distance

between the neighbouring stripes.

4.1. Anisotropic effects

In order to quantify the anisotropy of the material at the atomic
scale, a dimensionless parameter s is introduced and is given
by

s = −b1112

b1111
. (23)

The effect of this dimensionless parameter was studied by
performing numerical simulations with s = 0 and 0.125. The
initial and boundary conditions as well as the values for all
other simulation parameters used in these simulations were the
same as given in section 3. The results obtained for both cases
after 30 000 time steps are shown in figure 1.

4.2. Undercooling effects

When a liquid is supercooled just below the melting
temperature the crystal starts growing and the crystal growth is
directly related to the undercooling. Depending on the formal
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Figure 3. Simulation results of stable phases for the same initial
conditions and different values of s and τ .

undercooling, which quantifies the distance from the phase
equilibrium line in the phase diagram, in the system the final
state will have different morphologies. These are categorized
and analysed here in detail to get an overview of the state phase
of the APFC model given by the variables s and τ .

Here, the APFC model was used to examine the rate of
crystal growth from a supercooled liquid state. As explained
above, τ represents the undercooling in our model. A number
of simulations with different values of τ were performed for a
specific s value. We used the same initial condition i.e. single
solid nucleus (nucleation site) for all simulations. The results
showed that the rate of crystal growth increases with an
increase in the value of τ . As an example the simulation results
with s = 0 and for two typical values of τ , i.e. with τ = −0.25
and τ = −0.8 respectively, at 40 000 time steps are depicted
in figure 2.

4.3. Heterogeneous nucleation and crystal growth

In this section we study the dependence of a stable state phase
on the anisotropy and undercooling. More specifically, we
show how a stable state can be composed of different phases
such as a triangular phase, a stripe phase and co-existence
of stripes and a triangular phase, depending on the values of
s and τ , i.e. anisotropy and undercooling, respectively. To
study these patterns we performed a number of simulations
with different values of s and τ in each simulation. However,
the other parameters for all these simulations were same as
described in section 4.2. The results in the form of a diagram
of stable state phases are demonstrated in figure 3.

These simulation results demonstrate that the stable state
phase always consists of stripes if s � 0.25 irrespective of the
τ value. The co-existence of stripes and triangular phases is
found only in the case of s = 0.125 and τ � −0.5, while for
other values of s and τ , the stable state consists of a triangular
phase. Typical pictures of the triangular phase, stripes, and
a co-existence of stripes and the triangular phase are given in
figure 4.

The precise shape of the grain boundary between the
two solid phases depends on the system size due to the fact
that the resulting model equations of our APFC model are

Figure 4. Typical stable state phases from simulations performed for
(a) s = 0.125 and τ = −0.25, which result in the co-existence of
stripes and a triangular phase, (b) s = 0 and τ = −0.75, which result
in a triangular phase, and (c) s = 0.75 and τ = −0.25, which result
in stripes.

Figure 5. Stripe phases for different values of s and τ . Resulting
stripe phases for (a) s = 0.25, (b) s = 0.625 and (c) s = 1.

not rotationally invariant just like the ones of the famous
anistropic phase-field model [38]. This might cause problems
when studying, for example, several grains, and issues of
their orientation with respect to each other might play an
important role. The two-phase co-existence as such, however,
is independent of the size of the system.

4.4. Distance between the neighbouring stripes

To analyse the stripe morphology further, we studied the effect
of anisotropy and undercooling on the distance between the
neighbouring stripes. As discussed in section 4.3, the stable
state consists of stripes when s � 0.25 irrespective of the τ

value, as shown in figure 3. It is observed that the stripe phases
obtained for different values of s are different from each other

5
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Figure 6. Forms of the triangles in the final triangular phase obtained
for different anisotropies s.

in terms of the spacing between the neighbouring stripes in
the stripe phases. However, simulations with different values
of τ result in similar stripe phases. Our results reveal that
the spacing between neighbouring stripes decreases with an
increase in the value of s. Thus the stripe phase obtained
with s = 1 is much finer compared to the one obtained with
s = 0.25. Further, to investigate the effect of the undercooling
τ on the stripe phase, we performed several simulations by
fixing a specific value for s and varying τ . The results show
that for a specific value of s, similar stripe morphologies are
obtained with different values of τ . Figure 5 demonstrates this
interesting finding for different values of s and τ .

From the above discussion, we can conclude that
the distance between neighbouring stripes decreases as we
increase the value of s. However, the undercooling has no
significant effect on the stable stripe phase, i.e. the stripe phases
for different values of τ are similar.

4.5. Analysis of the anisotropy introduced by s

In this section we discuss the influence of the anisotropic factor
s on the final triangular phase obtained with 0 � s � 0.125
and τ = −0.75. More specifically, we analyse the form
of the triangles in each of the final triangular phases. The
form of a triangle is determined in terms of the three internal
angles and the ratio of the lengths of the longest and shortest
sides of the triangle. It is observed that the triangular phase
obtained in the case of s = 0, i.e. without any anisotropy,
consists of triangles with all three angles the same at 60◦ each.
However, the triangular phases obtained with non-zero values
of s contain triangles with dissimilar sides. The details of the
angles calculated for each case are shown in figure 6.

These results demonstrate that for the isotropic case,
i.e. s = 0, the final triangular phase consists of equilateral
triangles. However, for the anisotropic case, i.e. non-zero
values of s, the final triangular phase contains scalene triangles,
i.e. no two sides are similar. The ratios of the lengths of the
longest and shortest sides of the triangles calculated for each
case are presented in figure 7. This underlines the capability of
our APFC model to give rise to truly anisotropic morphologies.

Figure 7. Ratio of the lengths of the longest and shortest sides of the
triangles in the final triangular phase versus s.

5. Summary and outlook

In this paper we have presented a DDFT based derivation
of the APFC model proposed by two of the authors (DL
and HE) in [17] previously. Further we have investigated
the state phases of this model given by variation of τ and s
to demonstrate its capacity to model structures beyond those
captured by the SPFC equations originally introduced by Elder
et al [2].

In particular we studied the influence of anisotropy
and undercooling on the final states using numerical
techniques to minimize the free energy functional in our
model. More specifically, a number of numerical simulations
were performed by using different sets of values for our
dimensionless parameters s and τ which represent anisotropy
and undercooling, respectively. The results obtained from
these numerical simulations were analysed. Our studies reveal
the following.

(i) The rate of crystal growth increases with increase of τ ,
i.e. undercooling.

(ii) The stable state phase consists of a stripe phase if s �
0.25 irrespective of τ . However, the stable state is a co-
existence of stripes and a triangular phase when s = 0.125
and τ � −0.5, while for other values of s and τ the stable
state consists of a triangular phase.

(iii) For s � 0.25, the undercooling τ has no effect on the
resulting stripe phases; however, the distance between the
neighbouring stripes decreases with an increase of s.

(iv) Triangular crystals with cells that are neither equilateral
nor rhombic are possible for our anisotropic model.

In the future we plan to extend the approach to reactive
systems [39] to simulate morphogenesis in such systems from
the atomic to the microscale.
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