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Raphael Wittkowski,1 Hartmut Löwen,2 and Helmut R. Brand2
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Two-dimensional polar liquid crystals have been discovered recently in monolayers of anisotropic molecules.
Here, we provide a systematic theoretical description of liquid-crystalline phases for polar particles in two spatial
dimensions. Starting from microscopic density functional theory, we derive a phase-field-crystal expression for
the free-energy density that involves three local order-parameter fields, namely the translational density, the
polarization, and the nematic order parameter. Various coupling terms between the order-parameter fields are
obtained, which are in line with macroscopic considerations. Since the coupling constants are brought into
connection with the molecular correlations, we establish a bridge from microscopic to macroscopic modeling.
Our theory provides a starting point for further numerical calculations of the stability of polar liquid-crystalline
phases and is also relevant for modeling of microswimmers, which are intrinsically polar.
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I. INTRODUCTION

The study of liquid-crystalline phases formed by banana-
shaped molecules opens the door to generate polar directions
in a partially or completely fluid system due to a collective
alignment of the polar axes of the banana-shaped (or bent-core)
molecules [1]. So far, most of the liquid-crystalline phases
formed by banana-shaped molecules have been smectic [2–6],
but there have also been a few reports of nematic phases
in this area [6–9]. In parallel, there has been a considerable
amount of work in Watanabe’s group to generate polar nematic
and cholesteric phases in liquid-crystalline polymers [10–14].
Among the polar nematic phases, a nematic phase with a
symmetry as low as C1h (or Cs) was found [13], confirming
earlier predictions about polar nematic phases with low
symmetry [15].

About 25 years ago, there was already an early effort
to synthesize polar nematics in systems composed of fairly
large platelike molecules [16] (to avoid the flipping and thus
to generate a lack of n̂ → −n̂ symmetry, with n̂ being the
average preferred direction, usually called the director [17]).
At about the same time, compounds composed of pyramidic
molecules were synthesized with the same goal [18], but
clear-cut evidence for a polar nematic could not be provided in
either case. This early work, however, triggered early modeling
in the framework of a Ginzburg-Landau description [19], and
it was pointed out that phases with defects, in particular with
spontaneous splay, should play an important role in such
systems. It was predicted that a phase with defects would
occur first in the vicinity of the phase transition to the polar
nematic phase.

In 2003, the group of Tabe [20] found a two-dimensional
polar nematic phase in Langmuir monolayers using the
measurements of ferroelectric response and optical investi-
gations in a low-molecular-weight compound composed of
rodlike molecules. Very recently, there were two additional
reports on a ferroelectric response of a nematic phase in
three-dimensional samples in compounds composed of bent-
core molecules [21,22], but it has yet to be determined
whether the ferroelectric response was due to a field-induced

reorganization of cybotactic clusters—as suggested by the
authors—or due to a bulk polar nematic behavior of a phase
containing defects of the type outlined above.

Triggered by the reports of nematic phases in banana-
shaped molecules, a macroscopic description of polar nematic
phases in three spatial dimensions was derived [23,24]. It
turned out that the absence of parity symmetry leads in such a
fluid system to a number of cross-coupling terms between
the macroscopic polarization and the other hydrodynamic
variables, both statically and in the dissipative dynamic regime.
In addition, it was found, both for reversible as well as
for irreversible dynamics, that there are new cross-coupling
terms not present in typical liquid-crystalline systems not
breaking parity symmetry, such as, for example, reversible
dynamic cross-coupling terms between flow and temperature
or concentration gradients.

Therefore, it is of high interest to have a more micro-
scopic description evaluating the new cross-coupling terms
quantitatively to aid the synthesis of new materials for which
corresponding effects can be substantial. In this paper, we
start such a program using a phase-field-crystal (PFC) model
[25–27] to analyze the static behavior of polar phases in two
spatial dimensions. This approach can be used as a bridge
from microscopic to macroscopic modeling. We will system-
atically compare the results obtained from the PFC model
to those obtained using symmetry-based approaches, such as
the Ginzburg-Landau approach, a mean-field description of
phase transitions neglecting fluctuations, and the approach of
generalized hydrodynamics or macroscopic dynamics [28].

While in the former only variables are taken into account
that lead to an infinite lifetime for excitations in the long-
wavelength limit, the approach of macroscopic dynamics also
incorporates variables, which relax on a sufficiently long but
finite time scale in the limit of vanishing wave number. In
the realization of our program, we strongly build on the
foundations given for the static PFC model for nematics and
other phases with orientational order in two [26] and three [27]
spatial dimensions. In carrying out this program, it turns out
that it is of crucial importance for polar orientational order to
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go beyond the Ramakrishnan-Yussouff approximation [29],
which is usually used in the area of PFC models. As a
matter of fact, many of the cross-coupling terms would not be
obtained if the Ramakrishnan-Yussouff approximation were
implemented. The proposed model can be used as a starting
point to explore phase transitions and interfaces for various
polar liquid-crystalline sheets, in particular including plastic
and full crystalline phases where the translational density
shows a strong ordering.

The paper is organized as follows: In Sec. II, we derive
a PFC model for polar liquid crystals. Then, in Sec. III, we
discuss the relation of the two symmetry-based approaches
with the PFC model studied in Sec. II, and we show that many
of the coefficients arising in the symmetry-based approaches
can be linked to microscopic expressions via the PFC model.
We finally discuss possible extensions of the model to more
complicated situations, and we give final conclusions in
Sec. IV.

II. PHASE-FIELD-CRYSTAL MODEL FOR POLAR
LIQUID CRYSTALS

In general, a theory for polar liquid-crystalline phases can
be constructed on three different levels. First of all, a full
microscopic theory in which the particle interactions and the
thermodynamic conditions are the only input is provided by
classical density functional theory (DFT) [30–33]. DFT is
typically used for isotropic particles [29,34–36] but analo-
gously holds for anisotropic particle interactions [36–40]. The
second level, which can be called mesoscopic, is the phase-
field approach in which lowest-order gradients of an order-
parameter field are considered [41]. This can be performed up
to fourth-order gradients to describe a stable crystalline state
with order-parameter oscillations leading to the seminal PFC
model of Elder and co-workers [42–44]. The prefactors can
be brought into relation with the microscopic DFT approach
[25,45]. The PFC model has been used extensively to study
numerically freezing and melting phenomena on a microscopic
length but much larger (diffusive) time scales [46–53]. Finally,
the third level consists of macroscopic continuum approaches
[17,28,54–56], which respect the basic symmetries. Here,
the prefactors are phenomenological elastic constants. PFC
modeling can be used to assign a microscopic meaning to the
prefactors, thus linking the microscopic DFT approach to the
symmetry-based approach.

