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Dynamical density functional theory for colloidal particles with arbitrary shape
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Starting from the many-particle Smoluchowski equation, we derive a dynamical density functional theory for
Brownian particles with an arbitrary shape. Both passive and active (self-propelled) particles are considered. The
resulting theory constitutes a microscopic framework to explore the collective dynamical behavior of biaxial
particles in non-equilibrium. For spherical and uniaxial particles, earlier derived dynamical density functional
theories are recovered as special cases. Our study is motivated by recent experimental progress in preparing
colloidal particles with many different biaxial shapes.
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1. Introduction

In its original form, classical dynamical density func-

tional theory (DDFT) was derived by Marconi and

Tarazona [1] in 1999 for spherical, i.e., isotropic,

colloidal particles. Their derivation started from the

Langevin equation for spherical particles [2] that

interact via a pair potential. Later, in 2004, DDFT

was rederived by Archer and Evans [3] from the

Smoluchowski equation that corresponds to the

Langevin equation for interacting spherical particles.

In 2007, DDFT was generalized by Rex, Wensink, and

Löwen [4] to systems of uniaxial anisotropic particles

with orientational degrees of freedom. This generali-

zation is based on the Smoluchowski equation for rigid

rods [5]. It made DDFT applicable to the important

class of uniaxial liquid crystals.
Nowadays, it is already possible to produce colloi-

dal particles with rather complicated shapes including

biaxial particles. Although static classical density func-

tional theory (DFT) has presently available very pow-

erful tools like fundamental measure theory [6] that

allow us to consider also such complicated colloidal

particles in the context of DFT, the dynamics of these

biaxial particles could not up to now be investigated on

the basis of DDFT. For these reasons, it is of high

importance to push forward the development ofDDFT.
In this paper, we present a further generalization of

DDFT, which is now also applicable to biaxial parti-

cles. This extension of DDFT contains the previous

DDFT equations as special cases and does not assume a
certain shape for the colloidal particles. Instead, it is
derived for arbitrarily shaped colloids. In comparison
with the former DDFT approach, this leads to three
independent rotational diffusion coefficients instead of
only one. Since our new DDFT equation holds also for
screw-like particles, it takes even a possible transla-
tional-rotational coupling into account. Additionally,
we consider a possible self-propulsion mechanism of
the particles so that our results are also relevant for the
investigation of the collective dynamics of active
particles like swarms of swimming microorganisms as,
for example, protozoa [7].

The paper is organized as follows. After giving a
short overview in Section 2 about anisotropic colloi-
dal particle shapes that can already be synthesized, we
present our derivation of the extended DDFT equation
in Section 3. We further discuss special cases that are
known from the literature and possible applications of
the DDFT equation in Section 4. Finally, we give
conclusions and mention possible further extensions of
DDFT in Section 5.

2. Geometric classification of colloidal particles

Induced by technological advances in the processing of
nanomaterials, a large number of differently shaped
colloidal particles became synthetizable during the last
several years. The different shapes of these colloidal
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particles can be classified by means of their geometric

properties. Figure 1 shows a detailed classification of

colloidal shapes with respect to symmetry and convex-

ity. Such a classification is of great importance since

colloidal particles may form a huge set of mesotropic

phases (mesophases) [8,9] that are characterized by

different states of translational and orientational

order. The possible states of translational and orien-

tational order depend strongly on the shapes of the

particles and a classification of their shapes is therefore

also a classification of the possible phases that these

particles may evolve.
The simplest and at once fully symmetric, i.e.,

isotropic, shape is the sphere. This is the traditional

shape for colloids in theoretical soft matter physics,

because it is simple to produce and due to a lack of

orientational degrees of freedom relatively simple to

describe theoretically. Since spheres possess only trans-

lational degrees of freedom, they solely appear in the

completely disordered isotropic phase and in the

crystalline state [10]. The shape of a sphere is globally

convex and there is no non-convex analogue with full

symmetry. All other colloidal particle shapes are aniso-

tropic and either uniaxial or biaxial. The characteristic

property of uniaxial particles is a symmetry axis, whose

orientation is denoted by the unit vector û in the

following. These particles have rotational symmetry

and possess one orientational degree of freedom in two

spatial dimensions and two orientational degrees of

freedom in three spatial dimensions. Uniaxial particles

are further distinguished into apolar and polar particles.

