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Stability of liquid crystalline phases in the phase-field-crystal model
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The phase-field-crystal model for liquid crystals is solved numerically in two spatial dimensions. This model
is formulated with three position-dependent order parameters, namely the reduced translational density, the
local nematic order parameter, and the mean local direction of the orientations. The equilibrium free-energy
functional involves local powers of the order parameters up to fourth order, gradients of the order parameters
up to fourth order, and different couplings between the order parameters. The stable phases of the equilibrium
free-energy functional are calculated for various coupling parameters. Among the stable liquid crystalline states
are the isotropic, nematic, columnar, smectic-A, and plastic crystalline phases. The plastic crystals can have
triangular, square, and honeycomb lattices and exhibit orientational patterns with a complex topology involving a
sublattice with topological defects. Phase diagrams were obtained by numerical minimization of the free-energy
functional. Their main features are qualitatively in line with much simpler one-mode approximations for the
order parameters.
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I. INTRODUCTION

Crystallization and melting processes (see, e.g., Refs. [1,2])
can be efficiently modeled within the so-called phase-field-
crystal (PFC) model [3–5], which is basically a Landau-type
theory with a conserved position-dependent order param-
eter that is gradient-expanded up to fourth order. Stable
periodic oscillations in this order parameter are interpreted
as crystalline density fields. The PFC model was applied
to various situations including fluid-crystal interfaces [6,7],
crystal growth into a supercooled liquid [8], grain boundaries
[9,10], and the Asaro-Tiller-Grinfeld instability [11–14]. Later
on, the PFC model was systematically derived from density
functional theory [1,2,8,15,16] which provides a microscopic
approach to freezing and melting in equilibrium [17–20]
using a gradient expansion in terms of density modula-
tions [16,21–23]. Moreover, dynamical density functional
theory for the nonequilibrium dynamics of Brownian systems
[24–26] can be used to derive the dynamics of the PFC
model [8].

Recently, the PFC model was generalized to anisotropic
particles by using the appropriate generalizations of den-
sity functional theory to orientational degrees of freedom
[20,27,28] and to orientational Brownian dynamics [29,30].
This was done both in two [31] and three [32] spatial
dimensions [33]. The resulting PFC models are valid for liquid
crystals composed of apolar particles and describe also liquid
crystalline phases with a uniaxial orientation distribution.
The theory is formulated in terms of three order-parameter
fields, namely the reduced translational density, the local
nematic order parameter, and the mean orientational direction.
It includes gradients up to fourth order in the reduced
translational density field and up to second order in the
remaining orientational order parameters. While the traditional
PFC model has two free parameters, the liquid crystalline PFC
model in two dimensions [31] has five independent couplings.
This widely opens the parameter space for the occurrence of
several liquid crystalline phases including nematic, columnar,
smectic-A, plastic crystalline, and orientationally ordered

crystalline phases [34,35]. However, no numerical calculation
of the PFC model has been presented for the stability of these
different liquid crystalline phases yet.

The most striking results of this paper are the stability of
plastic (or rotator) crystals. Such plastic crystals occur for
both slightly asymmetric molecules and for colloidal particles.
Tetrahedral-shaped molecules like carbon tetrabromide [36]
or carbon tetrachloride [37] when treated classically lead
to crystals for which there is no macroscopically preferred
orientation. The length scale of the lattice constant in this
case is about nanometers. For mesoscopic colloidal particles,
plastic crystals have also been observed [38–40] for slightly
asymmetric particles. In this case the lattice constant is
between 10 and 1000 nanometers.

In this paper, we start from the PFC model for liquid
crystals in two spatial dimensions proposed in Ref. [31] and
determine the stable liquid crystalline phases numerically
for special coupling-parameter combinations. Among the
stable liquid crystalline states are isotropic, nematic, stripe,
columnar, smectic-A, and plastic triangular crystalline phases.
The plastic crystalline phases exhibit complex orientational
patterns with a sublattice of topological defects. For stronger
translational-orientational couplings, a plastic crystal with
fourfold square symmetry is getting stable. This does not occur
for the traditional PFC model [3,4,41], but can be induced
for other Ginzburg-Landau functionals [42]. Also a plastic
honeycomb crystal was observed. We found second-order
phase transitions for the isotropic-nematic phase transition
and phase transitions of first order for all other phase
transformations.