In this section, a PFC model for polar liquid crystals in
two spatial dimensions is derived from DFT by a systematic
gradient expansion of various coarse-grained order-parameter
fields. As a result, we get a free-energy functional that involves
the order-parameter fields and their spatial derivatives. The
prefactors of various contributions are expressed as general-
ized moments of direct correlation functions in the isotropic
state, which provides a bridge between microscopic density
functional theory and macroscopic approaches.

A. Static free-energy functional

We consider a two-dimensional system of N anisotropic
particles with the center-of-mass positions �ri and orienta-
tions that are characterized by the unit vectors ûi with

i ∈ {1, . . . ,N}. To provide uniaxiality, we assume the ex-
istence of a symmetry axis for the anisotropic particles.
Furthermore, we assume a broken head-tail-symmetry, i.e.,
we assume polar particles. This polar system is restricted to
the domain A ⊆ R2 with the total area

A =
∫
A
d�r (1)

and kept at a finite temperature T . The polar particles
are supposed to interact in accordance with a prescribed
pair-interaction potential V(�r1 − �r2,û1,û2). Typical examples
include particles with an embedded dipole moment [57–59]
modeled by a dipolar hard disk potential, colloidal pearlike
particles [60,61] with corresponding excluded volume inter-
actions, Janus particles [62,63], which possess two different
sides, and asymmetric brush polymers modeled by Gaussian
segment potentials [64].

We define the one-particle density field as

ρ(�r,û) =
〈 N∑

i=1

δ(�r − �ri) δ(û − ûi)

〉
(2)

with the mean particle number density

ρ̄ = N

A
, (3)

where

〈O〉 = 1

Z

∫
A
dN �r

∫
S1

dN û O e−β
∑N

i<j=1 V(�ri−�rj ,ûi ,ûj ) (4)

is the classical canonical average of the observable O. Here,
we introduced the notation dn�x = d �x1 · · · d �xn for an arbitrary
vector �x and n ∈ N.Z denotes the classical canonical partition
function and guarantees correct normalization such that 〈1〉 =
1. Furthermore, β = 1/(kBT ) is the inverse temperature with
the Boltzmann constant kB , and S1 is the unit circle. The
one-particle density ρ(�r,û) describes the probability density
ρ(�r,û)/ρ̄ to find a particle with orientation û at position
�r . Due to the restriction on two spatial dimensions, the
orientation û(ϕ) = ( cos(ϕ), sin(ϕ)) is entirely defined by the
polar angle ϕ. A collective ordering of a set of particles
may lead to a macroscopic polarization whose local direction
can be expressed by the space-dependent dimensionless unit
vector p̂(�r) = û(ϕ0(�r)), that is, parametrized by a scalar
order-parameter field ϕ0(�r).

Under the assumption of small anisotropies in the orien-
tation, it is now possible to expand the one-particle density
ρ(�r,û) with respect to the angle ϕ − ϕ0(�r) between the
particular orientation û and the macroscopic polarization p̂(�r)
into a Fourier series. Throughout this paper, we will assume
explicitly that the preferred direction associated with dipolar
order, p̂, and the direction associated with quadrupolar order,
n̂, are parallel. We will therefore use p̂ in the following.
In general, these two types of order can be associated with
two different preferred directions (compare, e.g., Ref. [15]).
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The expansion with respect to orientation results in the
approximation

ρ(�r,û) ≈ ρ̄

[
1 + ψ1(�r) + P (�r)[p̂(�r) · û]

+S(�r)

(
[p̂(�r) · û]2 − 1

2

)]
, (5)

where the Fourier series is truncated at second order. Here,
we introduced three additional dimensionless order-parameter
fields ψ1(�r), P (�r), and S(�r). These order-parameter fields are
the reduced orientationally averaged translational density

ψ1(�r) = 1

2πρ̄

∫
S1

dû [ρ(�r,û) − ρ̄] , (6)

the strength of the polarization

P (�r) = 1

πρ̄

∫
S1

dû ρ(�r,û)[p̂(�r) · û], (7)

and the nematic order parameter

S(�r) = 4

πρ̄

∫
S1

dû ρ(�r,û)

(
[p̂(�r) · û]2 − 1

2

)
, (8)

which measures the local degree of orientational order. The
strength P (�r) of the polarization and the director p̂(�r) are
modulus and orientation of the polarization �P (�r) = P (�r)p̂(�r).
Note that for apolar particles [26], P (�r) = 0 such that apolar
particles result as a special limit from the present theory.

Now we refer to microscopic density functional theory,
which is typically formulated for spherical systems [30–32]
but can also be constructed for anisotropic particle interactions
(which dates back to Onsager) [36–40]. Density functional
theory establishes the existence of a free-energy functional
F[ρ(�r,û)] of the one-particle density ρ(�r,û), which becomes
minimal for the equilibrium density. The total functional can
be split into an ideal rotator gas functional and an excess
functional:

F[ρ(�r,û)] = Fid[ρ(�r,û)] + Fexc[ρ(�r,û)] . (9)

The ideal gas functional is local and nonlinear, and it is exactly
given by

βFid[ρ(�r,û)] =
∫
A
d�r

∫
S1

dû ρ(�r,û){ln[�2ρ(�r,û)] − 1},
(10)

where � denotes the thermal de Broglie wavelength. The
excess functional Fexc[ρ(�r,û)], on the other hand, is unknown
in general [i.e., for a nonvanishing V(�r1 − �r2,û1,û2)] and
approximations are needed. However, there is a formally
exact expression gained from a functional Taylor expansion
in the density variations 	ρ(�r,û) = ρ(�r,û) − ρ̄ around a
homogeneous reference density ρ̄ [30]:

βFexc[ρ(�r,û)] = βF (0)
exc(ρ̄) −

∞∑
n=2

1

n!
F (n)

exc[ρ(�r,û)] (11)

with the nth-order contributions

F (n)
exc[ρ(�r,û)] =

∫
A
d�r

∫
S1

dû c(n)(�r,û)
n∏

i=1

	ρ(�ri,ûi) . (12)

Here, c(n)(�r,û) denotes the n-particle direct correlation func-
tion, and the notation �x = (�x1, . . . ,�xn) for an arbitrary vector
�x is used. The first term on the right-hand side of Eq. (11)
corresponds to n = 0 and is an irrelevant constant that can be
neglected. We remark that also the first-order term [n = 1
in Eq. (12)] vanishes since in a homogeneous reference
state, c(1)(�r1,û1) must be constant due to translational and
orientational symmetry.

