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Abstract – For sedimenting colloidal hard spheres, the propagation and broadening of the crystal-
fluid interface is studied by Brownian dynamics computer simulations of an initially homogeneous
sample. Two different types of interface broadenings are observed: the first occurs during growth
and is correlated with the interface velocity, the second is concomitant with the splitting of
the crystal-fluid interface into the crystal-amorphous and amorphous-liquid interfaces. The latter
width is strongly peaked as a function of the gravitational driving strength with a huge amplitude
relative to its equilibrium counterpart.
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Introduction. – Sedimentation of colloidal particles
in a liquid is a widespread phenomenon which governs
the formation of river sediments close to salty sea
water [1], controls the function of red blood cells [2],
and is technologically used to separate different sorts of
particles by centrifugation [3]. Gravity is also used to
compactify colloidal samples. In a finite container, the
actual settling process reaches a sedimentation-diffusion
equilibrium, which is characterized by a static colloidal
density profile. Much of our particle-resolved knowledge
of dense suspensions stems from model hard-sphere
colloidal dispersions made up of sterically stabilized
particles. In equilibrium, it has been shown that density
profiles contain the isothermal equation of state of the
hard-sphere system [4,5]. At high gravitational strengths
(or Péclet numbers) the density of hard spheres at
the bottom of suspension increases above the lower
limit of the solid-liquid coexistence φ= 0.492 [6], and
a crystallization in the bottom layers occurs [7–9]. The
number of crystalline layers is controlled by gravity
and by the sedimentation velocity of particles, and the
overall particle density per area. While the equilibrium
properties of crystal sediments are well explored by now,
the dynamics and relaxation towards equilibrium are by
far less understood [10,11]. In particular, it is known
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that crystallization occurs under gravity at different
conditions with respect to the bulk [12,13]. The technique
of colloidal templating has been used to steer colloidal
crystallization layer-by-layer in gravity [14,15] and the
kinetics of crystalline defects [16,17] has been debated for
sediments.
Using real-space confocal microscopy techniques,

Dullens and coworkers [18] have recently measured a
dynamical broadening of the hard-sphere solid-fluid inter-
face during sedimentation. This points to the essential
role of crystal nucleation in the supersaturated fluid and
the subsequent built-in of “crystal packages” into the
interface. In a very slowly growing interface, and at low
Péclet numbers, a broadening of the fluid-solid interfacial
width relative to its equilibrium value was found. In
this letter, we address the broadening of the solid-fluid
hard-sphere interface in the sedimentation process by
extensive Brownian dynamics computer simulations. We
find two different types of broadenings of the fluid-crystal
interface: the first occurs during growth and is correlated
with the interface velocity. This type of broadening is not
driven by gravity as it also shows up in the gravity-free
case [19]. The second type of interface broadening occurs
before the splitting of the crystal-amorphous interface
from the amorphous-liquid interface. The separated inter-
face includes a region which is structurally disordered
and dynamically arrested. The latter width behaves
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nonmonotonously in the gravitational driving strength
(or Péclet number Pe) and exhibits a huge peak relative
to its equilibrium counterpart. While the first type of
broadening has not yet accessed in confocal microscopy,
the latter is consistent with the measurements of Dullens
et al. [18]. However, their measurements were only
performed for low Péclet numbers before the splitting of
two interfaces happen.