A uniaxial particle is called apolar, if it has head-tail

symmetry and polar otherwise. Rod-like particles

[11,12] like spherocylinders, spheroids, and ellipsoids

are the simplest anisotropic colloidal particles. They are

convex and apolar and of great importance since they

may evolve the industrially important nematic phase

and serve as excellent model systems for most liquid

Figure 1. Classification of synthetizable colloidal particles with respect to their shape. Geometrical properties that were used to
classify the shapes are symmetry and convexity.
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crystals [13–15]. A furthermember of the class of convex
and apolar particles are the platelets [16–20]. They have
a similar phase diagram to rod-like particles with a
strong affinity to form columnar stacks [21]. Systems of
such disk-like particles are realized in nature for
example by clay suspensions [22–24]. Examples for
non-convex apolar particles are dumbbells (dimers)
[25–27], that are produced by merging of two spheres of
equal size, and rings [28,29], that can bemade by etching
from colloidal spheres that are partially embedded in a
metal layer. The complement of apolar particles is built
by the polar particles, that have no head-tail symmetry.
A famous member of this particle class are the Janus
particles [30–32]. They are spheres with a different
coating at one half of the surface. The original Janus
particles had a hydrophilic and a hydrophobic coating.
Nowadays, one coating is often reactive like a platinic
coating that decomposes hydrogen peroxide catalyti-
cally. Such particles are immersed into a hydrogen
peroxide solution to realize active particles (micro-
swimmers) that are driven by an intrinsic drive [33].
Cones are a further member of uniaxial polar particles.
Carbon nanocones appear naturally in graphite [34–36]
and do not need to be produced by an elaborate
method. By the merging of two spheres with different
diameters, one obtains a pear-like particle [37,38]. Pears
and also bowls [39,40] are non-convex particles that are
uniaxial and polar. The latter stack into each other and
form columnar structures [41].

Particles with less symmetry are biaxial. They are
the complement to the uniaxial particles in the class of
anisotropic particles. Biaxial particles have either only
discrete symmetries, like inflection symmetry and
discrete rotational symmetry, or are completely asym-
metric. In both cases, the biaxial particles have three
orientational degrees of freedom and a unit vector is no
longer sufficient to describe their orientation. Instead,
two perpendicular unit vectors or Eulerian angles have
to be used [42]. Due to the additional orientational
degree of freedom, the phase diagrams of biaxial
colloidal particles are much richer than those for
uniaxial particles [43]. Convex colloidal particles with
discrete rotational or inflection symmetry are, for
example, polyhedra like cubes [44–47] and tetrahedra
[48,49], boards [50], pyramids [51–53], and regular
patchy particles [54–57]. The latter differ from Janus
particles by a patchy coating with a regular, e.g.,
tetrahedral, arrangement. Non-convex particles with
discrete rotational or inflection symmetry include
special colloidal molecules that are realized by more
than two spheres that are merged in a regular arrange-
ment. Examples of this include trimers [58] consisting
of three equal spheres and chiral particles [59,60]
consisting of many equal spheres in a helical

arrangement, multipod-shaped nanocrystals [61,62],
stars [46,63], and some lock-and-key particles [64].
Patchy particles may also belong to the class of
colloidal particles without any kind of symmetry. This
is the case, if the patches are arranged or sized in an
irregular way. Irregular patchy particles that are made
by coating of spherical particles are always convex.
Colloidal molecules of arbitrary shape and size belong
on the other hand to the completely asymmetric
colloidal particles that are not convex [65–68].

3. Derivation of the DDFT equation

In this derivation, we consider a set of N asymmetric
rigid particles in a solvent with dynamic (shear)
viscosity � and neglect possible additional (for example
vibrational) degrees of freedom. We choose the centre-
of-mass positions ~ri ¼ ðx1,i, x2,i, x3,iÞ and the Eulerian
angles ~$i ¼ ð�i, �i,�iÞ with i ¼ 1, . . . ,N to describe
their positions and orientations completely.
Alternatively, the orientation of the particles could
also be described by means of two perpendicular axes
[69], but for our purposes, the use of Eulerian angles is
more appropriate, since they do not involve additional
geometric constraints and lead to simpler equations
with a more compact notation. The angular velocities
~!i that describe the instantaneous rotational motion of
the particles can be expressed in terms of the Eulerian
angles and their temporal derivatives [70]. For conve-
nience, we use the convention of Gray and Gubbins
[71], which is equivalent to the second convention of
Schutte [70], for the Eulerian angles, since with this
convention, the first two Eulerian angles � and � are
identical to the usual azimuthal and polar angles of the
spherical coordinate system, respectively. The whole
set of particles is then characterized by the positional
and orientational ‘multivectors’ ~rN ¼ ð~r1, . . . , ~rNÞ and
~$N ¼ ð ~$1, . . . , ~$NÞ, respectively. For completeness, we
also introduce the abbreviation ~!N ¼ ð ~!1, . . . , ~!NÞ,
here. The particles are exposed to the (time-dependent)
total potential