For isotropic particles, various approximations based on
expression (11) have been proposed. The theory of Ramakr-
ishnan and Yussouff [29] keeps only second-order terms in the
expansion. This provides a microscopic theory for freezing
both in three [29] and two spatial dimensions [65]. More
refined approaches include the third-order term [66] with an
approximate triplet direct correlation function [67,68], but a
perturbative fourth-order theory has never been considered.
Complementary, nonperturbative approaches like the recently
proposed fundamental-measure theory for arbitrarily shaped
hard particles [36] include direct correlation functions of
arbitrary order.

We now insert the parametrization (5) of the one-particle
density into Eqs. (10) and (11) to obtain a free-energy
functional of the order-parameter fields ψ1(�r), P (�r), S(�r),
and p̂(�r). First, after inserting the density parametrization (5)
into the ideal gas functional (10), we expand the logarithm
and truncate the expansion of the integrand at fourth order.
This order guarantees stabilization of the solutions (similar to
the traditional Ginzburg-Landau theory of phase transitions).
Performing the angular integration results in the approximation

βFid[ρ(�r,û)] ≈ Fid + πρ̄

∫
A
d�r fid (13)

with the local ideal rotator gas free-energy density

fid = 2ψ1 + ψ2
1 − ψ3

1

3
+ ψ4

1

6
+ P 2

2
− ψ1P

2

2

+ψ2
1 P 2

2
− P 2S

8
+ ψ1P

2S

4
+ P 4

16

+S2

8
− ψ1S

2

8
+ ψ2

1 S2

8
+ P 2S2

16
+ S4

256
(14)

and the abbreviation

Fid = 2πρ̄ A [ln(�2ρ̄) − 1] (15)

for a constant and therefore irrelevant term.
Secondly, we insert the density parametrization (5) into

Eq. (11). We will truncate this expansion at fourth or-
der. Since the nth-order direct correlation function c(n) in
Eq. (11) is not known in general, we expand it into a Fourier
series with respect to its orientational degrees of freedom. By
considering the translational and rotational invariance of the
direct correlation function, we can use the parametrization
c(n+1)(R,φR,φ) with R = (R1, . . . ,Rn), φR = (φR1 , . . . ,φRn

),
and φ = (φ1, . . . ,φn) for the direct correlation function c(n+1)

to reduce its orientational degrees of freedoms from 2n + 2
to 2n. Here, the new variables are related to the previous
ones by �r1 − �ri+1 = Riû(ϕRi

), ûi = û(ϕi), φRi
= ϕ1 − ϕRi

,
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and φi = ϕ1 − ϕi+1. With this parametrization, the Fourier
expansion of the direct correlation function reads

c(n+1)(R,φR,φ) =
∞∑

lj ,mj =−∞
1�j�n

c̃
(n+1)
l,m (R)ei(l·φR+m·φ) (16)

with the expansion coefficients

c̃
(n+1)
l,m (R) = 1

(2π )2n

∫ 2π

0
dφR

∫ 2π

0
dφ

× c(n+1)(R,φR,φ)e−i(l·φR+m·φ) . (17)

Next, we set A = R2 and perform a gradient expansion
[25,69–72] in the order-parameter fields. For the term (12)
corresponding to n = 2, this gradient expansion is performed
up to fourth order in ψ2

1 (�r) to allow stable crystalline phases
and up to second order in all other order-parameter products,
where we assume that the highest-order gradient terms ensure
stability. However, for n = 3 and 4, we truncate the gradient
expansion at first and zeroth order, respectively. This results in
the components

F (n)
exc[ψ1,P ,S,p̂] ≈

∫
R2
d�r f (n)

exc (18)

of the static excess free-energy functional. In this equation, the
excess free-energy densities f (n)

exc (�r) are local and given by

f (2)
exc = A1ψ

2
1 + A2( �∇ψ1)2 + A3(�ψ1)2

+B1ψ1 �∇ · (p̂P ) + B2S[p̂ · �∇P − P ( �∇ · p̂)]

+B3( �∇ψ1 · �∇S − 2(p̂ · �∇ψ1)(p̂ · �∇S)

−2S �∇ψ1 · [(p̂ · �∇)p̂ + p̂( �∇ · p̂)])

+P 2[C1 − C2(p̂ · �p̂) − C3(p̂ · �∇)( �∇ · p̂)]

+C2( �∇P )2 + C3(p̂ · �∇P )2

+S2[D1 − 4D2(p̂ · �p̂)] + D2( �∇S)2, (19)

f (3)
exc = E1ψ

3
1 + E2ψ1P

2 + E3ψ1S
2 + E4SP 2

+(F1ψ1 + F2S)P (p̂ · �∇ψ1)

+(2F3ψ1S + F4P
2 + F5S

2)(p̂ · �∇P )

+(F3ψ1 + F6S)P (p̂ · �∇S), (20)

f (4)
exc = G1ψ

4
1 + G2ψ

2
1 P 2 + G3ψ

2
1 S2

+G4ψ1P
2S + G5P

2S2 + G6P
4 + G7S

4 (21)

with the coefficients

A1 = 8 M0
0(1) , A2 = −2 M0

0(3) , A3 = 1

8
M0

0(5) (22)

in the gradient expansion in ψ2
1 (�r), which also appear—in a

different form—in the traditional PFC model of Elder and
co-workers [25]. The coefficients