The paper is organized as follows. Section II is addressed
to the PFC model for liquid crystals. In Sec. II A, we recall the
free-energy functional for two-dimensional liquid crystals and
introduce a simpler form of this functional, which is obtained
by an alternative choice of the order-parameter fields. Two
different methods for the minimization of this functional are
presented in Sec. II B. Then, in Sec. III, the results for these
two methods are shown. We finally conclude in Sec. IV.
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II. PHASE-FIELD-CRYSTAL MODEL

A. Free-energy functional

We start our investigation from the PFC model for liquid
crystalline phases, which was recently proposed in Ref. [31].
It can be rescaled to the form

F[ψ1,ψ2,û0] ≈
∫
R2
d �x
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+Dψ2
2 − E

(
ψ2�ψ2 + 4ψ2
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, (1)

where ∂i = ∂
∂xi

is the partial derivative with respect to the ith
Cartesian component of the coordinate vector �x = (x1,x2).
This functional approximates the free energy of a set of
apolar uniaxial particles with the three space-dependent order-
parameter fields ψ1(�x), ψ2(�x), and û0(�x). The field ψ1(�x)
is the reduced orientationally averaged one-particle density
obtained from the general one-particle density ρ(�x,û), which
is proportional to the probability density to find a particle with
orientation û at position �x

ψ1(�x) = 1

2πρ̄

∫
S1

dû[ρ(�x,û) − ρ̄]. (2)

Here, S1 is the unit circle, ρ̄ is the mean number density

ρ̄ =
∫
d �x ∫

S1
dû ρ(�x,û)∫

d �x ∫
S1
dû

, (3)

and û is a unit vector that denotes a certain orientation in
the two-dimensional space. In comparison to the general
one-particle density ρ(�x,û), the reduced and orientationally
averaged density ψ1(�x) only describes the space-dependent
deviations of the one-particle density from the reference
density ρ̄. Its spatial average vanishes by construction. The
orientational dependence of the free energy is taken into
account by the nematic order parameter

ψ2(�x) = 4

πρ̄

∫
S1

dû ρ(�x,û)

(
[û0(�x) · û]2 − 1

2

)
, (4)

and the nematic director û0(�x), which is the eigenvector
associated with the largest eigenvalue of the second-order
traceless nematic tensor Q(�x) [43]. The nematic director
û0(�x) is also a unit vector and can be parametrized by the
orientation field ϕ0(�x) in two spatial dimensions: û0(�x) =
(cos(ϕ0(�x)), sin(ϕ0(�x))). Also the amount of local ordering
ψ2(�x) contributes to the free energy. In the integrand of
functional (1), the first four terms approximate the free-energy
density of an ideal rotator gas. Also the terms ψ2

1 (�x) and
ψ2

2 (�x) appear in the ideal rotator entropy, but since there are
corresponding terms in the excess free energy for anisotropic
particles, the different contributions to these terms were
combined to Blψ

2
1 (�x) and Dψ2

2 (�x) in Eq. (1). Besides the

mentioned polynomial terms in the order-parameter fields,
also their gradients contribute to the free energy. The amount of
their contribution is controlled by the parameters Bx , E, and F

in the free-energy functional. Contributions of the gradient and
curvature of the translational density field ψ1(�x) appear in the
term proportional to Bx . The curvatures of the space-dependent
nematic order ψ2(�x) and of the nematic director field û0(�x) are
taken into account in the term proportional to the parameter
E. The last term in the free-energy functional is scaled by the
parameter F . It contains the couplings between the gradients
of ψ1(�x) and ψ2(�x) as well as a sum, which couples the Hessian
of ψ1(�x) with the director field û0(�x) and with the nematic order
ψ2(�x). In Eq. (1), the components of the nematic director are
denoted as u0,i = (û0(�x))i , for abbreviation.