Simulation and analysis. – In our Brownian dynam-
ics computer simulations, we use an adapted code for hard
spheres [20] of diameter σ, where the short-time infinite-
dilution diffusion coefficient D0 sets the Brownian time
scale τB = σ

2/D0. A time step of Δt= 0.001τB was used in
integrating the stochastic equations of motion. The simu-
lation box contains N hard spheres and has a rectangu-
lar shape with dimensions Lx = 40.8σ, Ly = 43.2σ, and
Lz varied between 54σ and 240σ. Various systems with

a packing fraction φ= πσ
3

6
N

LxLyLz
in the range 0.1� φ�

0.45 were investigated. A further important system para-
meter is the gravitational load, or the surface (or areal)
density of particles ρA =N/LxLy, which we scale to

ηA =Nσ
2/LxLy = φ

6Lz
πσ
. (1)

Thus, different combinations of φ and Lz result in the
same ηA. Simulations were carried out for ηA = 45.4 with
N = 80 000 particles and for ηA = 90.8 with N = 160 000
particles. The quantity ηA is chosen large enough to
produce a crystal-fluid interface at a given gravitational
strength Pe. The gravity acceleration g points along the
−z-direction and has a relative strength

Pe=mgσ/2kBT, (2)

where kBT denotes the thermal energy andm the buoyant
mass of the colloidal particles. Periodic boundary condi-
tions are employed in the x and y directions, while two
hard walls are placed at z = 0 and z =Lz. Next to the
wall at z = 0 we place a triangular layer of fixed spheres
with a lattice constant a= 1.133σ which acts as an initial
template for crystal growth [21]. Without a template the
crystallization happens in a few bottom layers contain-
ing small grains, large defects and fault stackings. This
strongly suppresses the formation and following upward
propagation of a single-phase crystalline front along the
sediment.
All simulations were started from an initial configu-

ration with a homogeneous distribution of colloids in
the simulation box except the template particles in the
seed layer next to the bottom wall. This mimics an
initially stirred solution to which gravity is applied instan-
taneously [11]. A total simulation time of 500τB was
accessed during our simulations. Within this time each
particle can sediment about 1000σPe, a distance at least 5
times larger than the characteristic sedimentation length
h≈H × 0.55/φ. Here H is the hight of the sedimented
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Fig. 1: (Colour on-line) Laterally averaged packing fractions
φ(z, t) (thin pink lines) vs. reduced height z/σ for three
different times (a)–(c): t= 20τB , 40τB , 100τB . The parameters
are Pe= 0.5, ηA = 45.4, and φ= 0.3. Also shown are the
interfacial profiles nc(z, t) for the “crystalline” particles (thick
red line) and nl(z, t) for the “liquid-like” particles (dashed
blue line). The interface position z0(t) is determined from the
crossing point of the thick red and dashed blue lines.

segment above which the packing fraction of suspension is
φ< 0.5. We averaged our final stage and time-independent
results over 20 different initial configurations in order to
improve the statistics.
For subsequent times t, we calculated the laterally

averaged one-particle packing fraction which is defined as

φ(z, t) =
π

6

σ3

LxLy

∫ ∫

dxdy ρ(x, y, z, t) (3)

and is resolved along the vertical z-coordinate. Here
ρ(x, y, z, t) is the local one-body density of particles at a
given time t. We further identified “crystalline” particles
with a crystal-like surrounding according to a commonly
used criterion [22]: the local orientational-order parameter
�q6(i) is calculated for each particle i [23,24]. When two
particles i and j are separated by r� 1.3σ, we associate
a crystalline bond to these particles, if �q6(i) ·�q6(j)> 0.5.
A particle which has at least 8 of these bonds is considered
to be crystalline. All other particles are identified as
“liquid-like” particles. The corresponding local packing
fractions of crystalline particles nc(z, t) and liquid parti-
cles nl(z, t) are also calculated and give rise to a q6 inter-
face, an example of which is given in fig. 1. We now
define the interface position z0(t) by the implicit condition
nc(z0(t), t) = nl(z0(t), t), i.e. by the position where the
fraction of crystalline-particles equals that of the liquid-
like particles. The interfacial width w(t) is defined as the
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Fig. 2: (Colour on-line) Reduced interface position z0(t)/σ (a),
reduced interfacial width w(t)/σ (b), and reduced propagation
velocity v(t)τB/σ (c) as a function of reduced time t/τB . The
full blue lines with circles are for ηA = 45.4 and φ= 0.1, the full
red lines are for ηA = 45.4 and φ= 0.3, the dashed pink lines are
for ηA = 90.8 and φ= 0.3. The full black lines with squares are
simulation data for the gravity-free (Pe= 0) suspension with a
volume fraction φ= 0.51 and ηA = 46.27.