B1 = 4
(
M0

1(2) − M1
−1(2)

)
, (23)

B2 = M2
−1(2) − M1

1(2) , (24)

B3 = 1
2

(
M2

−2(3) + M0
2(3)

)
(25)

belong to the terms that contain gradients and the modulus
of the polarization P (�r) in first order or that describe the
coupling between gradients in the translational density ψ1(�r)
and gradients in the nematic order parameter S(�r), respectively.
The following three coefficients

C1 = 4 M1
0(1) , (26)

C2 = 1
2 M1

−2(3) − M1
0(3) , (27)

C3 = −M1
−2(3) (28)

appear in the gradient expansion regarding P 2(�r), and

D1 = M2
0(1) , D2 = − 1

4 M2
0(3) (29)

are the coefficients of the gradient expansion in S2(�r). So
far, all these coefficients can also be obtained by using
the second-order Ramakrishnan-Yussouff functional for the
excess free energy. The remaining coefficients, however,
result from higher-order contributions in our functional Taylor
expansion. In third order, we find for the homogeneous terms
the coefficients

E1 = 32 M̂00
00 , (30)

E2 = 16
(
M̂−11

00 + 2 M̂01
00

)
, (31)

E3 = 4
(
M̂−22

00 + 2 M̂02
00

)
, (32)

E4 = 4
(
2 M̂−21

00 + M̂11
00

)
, (33)

and for the terms containing a gradient, we find the coefficients

F1 = −32
(
M̃−10

01 − 2 M̃0−1
01 + M̃00

01

)
, (34)

F2 = −8
(
M̃−20

01 + M̃−21
01 − 2 M̃0−2

01 − 2 M̃1−2
01 (35)

+M̃10
01 + M̃01

01

)
, (36)

F3 = −8
(
M̃−21

01 − M̃0−2
01 − M̃1−2

01 + M̃01
01

)
, (37)

F4 = 16
(
M̃−1−1

01 − 2 M̃−11
01 + M̃1−1

01

)
, (38)

F5 = −4
(
M̃−22

01 − M̃−1−2
01 + M̃−12

01 − M̃2−2
01

)
, (39)

F6 = 2
(
2 M̃−2−1

01 − 5 M̃−22
01 − 5M̃−12

01 + 3 M̃−1−2
01 (40)

+3 M̃2−2
01 + 2 M̃2−1

01

)
. (41)

In fourth order, we only kept homogeneous terms. The
corresponding coefficients are

G1 = 128 M̂000
000 , (42)

G2 = 192
(
M̂−101

000 + M̂001
000

)
, (43)

G3 = 48
(
M̂−202

000 + M̂002
000

)
, (44)

G4 = 48
(
2 M̂−201

000 + M̂−211
000 + M̂011

000

)
, (45)

G5 = 24
(
M̂−212

000 + M̂−112
000

)
, (46)

G6 = 48 M̂−111
000 , (47)

G7 = 3 M̂−222
000 . (48)
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All the coefficients from above are linear combinations of
moments of the direct correlation functions. These moments
are defined through

Mm

l (α) = π2n+1ρ̄n+1

(
n∏

i=1

∫ ∞

0
dRiR

αi

i

)
c̃

(n+1)
l,m (R) . (49)

To shorten the notation, we introduced the abbreviations M̂m

l =
Mm

l (1) and M̃m1m2
l1l2

= Mm1m2
l1l2

(1,2) and used some symmetry
considerations that are outlined in Appendix A. The moments
over expansion coefficients of the direct correlation functions
depend on the particular thermodynamic conditions and
therefore on the parameters ρ̄ and T .

For stability reasons, we assume that the coefficients of the
highest-order terms in the gradients and order-parameter fields
are positive in the full free-energy functional. If this appears
not to be the case for a certain system, it is necessary to take
into account further terms of the respective order-parameter
field up to the first stabilizing order.

Equations (19)–(21) constitute the main result of the paper:
a systematic gradient expansion of order-parameter fields in
the free-energy functional. The prefactors are moments of
various direct correlation functions and therefore provide the
link to microscopic correlations. This is similar in spirit to PFC
models [25,43–46,53] for spherical particles.

B. Special cases of the phase-field-crystal model

We now discuss special cases of our model. First of all,
Eqs. (19)–(21) are an extension of the excess free-energy
density for apolar particles that was recently proposed in
Ref. [26]. This extension comprises a possible polarization
of liquid-crystalline particles as well as an enlarged functional
Taylor expansion that is beyond the scope of the second-order
(Ramakrishnan-Yussouff) approximation. Because of that, our
free-energy functional contains a few simpler models as
special cases and is therefore the main result of this paper.
Two special models that are known from the literature and
can be obtained from our model by setting some of the
order-parameter fields to zero are the traditional PFC model
of Elder and co-workers [25] for isotropic particles without
orientational degrees of freedom, and the PFC model of
Löwen [26] for apolar anisotropic liquid crystals in two spatial
dimensions. In comparison with our free-energy functional,
the two mentioned models are based on the Ramakrishnan-
Yussouff approximation. The traditional PFC model has only
one order-parameter field. This is the translational density that
corresponds to ψ1(�r) in our model. If we set all order-parameter
fields that are related to orientational degrees of freedom in our
PFC model to zero, i.e., P (�r) = 0 and S(�r) = 0, and neglect all
higher-order contributions for n � 2 in the functional Taylor
expansion (11), then we obtain the traditional PFC model of
Elder and co-workers. The PFC model of Löwen considers
anisotropic particles with one orientational degree of freedom
but no polarization. Therefore, this PFC model results from
our model for a vanishing polarization P (�r) = 0. Also here,
we have to neglect all contributions (12) for n � 2.

III. MACROSCOPIC APPROACHES

In this section, we investigate the bridge between the
PFC model presented in detail in the preceding section
for polar liquid crystals in two spatial dimensions and the
symmetry-based macroscopic approaches: Ginzburg-Landau
and generalized continuum description. In addition, we can
also compare these results obtained for polar liquid crystals
in two spatial dimensions with those obtained previously for
nonpolar liquid crystals in two [26] as well as in three [27]
spatial dimensions.