It is possible to transform the functional (1) to a physically
less intuitive but simpler equation by defining a new complex
order parameter U (�x) = ψ2(�x)ei2ϕ0(�x). The corresponding
free-energy functional

F[ψ1,U ] ≈
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(5)

with U (�x) denoting the complex conjugate of U (�x) is helpful
for more efficient numerical simulations. This alternative
choice for the order-parameter fields is equivalent to the usage
of a nonnormalized vector field instead of the direction û0(�x)
and the modulus ψ2(�x), as it is done in the Ginzburg-Landau
theory [43].

Before we started to minimize the free-energy functional
numerically, we could already derive some static properties of
this functional. Since the parameter D controls the contribution
of the nematic order parameter ψ2(�x), we expect the nematic
phase to be stable for large negative values of D. In the
opposite case, if D is large enough and positive, the term
Dψ2

2 (�x) + ψ4
2 (�x)/256 dominates the free energy and only

phases with ψ2(�x) = 0 can be stable. Crystalline phases with
a nonvanishing nematic order might only appear in a region
around D = 0 therefore. We also know that the difference
Bl − Bx has a big influence on the translational density field
ψ1(�x). If the parameter Bl is large and positive, variations
of the translational density field enlarge the free energy.
Similarly, gradients of the translational density field enlarge
the free energy for large and negative values of Bx . Therefore,
phases without any density modulations (i.e., the isotropic
and the nematic phases) are preferred for positive values
of the difference Bl − Bx . All other phases with a periodic
translational density field are preferred for negative values of
this difference. Furthermore, there is a symmetry concerning
the reversal of the sign of the parameter F in the free-
energy functional. From Eq. (1) we know that the free-energy
functional is invariant under a simultaneous change of the
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signs of the parameter F and the nematic order-parameter
field ψ2(�x). Due to this symmetry, we can assume F � 0 in
the following.

B. Numerical minimization

1. Free numerical minimization

To find the stable phases in the PFC model, we minimized
the free-energy functional (1) using the steepest descent
method for fixed parameters Bl , Bx , D, E, and F . In this
method, which is based on the pseudodynamical equations

∂ψ1(�x,t)

∂t
= −δF[ψ1(�x,t),U (�x,t)]

δψ1(�x,t)
+ λ(t),

∂U (�x,t)

∂t
= −δF[ψ1(�x,t),U (�x,t)]

δU (�x,t)
, (6)

the system evolves toward a local minimum. Here, λ(t) is a
Lagrange multiplier that guarantees that the spatial average
of the field ψ1(�x) is zero. The two equations were discretized
using a finite-difference scheme and solved on a grid with
2 × 2 unit cells and 32 × 32 discrete points. We varied the
length of these cells to minimize the free-energy functional
also with respect to the lattice constant of the periodic phases
and used a set of different phases as initial conditions to find
the global minimum.

2. One-mode approximation

As a semi-analytical approach the one-mode approximation
consists of periodic approximations for the order-parameter
fields ψ1(�x), ψ2(�x), and ϕ0(�x) and reduces the PFC model to
the lowest Fourier modes. We used the following parametriza-
tions with the minimization parameters A1, B0, B1, and k:

(1) isotropic phase:

ψ1(�x) = 0,

ψ2(�x) = 0, (7)

(2) nematic phase:

ψ1(�x) = 0,

ψ2(�x) = B0, (8)

(3) stripe phase:

ψ1(�x) = A1 cos(ky),

ψ2(�x) = 0, (9)

(4) columnar phase:

ψ1(�x) = A1 cos(ky),

ψ2(�x) = B0 + B1 cos(ky),

ϕ0(�x) = 0, (10)

(5) smectic-A phase:

ψ1(�x) = A1 cos(ky),

ψ2(�x) = B0 + B1 cos(ky),

ϕ0(�x) = π

2
, (11)

(6) triangular crystalline phase:
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[
cos

(√
3

2
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)
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2
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)
− cos(ky)

2

]
,

ψ2(�x) = B0 + B1

[
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(√
3

2
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)
cos

(
k

2
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)
− cos(ky)

2

]
,

ϕ0(�x) = φ0,

(12)

(7) square crystalline phase:

ψ1(�x) = A1[cos(kx) + cos(ky)],

ψ2(�x) = B0 + B1 cos(kx) cos(ky),

ϕ0(�x) = φ0. (13)

Here, x and y are the first and the second Cartesian
coordinates, respectively. The constant angle φ0 can be set
to zero because the free energy does not depend on it. Further,
due to equivalent free energies, we do not need to distinguish
between the columnar phase and the smectic-A phase and call
them the columnar/smectic-A phase in the following. Note that
there is no additive offset term A0 for the density variations
ψ1(�x). The minimization of the free energy in the context of the
one-mode approximation was performed for fixed parameters
Bl , Bx , D, E, and F . It is possible to minimize the free energy
for the nematic phase and for all phases with a vanishing
nematic order ψ2(�x) analytically. The more complicated free
energies of the remaining phases were minimized numerically.