inverse of the maximal slope of the nc profiles

w(t) =

(

∂nc(z, t)

∂z

)

−1
∣

∣

∣

z=z0(t)
. (4)

We finally define the propagation velocity of the solid-fluid
interface as v(t) = dz0(t)/dt.

Mechanism 1: kinetic broadening. – Results for
the interfacial profiles at three different times are shown
in fig. 1. Clearly the crystal-fluid interface is propagating
from the bottom of the container (left side in the figure)
into the fluid. The lowering of peak heights in the density
profile of fig. 1(c) in the region between z = 14σ and
z = 27σ originates from the stacking faults [9,25] and
defects introduced by a small amount of rhcp and hcp
crystalline grains. These defects tend to dissipate into
fcc crystalline layers during longer-time simulations. The
system size also plays a crucial role in the dissipation
of stacking defects [26]. When the crystal grows, the
interface gets broader. This is clearly illustrated in fig. 2
where the interface position z0(t), its width w(t) and its
propagation velocity v(t) are shown simultaneously. The
interface velocity is nonmonotonic in time: it first gets
accelerated, reaches a maximum and decays to zero. The
initial acceleration has to do with an “induction time” to
get particles into positions which are structurally favorable
for subsequent crystal growth. The final slowing-down is
due to the approach to equilibrium where ideally a finite

height of the interface is reached. Concomitantly with the
nonmonotonic behavior of the interface velocity, there is a
broadening of the interface: as a function of time, it first
broadens and then shrinks again. The saturation value at
large times, however, is significantly larger than the initial
width. A direct comparison of figs. 2(b) and (c) reveals
that the maximum of the propagation velocity coincides
with the maximal interfacial width demonstrating that
these two phenomena are correlated. The effect is stable
for different overall densities ηA. An increased ηA just
retards the occurrence of the velocity and width maximum
such that they occur at larger simulation times. A similar
retardation effect takes place in systems with low packing
fraction φ at a fixed areal density ηA, compare solid lines
with and without symbols in fig. 2.
As a first type of interfacial widening, we therefore

identify a kinetic broadening of the interface: upon growth,
the q6-interface becomes less steep, see thick lines in
fig. 1(b). This has to do with the fact that the system
has less time to structurally arrange when the interface
propagates quickly. An additional simulation for zero
gravity revealed that the kinetic broadening effect exists
also at zero Péclet number1. However, in the gravity-free
case the front growth velocity has no maximum. As a
reference, simulation data for the front position, interfacial
width and the propagation velocity for a coexisting fluid
and crystal [22,27,28] in a gravity-free system are included
into fig. 2 as full lines with squares.

Mechanism 2: interface splitting. – We now
address the crystal-fluid interface in the final state of
the sediment after a long time tl = 500τB and discuss its
properties as a function of the Péclet number (at fixed
ηA). In fig. 3, the laterally averaged packing fraction
profiles are shown at tl for three different Péclet numbers,
Pe= 0.5, 1.6, 3.0. Interestingly, the position of the inter-
face (as visualized by the crossing of the red and blue
lines) behaves nonmonotonously in the Péclet number,
see also fig. 4, which contradicts the expectation based
on equilibrium arguments. This expectation is based on a
discussion of the two limiting cases Pe→ 0 and Pe→∞ in
equilibrium: for zero gravity, the density profile is homo-
geneously distributed over the full simulation box (apart
from local density correlations at the hard wall) with a
low bulk volume fraction. Hence the solid-fluid interface
(if at all) is close to the bottom wall. In the opposite limit
Pe→∞, there is a finite number of layers with a closed
packed density which then abruptly drops to a vacuum at
higher Pe at a height of about 30σ. Interpolating between
these two limiting cases, in equilibrium, the interface
position increases with Péclet number Pe. Starting from
Pe≈ 0.8 the single crystalline-liquid interface splits