The general PFC results of this paper have been summarized
in Eqs. (19)–(21). We first analyze the terms given in Eq. (19),
which are quadratic in the variables and their gradients.

We start with terms containing only the translational density
and its gradients in Eq. (19). In the vicinity of the smectic-A-
isotropic transition, one has for the smectic order parameter
[55]

ψ(�r) = ψ0e
+iϕ(�r) (50)

and for the density

ρ(�r) = ρ̄ + ψ0[e+iϕ(�r) + e−iϕ(�r)] (51)

with the average homogeneous density ρ̄ (compare also Sec.
6.3 of Ref. [56] for a detailed discussion). Since the total free
energy must be a good scalar, the smectic order parameter
can enter the free energy only quadratically. For the lowest-
order terms in the energy density f (�r), which we define as the
integrand of the free-energy functional

F[ρ,P,S] =
∫
R2
d�r f , (52)

we have [73]

1

2
α|ψ |2 + 1

2
b1| �∇ψ |2 + 1

2
b2|�ψ |2 . (53)

Comparing Eq. (53) and the first three terms in Eq. (19), we
can make the identifications A1, A2, and A3 with −α, −b1,
and −b2, respectively. This situation is similar for nonpolar
nematics in three spatial dimensions [27], where A1, A2,
and A3 are defined with different signs, and for nonpolar
nematics in two spatial dimensions [26], where one must
identify 4π2ρ̄A, −4π2ρ̄B, and 4π2ρ̄ C with α, b1, and b2,
respectively.

For the terms containing only the nonpolar orientational
order S(�r) in Eq. (19), we have two contributions to compare
to other approaches. One is spatially homogeneous ∼D1 and
the other is quadratic in the gradients of the orientational order
∼D2. The first contribution can be directly compared with the
term A

2 QijQij in de Gennes’ pioneering paper [54]. Using the
structure Qij = S(pipj − 1

2δij ) for the conventional nematic
order parameter in two spatial dimensions, we find D1 = −A

using the original notation of Ref. [54]. For the gradient terms
in the Ginzburg-Landau approximation, one has at first glance
two contributions to the energy density just using the three-
dimensional expression [54]

L1(∇iQjk)(∇iQjk) + L2(∇iQik)(∇jQjk) (54)

for two spatial dimensions. A straightforward calculation
shows that the two contributions are identical in two
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dimensions, however, with L1 = 2L2 and thus one indepen-
dent coefficient just as for the PFC model, where one has the
contribution ∼D2.

For the terms associated exclusively with orientational
order, we have, when specialized to two spatial dimensions, in
the continuum description in the energy density

K1( �∇ · p̂)2 + K3(p̂ × [ �∇ × p̂])2

+L‖(pi∇iS)2 + L⊥δ⊥
ij (∇iS)(∇j S)

+ M(∇iS)[δ⊥
ikpj + δ⊥

jkpi](∇jpk) , (55)

where δ⊥
ij = δij − pipj is the transverse Kronecker symbol

projecting onto the direction perpendicular to the preferred
direction p̂(�r). In Eq. (55), the first line is connected to
gradients of the director field p̂(�r). It contains in two spatial
dimensions only splay and bend and no twist and goes back to
Frank’s pioneering paper [17,74]. Lines 2 and 3 in Eq. (55) are
associated with gradients of the nematic modulus, S(�r), and
with a coupling term ∼M between gradients of the director
and gradients of the modulus [75,76]. We finally note that the
gradient terms in Eq. (19) are identical to the ones given in
Ref. [26], where we must identify −D2/2 in the present paper
with 2π2ρ̄E in Ref. [26]. This must indeed be the case, since
polar nematics contains the case of nonpolar nematics as a
special case in the PFC approach.

Next, we come to the terms containing only contributions
of the macroscopic polarization �P (�r), or equivalently, its
magnitude (modulus) P (�r) and its direction p̂(�r). The term
∼C1 in Eq. (19) is the standard quadratic term for a Landau
expansion near, for example, the paraelectric-ferroelectric
transition [77]. It also emerges when the phase transition
isotropic to polar nematic is studied in the Ginzburg-Landau
approximation [19]. The terms that are quadratic in gradients
of �P (�r), i.e., the contributions ∼C2 and ∼C3 in Eq. (19), can
be compared to the result of a Ginzburg-Landau approach,

D̃1(∇iPi)(∇jPj ) + D̃2(∇iPj )(∇iPj ), (56)

and contain two independent contributions even in the isotropic
phase [19] in two spatial dimensions, as is easily checked
explicitly.

The gradient terms for the macroscopic polarization, or
equivalently for its magnitude P (�r) and its direction p̂(�r),
can also be compared to the macroscopic description of polar
nematics [23,24]. For the corresponding terms, we have

1

2
K

(2)
ij (∇iδP )(∇j δP ) + 1

2
Kijkl(∇ipj )(∇kpl)

+K
(3)
ijk(∇iδP )(∇jpk) , (57)

where δ denotes deviations from the equilibrium value, in
particular δP = P − P0, and where the tensors are of the form

Kijkl = 1

2
K1

(
δ⊥
ij δ

⊥
kl + δ⊥

il δ
⊥
jk

)
+K3 pipkδ

⊥
j l , (58)

K
(2)
ij = K4 pipj + K5 δ⊥

ij , (59)

K
(3)
ijk = K6

(
piδ

⊥
jk + pjδ

⊥
ik

)
. (60)

Equation (57) represents the analog of the Frank orientational
elastic energy (∼Kijkl) with splay and bend, the energy
associated with gradients of the modulus (∼K

(2)
ij ), and a cross-

coupling term between gradients of the preferred direction
to gradients of the order-parameter modulus (∼K

(3)
ijk)—the

analog of the corresponding term in nonpolar nematics [75,78].
The contributions ∼C2 and ∼C3 in Eq. (19) are the PFC

analogs of the contributions ∼K
(2)
ij and ∼Kijkl in Eq. (57).

Instead of four independent coefficients in the macroscopic
description in two spatial dimensions, the PFC model gives
rise to two. The contribution ∼K6 has no direct analog in the
PFC model.