III. NUMERICAL RESULTS

A. Free numerical minimization

Apart from the fully isotropic phase with ψ1(�x) = 0 and
ψ2(�x) = 0, which appears for Bl > Bx and D > 0, several
other phases were found to minimize the free energy (see
Fig. 1). As expected, for negative and large D a nematic
phase was found. In the columnar/smectic-A phase, the system
has positional ordering in one direction while it is isotropic
perpendicular to this direction. The ψ2(�x) field has a similar
profile to the ψ1(�x) field with maxima of these two fields at
the same positions. Near to the maxima of the translational
density ψ1(�x), the director field û0(�x) is preferentially parallel
to the gradient �∇ψ1(�x), while it is perpendicular to �∇ψ1(�x)
around the minima of ψ1(�x). This behavior of the director
field follows from the second term proportional to F in the
free-energy functional (1). This term describes the coupling
between the density gradient �∇ψ1(�x) and the orientation field
û0(�x). For the columnar/smectic-A phase, this term simplifies
to

2 ψ2(u0,2)2∂2
2 ψ1. (14)

Since the nematic order parameter ψ2(�x) is positive in the
columnar/smectic-A phase, the curvature ∂2

2 ψ1(�x) decides over
the sign of this term. We have to distinguish two cases: in the
first case, the curvature ∂2

2 ψ1(�x) is negative, which is true
close to the maxima of ψ1(�x). In the other case ∂2

2 ψ1(�x)
is positive. This happens near to the minima of ψ1(�x). The
director field behaves differently in these two cases. When
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isotropic nematic

stripes columnar/smectic A

plastic triangular crystal 1 plastic triangular crystal 2

plastic honeycomb crystal plastic square crystal

ψ1( ) ψ2( ) ψ1( ) ψ2( )

FIG. 1. (Color online) Stable liquid crystalline phases. The contour plots show the order-parameter fields ψ1(�x) and ψ2(�x) in the (x,y) ≡
(x1,x2) plane for the isotropic and nematic phases, the stripe phase and columnar/smectic-A phase, two plastic triangular crystals with different
orientational ordering, and a plastic honeycomb crystal as well as a plastic square crystal. The light gray lines in the plots of the second and
fourth columns represent the director field û0(�x). In the cases with ψ2(�x) = 0 it is not shown because it is not defined. The parameters are
Bx = 3.5, E = 1, and F = 0 for the stripe phase and the plastic triangular crystal 1 and Bx = 3.5, E = 0.1, and F = 1 for all other phases.

the free-energy functional is minimized, also the term (14)
tends to become minimal. Therefore, we find û0(�x) = (0,1) ‖
�∇ψ1(�x) in the case where ∂2

2 ψ1(�x) is negative, while we have
û0(�x) = (1,0) ⊥ �∇ψ1(�x) in the second case. This explains
the observed behavior of the director field (see Fig. 1 for
the columnar/smectic-A phase). A similar flipping of the
orientational field from perpendicular to parallel to the stripe
direction was identified as transverse intralayer order in the
three-dimensional smectic-A phase of hard spherocylinders
[44]. For the plastic crystal everything is more complex
since there are two spatial coordinates which are coupled.
The resulting topology of the orientation field is a complex
interplay between these different couplings.

Four plastic crystals with different symmetries were found.
The first two phases are plastic triangular crystals with a
vanishing and a nonvanishing nematic order parameter. Here,
the first crystal with ψ2(�x) = 0 is a special degenerate case of

the second. The third plastic crystalline structure involves a
honeycomb lattice. As a fourth case, there is a plastic crystal
with square symmetry. For all plastic crystals, ψ2(�x) vanishes
both at the maxima and minima of ψ1(�x).