1The Pe= 0 simulation was performed for φ= 0.51 and ηA =

46.27 with N = 80 000 particles in a box of size Lx = 40.8σ, Ly =

43.2σ, and Lz = 48.5σ. Again a template layer of fixed spheres with

a triangular layer lattice constant a= 1.133σ was placed above the

bottom plate of the box.
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Fig. 3: (Colour on-line) Same as fig. 1, but now for a fixed
large time t= tl = 500τB and three different Péclet numbers:
(a) Pe= 0.5, (b) Pe= 1.6, (c) Pe= 3.0 at ηA = 45.4 and φ=
0.1.

into two separate interfaces, the crystalline-amorphous
and the amorphous-liquid interfaces. When the gravi-
tational load increases, the amount of amorphous glass
grows partly from the sedimented liquid particles, and
partly from the collapsed crystalline layers. Higher loads
completely destroy the crystal leaving only a few intact
layers. Besides the q6-interface position, a position of
the amorphous-liquid interface can be defined at the
height where the coarse-grained density (averaged over
the oscillations)2 equals the bulk coexisting fluid volume
fraction of 0.492. As opposed to the nonmonotonic
variation of the q6-interface position, the position of the
amorphous-liquid interface is monotonic, see fig. 4. While
the positions of the q6-interface and the amorphous-liquid
interface coincide for small Péclet number, there is a
splitting above a threshold leading to the nonmonotonic
behavior. The nonmonotonicity can be explained by the
formation of a dynamically arrested region between the
splitted q6 and amorphous-liquid interfaces schematically
shown in fig. 5(a) for a system with φ= 0.3, ηA = 90.8
and Pe= 2. Within the glassy amorphous region the
particles are structurally disordered, see fig. 5(b), and
dynamically caged such that they cannot find suitable
surrounding to nucleate into a big, and layered, crystal.
This is documented by the smallness of the mean square
displacement of particles in the amorphous layer, see
fig. 5(c). The amorphous dynamically arrested part stops
the propagation of the q6-interface. Strong gravity acts
therefore like a fast and deep compression, a situation
which favours glass formation in general. The disordered

2In detail, the coarse-grained density is obtained from the

z-resolved profiles by integrating between two subsequent minima.

0 1 2 3 4
0

10

20

30

40

 Pe

 z
0
(t

l )
 /

 σ

 

 

φ=0.1, q
6
 front

φ=0.1, mass front
φ=0.3, q

6
 front

φ=0.3, mass front

(a)

η
A

=45.4

0 1 2 3 4
0

20

40

60

80

 Pe

 z
0
(t

l )
 /

 σ

 

 

φ=0.3, q
6
 front

φ=0.3, mass front

(b)

η
A

=90.8

Fig. 4: (Colour on-line) (a) Position z0(tl)/σ of the q6-interface
(full lines), and of the amorphous-liquid interface (dashed lines)
vs. Péclet number Pe for two areal densities ηA = 45.4 (a)
and ηA = 90.8 (b) at a fixed large time t= tl = 500τB . The
interface splitting is clearly visible. The black squares at Pe= 2
correspond to the amorphous-liquid and q6-interfaces analyzed
in fig. 5.