Next, we start to compare cross-coupling terms between
gradients of the variables. The discussion for the coupling
terms between gradients of the density and gradients of
the orientational order closely parallels that for the three-
dimensional nonpolar nematic case. In Eq. (19), the terms of
interest are proportional to B3. In Ref. [27], these are the terms
∼B2. A comparison of these two expressions reveals that they
are identical in structure and that one has to take into account
just the change in dimensionality. For spatial gradients in the
director field coupling to spatial variations in the density ρ(�r),
we find in the energy density [76,79]

λρ(∇iρ)[δ⊥
ikpj + δ⊥

jkpi](∇jpk) . (61)

By comparison with Eq. (19), we find λρρ̄ = B3S. Finally, we
have for the terms coupling gradients of the order-parameter
modulus S(�r) to gradients of the density [76]

N
ρ

ij (∇iS)(∇jρ) , (62)

where the second-rank tensor Nρ is of the standard uniaxial
form N

ρ

ij = N
ρ

1 pipj + N
ρ

2 δ⊥
ij . A comparison with Eq. (19)

yields 2N
ρ

1 ρ̄ = B3 and 2N
ρ

2 ρ̄ = −B3. The coupling terms
listed in Eqs. (61) and (62) exist in both two and three spatial
dimensions. Thus, in comparison to the hydrodynamic de-
scription of the bulk behavior, which is characterized by three
independent coefficients, we find one independent coefficient
in the PFC model. In the framework of a Ginzburg-Landau
approach using the orientational order parameter Qij (�r), we
find in the isotropic phase

P ξ (∇iQjk)(∇lρ)(δij δkl + δikδjl) (63)

and thus one independent coefficient—as has also been the
case for the nonpolar PFC model in three dimensions [27] as
well as in two dimensions [26].

The contributions ∼B1 and ∼B2 contain gradients of the
macroscopic polarization �P (�r) and couple to density and
quadrupolar order. They are unique to systems with polar order,
or more generally, to systems with broken parity symmetry,
since they contain one gradient and one factor �P (�r). Such
coupling terms are not possible, for example, in nonpolar
nematics or smectic-A phases. The term ∼B1 can easily be
compared with the macroscopic description of polar nematics
given in Ref. [23]. The relevant terms from Eq. (1) of Ref. [23]
read

β1δρ(pi∇iδP ) + β̄1δρ(∇jpj ) , (64)

where δρ = ρ − ρ̄. We thus read off immediately that when
comparing to the PFC model, we have 2β1ρ̄ = −B1 and
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2β̄1ρ̄ = −B1P , that is, one independent coefficient in the PFC
model and two in the macroscopic description. For the term
∼B2, the situation is similar. One has to replace in Eq. (64) δρ

by δS, where S(�r) is the modulus of the quadrupolar nematic
order parameter with coefficients denoted by β4 and β̄4. Then
one makes the identifications 2β4 = −B2 and 2β̄4 = B2P . For
the contribution ∼B2 we can also easily make contact with
the Ginzburg-Landau picture. For the coupling of Pi(�r) and
its gradients to quadrupolar orientational order, we obtain to
lowest order in the Ginzburg-Landau energy density

gijklPl(∇kQij ) (65)

with gijkl = g(δikδjl + δilδjk). This term has been given before
for the isotropic-smectic-C∗ phase transition in liquid crystals
[80] for which the polarization Pi(�r) is a secondary-order
parameter. We note that the contribution ∼B2 in Eq. (19) can
be brought into a form identical to that of Eq. (65), when it is
rewritten in terms of Qij (�r) and �P (�r). This shows once more
the close structural connection between PFC modeling and the
Ginzburg-Landau approach.

The spatially homogeneous contributions in Eq. (20) can all
be interpreted in the symmetry-based framework as well. The
term ∼E4 arises near the smectic-C∗-isotropic phase transition
[80]: QijPiPj . The terms ∼E2 and ∼E3 can be interpreted
as the density dependence of the terms ∼ �P 2 and ∼QijQij

in the Landau description of the polar nematic-isotropic [19]
and the nonpolar nematic-isotropic [54] phase transitions.
Finally, the contribution ∼E1 would arise in a macroscopic
description as a term cubic in the density variations: (δρ)3.
Typically, such terms are considered to be of higher order in
a macroscopic approach. The physical interpretation of this
term is a density dependence of the compressibility.

Most of the terms in Eq. (20) containing one gradient,
namely all terms containing Fi , except for F4, can be
interpreted in the framework of macroscopic dynamics as
higher-order corrections to the terms ∼β1, ∼β4, ∼ β̄1, and
∼ β̄4 discussed above. They correspond in this picture to the
dependence of the coefficients βi and β̄i on the density changes
δρ(�r) and variations in the modulus of the quadrupolar order
parameter δS(�r). There is one exception to this picture, and
this is the term ∼F4 in Eq. (20). It is also this term that has
an analog in the field of the Ginzburg-Landau description of
ferroelectric materials:

PiPi(∇jPj ) . (66)

This nonlinear gradient term has been introduced in
Ref. [81], and it was demonstrated by Felix et al. [82] that
this term leads to qualitative changes in the phase diagram
near the paraelectric-ferroelectric transition, giving rise also
to incommensurate structures.

In Eq. (21), spatially homogeneous terms that are of fourth
order in the order parameters are presented. Most of them are
familiar from Landau energies near phase transitions. The first
contribution, the term ∼G1, arises for all isotropic-smectic
phase transitions [73,80,83] as well as for the nematic-smectic-
A and the nematic-smectic-C transitions [17,55]: ∼|ψ |4. The
contribution ∼G6 arises near the paraelectric-ferroelectric
phase transition [77,82] and has also been used near the
isotropic-polar-nematic transition [19]: ∼ �P 4. The term ∼G7

is familiar from the nonpolar nematic to isotropic [54] and
the smectic-A to isotropic [73] transitions: ∼ (QijQij )2. The
cross-coupling term ∼G3 corresponds to an analogous term
for isotropic-smectic transitions [73,80,83]: |ψ |2QijQij . For
the Ginzburg-Landau description of the smectic-C∗-isotropic
transition, the term ∼G2 arises [80]: |ψ |2 �P 2. The term ∼G5

also has an analog at the smectic-C∗-isotropic transition, where
it has not been discussed before. However, for the nonpolar
nematic-to-isotropic phase transition in an electric field, it was
shown in Ref. [84] that there are two contributions:

χ̃1EkEnQklQnl + χ̃2EnEnQklQkl . (67)

The same contributions are relevant here when the external
electric field is replaced by the polarization �P (�r). Finally, the
term ∼G4 can be viewed as the density dependence of the term
QijPiPj as it emerges near the isotropic-smectic-C∗ phase
transition [80].