The director fields û0(�x) for the different plastic crystalline
phases exhibit quite different topologies. While the director
field is not defined for the plastic triangular crystal 1 with
a vanishing field ψ2(�x), it possesses, in general, topological
defects at positions where the field ψ2(�x) vanishes. This
guarantees that there is a finite core energy of the topological
defects [45]. The topological defects form another lattice with
more lattice points than given by the maxima of the field
ψ1(�x) since there are additional interstitial topological defects
at the minima of ψ1(�x). The lattices of topological defects
are schematically shown in Fig. 2. For the plastic triangular
crystal 2 and for the plastic honeycomb crystal, the associated
defect crystal is triangular albeit with a lattice constant that is a
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plastic triangular crystal 2

plastic honeycomb crystal

plastic square crystal

FIG. 2. (Color online) Topological defects in three different
plastic liquid crystals in the (x,y) plane (schematic). The defects
coincide with the maxima [dark gray (red) discs] and minima [light
gray (cyan) discs] of the translational density field ψ1(�x). The
symbols in the plots represent the following defects: (a) vortices
with the topological winding number m = 1, (b) disclinations with
m = −1/2, (c) sources or sinks with m = 1, and (d) hyperbolic points
with m = −1.

factor of 1/
√

3 smaller than the original one. Likewise, for the
plastic square crystal, the defect lattice is a square lattice with a
lattice constant reduced by a factor 1/

√
2. Topological defects

in liquid crystals can be classified according to the winding
number of their director field [43,46]. In our case, three types
of point defects occur: vortices with the topological winding
number m = 1, sources or sinks with m = 1, and hyperbolic
points with m = −1. Furthermore, we found disclination line
defects with m = −1/2. Vortices and disclination lines occur
in the plastic triangular crystal 2, which is schematically drawn
in the first plot in Fig. 2. In the plastic honeycomb crystal,
disclination lines arise together with sources or sinks (second
plot in Fig. 2), while vortices and hyperbolic points are found
in the plastic square crystal (last plot in Fig. 2). The sum of

− 1 − 0.5 0 0.5 1
1.5
1.8
2.1
2.4
2.7
3.

3.3
3.6
3.9
4.2
4.5

D

B
l

F=0

Isotropic

Nematic Plastic
triangular
crystal 1

Stripes

− 1 − 0.5 0 0.5 1
1.5
1.8
2.1
2.4
2.7

3.
3.3
3.6
3.9
4.2
4.5

D

B
l

F=0.01

Isotropic

Nematic Plastic
triangular
crystal 2

C/SA

− 1 − 0.5 0 0.5 1
1.5
1.8
2.1
2.4
2.7

3.
3.3
3.6
3.9
4.2
4.5

D
B

l

F=0.1

Isotropic

Nematic Plastic
triangular
crystal 2

C/SA

− 1 − 0.5 0 0.5 1
1.5
1.8
2.1
2.4
2.7

3.
3.3
3.6
3.9
4.2
4.5

D

B
l

F=1

Isotropic

Nematic
Plastic

triangular
crystal 2

C/SAPSC

P
H

C

FIG. 3. (Color online) Phase diagrams calculated by full numer-
ical minimization for the parameters Bx = 3.5 and E = 0.1. The
relevant liquid crystalline phases are isotropic (blue), nematic (green),
stripes (yellow), columnar/smectic-A (C/SA, light orange), plastic
triangular crystals (magenta), plastic honeycomb crystal (PHC, dark
purple), and plastic square crystal (PSC, red). The cornered separation
lines between different phases are due to the finite numerical
resolution of the parameter space.

the topological winding numbers of all topological defects in
a unit cell vanishes for all plastic crystals.

The director fields of all crystalline phases that we found
are periodic and vanish when they are averaged in space.
Therefore, these crystals are identified as being plastic.
Orientationally ordered crystalline phases were not found in
the parameter range we explored.