region does not seem to be composed of polycrystalline
material as this would have resulted in a finite fraction
of crystalline particles. As shown in figs. 4(a) and (b),
the Péclet number threshold for splitting decreases for
increasing packing fraction φ at fixed ηA, but does not
depend on the imposed overall density ηA for fixed φ.
Closely above the Péclet number threshold at which
interface splitting occurs, the width w exhibits a strong
peak, see fig. 6. In fact, the width increases by an order
of magnitude relative to its low-Péclet-number value and
then decreases again. This surprising huge broadening
points to an extremely broad interface between the
initial crystalline layers and the subsequently formed
disordered material. The subsequent decrease for higher
Péclet number is qualitatively understood by considering
the limit Pe→∞: if everything is dominated by strong
gravity, the interface then is expected to sharpen due to
enforced crystallization.
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Fig. 5: (Colour on-line) Simulation results for the sediment at
t= tl = 500τB for system parameters Pe= 2, φ= 0.3 and ηA =
90.8. (a) Schematic picture showing the crystalline, amorphous
and fluid zones in the sediment. (b) Laterally averaged packing
fraction φ(z) (thin pink lines), interfacial profile nc(z) for the
“crystalline” particles (thick red line), interfacial profile nl(z)
for the “liquid-like” particles (dashed blue line) vs. reduced
height z/σ. (c) Mean square displacement Δ(z) of the particles
along the sediment obtained within a time window Δt= 10τB .
The positions of the crystal-glass and glass-fluid interfaces
correspond to the black squares in fig. 4(b).

We now compare our results to the real-space exper-
iment by Dullens and coworkers [18]. The broadening
observed in ref. [18] was measured for long times at
relatively small Péclet numbers (smaller than 0.8) and
for larger gravitational loads ηA than considered in our
work. The interfacial velocity was small but nonzero. This
implies that the broadening observed in [18] is consistent
with our findings at long times for low Pe, before the inter-
face splitting occurs. It would be interesting to do further
experiments at higher Pe to verify the interface split-
ting and the huge interface broadening predicted by our
simulations.

Conclusion. – In conclusion, we have studied the
width of a crystal-fluid interface in a sedimenting suspen-
sion of hard spheres by Brownian dynamics computer
simulations. Two qualitatively different types of broad-
ening are observed. The first type of interfacial broaden-
ing is purely kinetic. It is not triggered by gravity but
just correlates with the interface velocity. The second
type of broadening is almost static and is huge if the
structural crystallinity interface and the amorphous-liquid
interface split. Between these two interfaces, an amor-
phous dense sediment is formed which exhibits a wide
structural interface with the lower crystalline part of the
sample. This prediction can in principle be verified by real-
space experiments [18,22]. It might also be important for
granulates [29] where the Péclet number is high, and for
crystallization in complex plasma [30].
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Fig. 6: (Colour on-line) Interfacial width w(tl)/σ vs. Péclet
number Pe at a fixed large time t= tl = 500τB for two different
packing fractions φ= 0.1 (line with symbols) and φ= 0.3 (full
line) at fixed areal density ηA = 45.4, and for packing fraction
φ= 0.3 and ηA = 90.8 (dashed line).

Real experimental samples possess an intrinsic polydis-
persity. Furthermore there are solvent-mediated hydrody-
namic interactions. Most of the influence of hydrodynamic
interactions can be captured by an effective short-time
diffusion constant D0. Nevertheless the influence of poly-
dispersity [22] and hydrodynamic interactions [11,31,32]
on crystal growth remains for future exploration. Further-
more new effects are expected for attractive systems [33]
as witnessed by different dynamically arrested states
(attractive glasses) [34] which could impede crystalliza-
tion during sedimentation. The latter case is realized for
colloid-polymer mixtures.
It is worth mentioning that some of the present findings

on the interface broadenings may be characteristics of
fcc {111} growth from a patterned template with the
triangular lattice considered in the current study. It will be
useful to check whether a similar broadening takes place
in the {100} growth, a case considered in refs. [27,28] for
gravitation-free hard-sphere systems.
In general, our findings can be used to steer the

thickness of crystalline and amorphous layers as well as
their interfacial structure by sedimentation. This may help
to open the way for designing smart colloidal materials
with new optical and rheological properties.
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