IV. CONCLUSIONS AND POSSIBLE EXTENSIONS

In conclusion, we systematically derived a phase-field-
crystal model for polar liquid crystals in two spatial dimen-
sions from microscopic density functional theory. Two basic
approximations are involved: first, the density functional is
approximated by a truncated functional Taylor expansion,
which we considered here up to fourth order. Then a
generalized gradient expansion in the order parameters is
performed that leads to a local free-energy functional. The
density is parametrized by four order-parameter fields, namely
the translational density ψ1(�r), which corresponds to the
scalar phase-field variable in the traditional phase-field-crystal
model, the strength of polarization P (�r), an orientational
direction given by a two-dimensional unit vector p̂, and the
nematic order parameter S(�r). In the three latter quantities, the
gradient expansion is performed up to second order, while
it is done to fourth order in ψ1(�r) for stability reasons.
The traditional phase-field-crystal model [42,43] and the
recently proposed phase-field-crystal model for apolar liquid
crystals [26] are recovered as special cases. The additional
terms are all in accordance with macroscopic approaches
based on symmetry considerations [28,76]. The prefactors are
generalized moments of various direct correlation functions
and therefore provide a bridge between microscopic and
macroscopic approaches.

As a general feature, we find that typically the number
of independent coefficients for the phase-field crystal and
the Ginzburg-Landau approaches is the same, while in many
cases the macroscopic hydrodynamics description valid inside
the two-dimensional polar phase leads to a larger number of
independent coefficients. This appears to be a general trend,
which was also found to hold before for the comparison of
phases with three-dimensional nonpolar orientational order
[27]. In fact, it also applies to the two-dimensional phase-field-
crystal model for systems with orientational order studied in
Ref. [26].

The proposed functional, as embodied in Eqs. (19)–(21),
can be used phenomenologically to study phase transforma-
tions, for example in polar nematic sheets, interfaces between
coexisting phases [85–87], and certain biological systems
that exhibit polar order [88,89]. Since our model has more
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parameters, we expect even more complicated phase diagrams
than recently discovered numerically in the apolar phase-field-
crystal model [90].

One could also do in principle microscopic calculations
of the bulk phase diagram for a given interparticle potential
V(�r1 − �r2,û1,û2), which needs the full direct correlations
of the isotropic phase as an input. The simplest idea is
to neglect all direct correlation functions for n � 3 and
to rely on a second-order virial expression [91], where
c(2)(�r1 − �r2,û1,û2) = e−β V(�r1−�r2,û1,û2) − 1, or the random-
phase approximation for mean-field fluids [64], where
c(2)(�r1 − �r2,û1,û2) = −β V(�r1 − �r2,û1,û2).

In a next step, the analysis can be done for Brownian
dynamics based on dynamical density functional theory
[92–94], which was generalized to orientational dynamics [95]
and can be used as a starting point to derive the order-
parameter dynamics [26]. This can then be applied to describe
the translational and orientational relaxation dynamics, for
example for an orientational glass [96] or system exposed to
a periodic driving field [97]. Finally, it would be interesting
to generalize the analysis to self-propelled particles that are
driven along their orientation [98–100]. These particles are
polar by definition, and therefore the generalization to dynam-
ics of the present theory is mandatory to derive microscopic
theories [101,102] for their collective swarming behavior. A
dynamical theory could, for example, be used to investigate the
dynamical properties of bacterial growth patterns of proteus
mirabilis [103].
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APPENDIX A: SYMMETRY CONSIDERATIONS

In the derivation of the approximation for the excess free-
energy functional, a large number of expansion coefficients
c̃

(n)
l,m(R) of the direct correlation functions and moments Mm

l (α)
of these expansion coefficients appear. To reduce their total
number, we used basic symmetry considerations that are based
on four invariances of the direct correlation functions, and we
showed that many of the expansion coefficients and moments
are equal. This is why only a few moments of all possible

moments for different index combinations are present in
Eqs. (22)–(48) for the coefficients in our model. These
invariances are the translational and rotational invariance
of the direct correlation functions, which are considered by
an appropriate parametrization c(n+1)(R,φR,φ) and a Fourier
expansion (16) of the latter, as well as the invariance of the
direct correlation functions concerning the renumbering of
particles,

c(n)(. . . ,�ri, . . . ,�rj , . . . , . . . ,ûi , . . . ,ûj , . . . )

= c(n)(. . . ,�rj , . . . ,�ri, . . . , . . . ,ûj , . . . ,ûi , . . . ) , (A1)

which implies that moments that arise from each other by
simultaneous permutations of the elements in l, m, and α are
equal,

M
... ,mi ,... ,mj ,...

... ,li ,... ,lj ,...
(. . . ,αi, . . . ,αj , . . . )

= M
... ,mj ,... ,mi ,...

... ,lj ,... ,li ,...
(. . . ,αj , . . . ,αi, . . . ) , (A2)

and the invariance of the expansion coefficients (17) against
complex conjugation:

c̃
(n)
l,m(R) = c̃

(n)
l,m(R) . (A3)

The last assumption is necessary to obtain physical terms
with real coefficients in the approximation for the excess
free-energy functional. It involves the invariance of c̃

(n)
l,m(R)

against simultaneous reversal of the signs of the elements in l

and m,

c̃
(n)
−l1,... ,−ln,−m1,... ,−mn

(R1, . . . ,Rn)

= c̃
(n)
l1,... ,ln, m1,... ,mn

(R1, . . . ,Rn) , (A4)

and is equivalent to the invariance of the direct correlation
functions against reflection of the system at the first axis of
coordinates.