Parameters for which the mentioned phases are stable
follow from the phase diagrams in Fig. 3. We chose 1.5 � Bl �
4.5, Bx = 3.5, −1 � D � 1, E = 0.1, and F = 0,0.01,0.1,1
for these phase diagrams. We chose Bx constant and varied
Bl so that in the absence of the orientational degrees of
freedom we obtained all the phases of the traditional PFC
model. The parameter D was varied from −1 to higher values
because for the value −1 the free energy of the nematic
phase is significantly smaller than the free energy of any
other phase of the traditional PFC model. The parameters
E and F were selected from the regions where we found
the richest phase diagrams. For F = 0, we have a degenerate
case, where ψ2(�x) = 0 for D > 0 and E > 0. In the latter case,
we observed a striped phase and the plastic triangular crystal
1. These phases are replaced by the columnar/smectic-A
phase and by the plastic triangular crystal 2, respectively,
if F becomes positive. The richest phase diagram with six
different phases was obtained for F = 1. The phase transition
between the isotropic and the nematic phases turned out to be
continuous, while all other phase transitions are discontinuous.
This result agrees with the fact that the PFC model reduces to
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the Landau–de Gennes model for the isotropic-nematic phase
transition, which describes this phase transition as continuous.
On the other hand, symmetries are broken for the remaining
phase transitions so that they are discontinuous.

B. One-mode approximation

For the global minimization of the free energy we used
a random search routine in the four-dimensional parameter
space combined with a local minimization by the Newton
method. Figure 4 shows the order-parameter fields ψ1(�x) and
ψ2(�x) for different phases that are realized for particular
combinations of the parameters of the PFC model in the
one-mode approximation. To calculate phase diagrams that
correspond to the phase diagrams presented in Sec. III A,
we fixed the parameters Bx , E, and F to the same values
as in the previous section, varied the remaining parameters
of the rescaled free-energy functional (1) over the intervals
−1 � D � 1 and 1.5 � Bl � 4.5, and minimized the free
energy for each one-mode approach and for each parameter
combination. The resulting phase diagrams are shown in Fig. 5.
A view at the behavior of the order parameters near to
phase transitions confirmed the results of the free numerical
minimization regarding the order of the phase transitions.

C. Comparison and discussion

In comparison to the full numerical minimization of the
free-energy functional, the one-mode approximation appears
to provide an approximative but much faster method to
determine the phase diagram for the PFC model. A speed-
up factor of 100 can easily be achieved. This allows the
fast calculation of phase diagrams for various parameter
combinations as well as single phase diagrams with a rather
high resolution like those that are shown in Fig. 5. The
drawback, however, is that the one-mode approximation also
gives rise to deviations of the phase diagrams from the exact
ones in Fig. 3: there is a lack of some crystalline phases
for F = 1. The absence of these crystalline phases is based
on an improper consideration of the orientation field ϕ0(�x)
in the one-mode approximation and on the last term in the
free-energy functional (1), which is relevant for nonvanishing
values of the parameter F . Therefore, the plastic square crystal
as well as the plastic honeycomb crystal cannot be observed in
the one-mode approximation. In addition, the plastic triangular
crystal 1 with ψ2(�x) = 0 appears for F > 0 instead of the
plastic triangular crystal 2. This is not surprising since we used
a constant angle φ0 for the orientation field in our ansatz for
the one-mode approximation to parametrize plastic crystals
without a global orientation. The constant angle φ0 is not
a good approximation for the actual orientation field with a
vanishing mean value so that the minimum of the free energy
is reached for ψ2(�x) = 0. A further difference between the
phase diagrams in Fig. 5 and those in Fig. 3 is an island of the
columnar/smectic-A phase near to the lower end of the phase
transition line between the isotropic and the nematic phases
for F = 0.1.

To check that the mentioned disadvantages of the phase
diagrams for the one-mode approximation really arise from
the improper approximation of the orientation field ϕ0(�x), we
performed a Fourier analysis of the numerical results that are

isotropic

nematic

stripes

columnar/smectic A

plastic triangular crystal 1

ψ1( ) ψ2( )

FIG. 4. (Color online) Same as Fig. 1, but now for the one-mode
approximation.

shown in Fig. 1. This Fourier analysis exhibited that the first
Fourier mode is always dominant. Only for the plastic square
crystal and for the plastic honeycomb crystal does there appear
a contribution of the second mode that might be relevant.

Despite the discussed disadvantages of the one-mode
approximation, it proved to be a useful method to calculate
phase diagrams for a given PFC model with low computational
effort. The one-mode approximation is also useful to explore
the phase diagram for suitable parameters or for a large
number of parameter sets and to find interesting regions in a
high-dimensional parameter space that are worth investigating
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FIG. 5. (Color online) Same as Fig. 3, but now for the one-mode
approximation.

more precisely by a much more expensive direct minimization
of the free-energy functional.

IV. CONCLUSION

In conclusion, the PFC model for liquid crystals was solved
numerically in two spatial dimensions. Different stable phases
were found in the parameter space of the model. These
include isotropic, nematic, columnar, smectic-A, and plastic
crystalline phases. The plastic crystalline phases can possess
a periodic triangular, square, or honeycomb structure with a
complex orientation field. The phase diagrams were obtained
by a numerical minimization of the free-energy functional but
are, in most but not all cases, qualitatively in line with much
simpler one-mode approximations for the order-parameter
fields. We hope that this work will inspire more simulations
and experiments to observe the unexpected predicted phases
(like the square and honeycomb crystals) in two dimensions
[47–51]. One can think about the realization of molecular

liquid crystals as well as concentrated solutions of anisotropic
colloidal particles [52,53] or anisotropic mesoscopic dust
particles in a plasma [54,55]. In particular, it would be
challenging to explore the orientation field and the associated
defect lattice in plastic crystals either by simulations [38] or
by experiments [39,40].

An important further step is to calculate the full liquid
crystalline phase diagram for a given interparticle potential
as a function of the real thermodynamic variables, namely
temperature and number density. This phase diagram is
known from computer simulations and from the theory for
hard spherocylinders [35,56], for hard ellipsoids [57], for
the Gay-Berne model [58,59], and for Yukawa segment
models [28]. To do this, one has to map the system at a
given temperature and density onto the parameter space. This
mapping needs the full direct pair-correlation function of
the isotropic phase as an input. The latter can be obtained
either by simulation and liquid-integral equations for
anisotropic systems [60] or by fundamental-measure theory
for anisotropic hard particles [20].

In future work, the model can be applied and solved for
more complicated situations such as the interfaces between two
coexisting phases. While the isotropic-nematic interface has
been studied by theory, simulation, and experiment [61,62], it
would be, in particular, interesting to get structural information
about solid-fluid and solid-solid interfaces. Then the interfacial
tension is anisotropic and the degree of anisotropy can be
extracted from the PFC approach. The structure of topological
defects would be another playground to where the present
approach could be applied [50,63].

Moreover, the extension toward dynamics is straightfor-
ward [31] and the numerical implementation can, in principle,
be done. We expect a wealth of different dynamical growth
effects [64] and novel steady states in systems driven by
external [65] and internal [30,66,67] forces. Finally, a big
challenge is to implement the functional in three spatial
dimensions where there are more coupling parameters [32].

ACKNOWLEDGMENTS

We thank H. R. Brand, H. Emmerich, U. Zimmermann,
M. Oettel, and M. Marechal for helpful discussions. This work
has been supported by the DFG through the DFG priority
program SPP 1296.

[1] Y. Singh, Phys. Rep. 207, 351 (1991).
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ACHIM, WITTKOWSKI, AND LÖWEN PHYSICAL REVIEW E 83, 061712 (2011)

[14] K. A. Wu and P. W. Voorhees, Phys. Rev. B 80, 125408 (2009).
[15] R. Evans, Adv. Phys. 28, 143 (1979).
[16] K. R. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant,

Phys. Rev. B 75, 064107 (2007).
[17] T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19, 2775

(1979).
[18] Y. Rosenfeld, M. Schmidt, H. Löwen, and P. Tarazona, Phys.

Rev. E 55, 4245 (1997).
[19] R. Roth, R. Evans, A. Lang, and G. Kahl, J. Phys. Condens.

Matter 14, 12063 (2002).
[20] H. Hansen-Goos and K. Mecke, Phys. Rev. Lett. 102, 018302

(2009).
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[31] H. Löwen, J. Phys. Condens. Matter 22, 364105 (2010).
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