When the system is apolar, the liquid-crystalline particles
have head-tail symmetry. In this case, the modulus P (�r) of the
polarization is zero and its orientation p̂(�r) is not defined, while
the direction n̂(�r) associated with quadrupolar order still exists.
Then, further symmetry considerations lead to the following
equalities between expansion coefficients of the direct pair-
correlation function:

c̃
(2)
−1,1(R) = c̃

(2)
1,0(R) ,

c̃
(2)
−1,2(R) = c̃

(2)
1,1(R) ,

c̃
(2)
−2,2(R) = c̃

(2)
2,0(R) . (A5)

The consequence of these equations is that the coefficients B1

and B2 vanish and B3 becomes more simple.
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[70] H. Löwen, T. Beier, and H. Wagner, Z. Phys. B 79, 109

(1990).

061706-9

http://dx.doi.org/10.1039/a808275h
http://dx.doi.org/10.1039/a808275h
http://dx.doi.org/10.1039/b104098g
http://dx.doi.org/10.1080/15421400490434072
http://dx.doi.org/10.1080/15421400490434072
http://dx.doi.org/10.1143/JJAP.37.3408
http://dx.doi.org/10.1021/ma980302
http://dx.doi.org/10.1021/ma052424p
http://dx.doi.org/10.1021/ma0626214
http://dx.doi.org/10.1021/ma0626214
http://dx.doi.org/10.1021/jp900817v
http://dx.doi.org/10.1016/S0020-7225(99)00110-X
http://dx.doi.org/10.1016/S0020-7225(99)00110-X
http://dx.doi.org/10.1063/1.453050
http://dx.doi.org/10.1209/0295-5075/9/3/010
http://dx.doi.org/10.1143/JJAP.42.L406
http://dx.doi.org/10.1002/adfm.200801865
http://dx.doi.org/10.1039/c003310c
http://dx.doi.org/10.1103/PhysRevE.74.021713
http://dx.doi.org/10.1103/PhysRevE.74.021713
http://dx.doi.org/10.1103/PhysRevE.79.032701
http://dx.doi.org/10.1103/PhysRevE.79.032701
http://dx.doi.org/10.1103/PhysRevB.75.064107
http://dx.doi.org/10.1088/0953-8984/22/36/364105
http://dx.doi.org/10.1103/PhysRevE.82.031708
http://dx.doi.org/10.1103/PhysRevE.82.031708
http://dx.doi.org/10.1103/PhysRevB.19.2775
http://dx.doi.org/10.1103/PhysRevB.19.2775
http://dx.doi.org/10.1080/00018737900101365
http://dx.doi.org/10.1016/0370-1573(91)90097-6
http://dx.doi.org/10.1016/0370-1573(94)90017-5
http://dx.doi.org/10.1088/0953-8984/22/6/063102
http://dx.doi.org/10.1103/PhysRevE.55.4245
http://dx.doi.org/10.1103/PhysRevE.55.4245
http://dx.doi.org/10.1088/0953-8984/14/46/313
http://dx.doi.org/10.1088/0953-8984/14/46/313
http://dx.doi.org/10.1103/PhysRevLett.102.018302
http://dx.doi.org/10.1103/PhysRevLett.102.018302
http://dx.doi.org/10.1103/PhysRevLett.61.2461
http://dx.doi.org/10.1088/0953-8984/11/6/008
http://dx.doi.org/10.1088/0953-8984/11/6/008
http://dx.doi.org/10.1103/PhysRevE.57.5744
http://dx.doi.org/10.1080/00018730701822522
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevE.70.051605
http://dx.doi.org/10.1088/0953-8984/21/46/464103
http://dx.doi.org/10.1103/PhysRevE.79.051404
http://dx.doi.org/10.1103/PhysRevE.79.051404
http://dx.doi.org/10.1103/PhysRevLett.103.035702
http://dx.doi.org/10.1103/PhysRevLett.103.035702
http://dx.doi.org/10.1103/PhysRevB.78.184110
http://dx.doi.org/10.1103/PhysRevB.78.184110
http://dx.doi.org/10.1007/s10853-008-3196-7
http://dx.doi.org/10.1007/s10853-008-3196-7
http://dx.doi.org/10.1103/PhysRevLett.101.158701
http://dx.doi.org/10.1103/PhysRevLett.101.158701
http://dx.doi.org/10.1103/PhysRevB.80.125408
http://dx.doi.org/10.1103/PhysRevB.79.235317
http://dx.doi.org/10.1103/PhysRevB.79.235317
http://dx.doi.org/10.1103/PhysRevE.80.031602
http://dx.doi.org/10.1103/PhysRevE.80.031602
http://dx.doi.org/10.1088/0953-8984/22/20/205402
http://dx.doi.org/10.1088/0953-8984/22/20/205402
http://dx.doi.org/10.1080/15421407108082773
http://dx.doi.org/10.1080/15421407308083313
http://dx.doi.org/10.1103/PhysRevE.61.3838
http://dx.doi.org/10.1103/PhysRevE.68.061406
http://dx.doi.org/10.1103/PhysRevE.68.061406
http://dx.doi.org/10.1103/PhysRevE.77.051501
http://dx.doi.org/10.1103/PhysRevE.77.051501
http://dx.doi.org/10.1021/la061792z
http://dx.doi.org/10.1021/la061792z
http://dx.doi.org/10.1039/b818613h
http://dx.doi.org/10.1039/b818613h
http://dx.doi.org/10.1021/nl061857i
http://dx.doi.org/10.1021/nl061857i
http://dx.doi.org/10.1021/la800282j
http://dx.doi.org/10.1021/la800282j
http://dx.doi.org/10.1103/PhysRevE.76.021403
http://dx.doi.org/10.1103/PhysRevE.76.021403
http://dx.doi.org/10.1209/epl/i2006-10140-7
http://dx.doi.org/10.1209/0295-5075/3/5/002
http://dx.doi.org/10.1103/PhysRevLett.58.2075
http://dx.doi.org/10.1103/PhysRevLett.58.2075
http://dx.doi.org/10.1080/00268978800100541
http://dx.doi.org/10.1080/00268978800100541
http://dx.doi.org/10.1209/0295-5075/9/8/009
http://dx.doi.org/10.1209/0295-5075/9/8/009
http://dx.doi.org/10.1007/BF01387832
http://dx.doi.org/10.1007/BF01387832
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