Uð~rN, ~$N, tÞ ¼ Uextð~r
N, ~$N, tÞ þUintð~r

N, ~$NÞ, ð1Þ

which consists of the external potential

Uextð~r
N, ~$N, tÞ ¼

XN
i¼1

U1ð~ri, ~$i, tÞ ð2Þ

and the total particle interaction potential

Uintð~r
N, ~$NÞ ¼

XN
i, j¼1
i5 j

U2ð~ri, ~rj, ~$i, ~$jÞ: ð3Þ
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For both the one-particle interaction potentials
U1ð~ri, ~$i, tÞ and the two-particle interaction potentials
U2ð~ri, ~rj, ~$i, ~$jÞ, we assume pairwise additivity.
Moreover, we neglect many-particle interaction poten-
tials of higher order than pair interaction potentials.
We further introduce the N-particle probability distri-
bution function Pð~rN, ~$N, tÞ for the probability density
to find the N particles at time t with the orientations
~$N at the positions ~rN. Successive integration of this
function with respect to its positional and orientational
degrees of freedom leads to the n-particle density [3]

�ðnÞð~rn, ~$n, tÞ ¼
N!

ðN� nÞ!

Z
V

dVnþ1� � �

Z
V

dVN

�

Z
S

d�nþ1� � �

Z
S

d�NPð~r
N, ~$N, tÞ, ð4Þ

where V ¼ R
3 and S ¼ ½0, 2�Þ � ½0,�Þ � ½0, 2�Þ are the

domains for spatial and orientational integration,
respectively, dV ¼ dx1dx2dx3 and d� ¼ d�d� sinð�Þd�
are the corresponding differentials, andZ

V

dV ¼

Z 1
0

dx1

Z 1
0

dx2

Z 1
0

dx3,Z
S

d� ¼

Z 2�

0

d�

Z �

0

d� sinð�Þ

Z 2�

0

d�

ð5Þ

are common abbreviations.

3.1. The Smoluchowski equation

We start with the derivation of the Smoluchowski
equation for the overdamped Brownian dynamics of
N self-propelled biaxial particles. We remark that
passive biaxial particles have been studied before
within the Langevin approach by Fernandes and de
la Torre [72] and Makino and Doi [73]. In analogy to
the uniaxial passive case (see reference [5]), we define
the translational gradient operator ~r~r ¼ ð@x1 , @x2 , @x3 Þ
and the rotational gradient operator ~r ~$ ¼ iL̂, where i
is the imaginary unit and L̂ ¼ ðL1, L2, L3Þ is the
angular momentum operator, which can be expressed
in terms of the Eulerian angles by [70]

iLx1 ¼ � cosð�Þ cotð�Þ@�� sinð�Þ@�

þ cosð�Þ cscð�Þ@�,

iLx2 ¼ � sinð�Þ cotð�Þ@�þ cosð�Þ@�

þ sinð�Þ cscð�Þ@�,

iLx3 ¼ @�:

ð6Þ

We further define the vectors ~xN ¼ ð~rN, ~$NÞ and
~vN ¼ ð _~r

N
, ~!NÞ with _~r

N
¼ d~rN=dt and the operators

~r~rN ¼ ð ~r~r1 , . . . , ~r~rNÞ,
~r ~$N ¼ ð~r ~$1

, . . . , ~r ~$N
Þ, and

~r~xN ¼ ð ~r~rN , ~r ~$NÞ and write down the continuity

equation

@

@t
Pð~xN, tÞ ¼ � ~r~xN �

�
~vNPð~xN, tÞ

�
, ð7Þ

which is a trivial generalization of the continuity

equation for passive rods that is described by Dhont

[5]. On the Brownian time-scale, the total force and

torque, acting on an arbitrary particle i 2 f1, . . . ,Ng,

are zero. The total force and torque consist of the

force ~FðAÞi ð~x
N, tÞ and torque ~TðAÞi ð~x

N, tÞ due to the

activity of the self-propelled particle i, the hydro-

dynamic force ~FðHÞi ð~x
NÞ and torque ~TðHÞi ð~x

NÞ, the inter-

action force ~FðIÞi ð~x
N, tÞ and torque ~TðIÞi ð~x

N, tÞ due to the

potential Uð~xN, tÞ, and the Brownian force ~FðBrÞi ð~x
N, tÞ

and torque ~TðBrÞi ð~x
N, tÞ. With the definition

~X ¼ ð ~X1, . . . , ~XNÞ for ~X 2 f ~Fð � Þ, ~Tð � Þ, ~Kð � Þg and the

abbreviations

~KðAÞð~xN, tÞ ¼ ð ~FðAÞð~xN, tÞ, ~TðAÞð~xN, tÞÞ,

~KðHÞð~xNÞ ¼ ð ~FðHÞð~xNÞ, ~TðHÞð~xNÞÞ,

~KðIÞð~xN, tÞ ¼ ð ~FðIÞð~xN, tÞ, ~TðIÞð~xN, tÞÞ,

~KðBrÞð~xN, tÞ ¼ ð ~FðBrÞð~xN, tÞ, ~TðBrÞð~xN, tÞÞ,

ð8Þ

this force balance for the N colloidal particles can be

expressed by

~0 ¼ ~KðAÞð~xN, tÞ þ ~KðHÞð~xNÞ þ ~KðIÞð~xN, tÞ þ ~KðBrÞð~xN, tÞ:

ð9Þ

The forces and torques resulting from the self-

propulsion mechanism of the particles are supposed

to be constant with respect to their orientations in the

respective body-fixed coordinate systems, but their

strengths may vary slowly with time. We denote these

forces and torques for a certain particle i in body-fixed

Cartesian coordinates by the vector ~KðAÞ0,i ð~ri, tÞ for

i ¼ 1, . . . ,N and the corresponding vector in space-

fixed coordinates by

~KðAÞi ð~ri, ~$i, tÞ ¼ R
�1
0 ð ~$iÞ ~K

ðAÞ
0,i ð~ri, tÞ ð10Þ

with the diagonal block rotation matrix

R0ð ~$Þ ¼ diag
�
Rð ~$Þ, Rð ~$Þ

�
, ð11Þ

where the rotation matrix Rð ~$Þ is defined by

Rð ~$Þ ¼ R3ð�ÞR2ð�ÞR3ð�Þ,

R�1ð ~$Þ ¼ RTð ~$Þ ¼ R3ð��ÞR2ð��ÞR3ð��Þ
ð12Þ
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with the elementary rotation matrices

R2ð’Þ ¼

cosð’Þ 0 � sinð’Þ

0 1 0

sinð’Þ 0 cosð’Þ

0
B@

1
CA,

R3ð’Þ ¼

cosð’Þ sinð’Þ 0

� sinð’Þ cosð’Þ 0

0 0 1

0
B@

1
CA:

ð13Þ

Note that ~KðAÞ0,i depends most often only on time t,

but one could also think of swimming microorgan-

isms in a poisoned environment, where ~KðAÞ0,i also

depends on ~ri. To simplify the notation in the following,

we collect all the N vectors ~KðAÞi ð~ri, ~!i, tÞ in the vector

~KðAÞð~xN, tÞ ¼ R�1ð ~$NÞ ~KðAÞ0 ð~r
N, tÞ ð14Þ

with the 6N� 6N-dimensional rotation matrix

Rð ~$NÞ ¼ diag
�
R0ð ~$1Þ, . . . ,R0ð ~$NÞ

�
ð15Þ

and the 6N-dimensional vector

~KðAÞ0 ð~r
N, tÞ ¼

�
~KðAÞ0,1 ð~r1, tÞ, . . . , ~KðAÞ0,Nð~rN, tÞ

�
: ð16Þ

Next, we focus on the hydrodynamic force and torque.

They are given by

~KðHÞð~xNÞ ¼ ��ð~xNÞ~vN ð17Þ

with the symmetric microscopic friction matrix [5]

�ð~xNÞ ¼
�TTð~xNÞ �TRð~xNÞ

�RTð~xNÞ �RRð~xNÞ

� �
, ð18Þ

where �TTð~xNÞ, �TRð~xNÞ, �RTð~xNÞ, and �RRð~xNÞ are
3N� 3N-dimensional submatrices. The submatrices

�TTð~xNÞ and �RRð~xNÞ correspond to pure translational

and rotational motion, respectively, while �TRð~xNÞ and
�RTð~xNÞ have to be taken into account for particles

with a translational-rotational coupling as, for exam-

ple, screw-like particles. For many other particles like

those that are orthotropic, however, �TRð~xNÞ and

�RTð~xNÞ vanish. In the following, we neglect hydrody-

namic interactions between the colloidal particles.

With this assumption, the microscopic friction sub-

matrices simplify to the block diagonal matrices

�TTð ~$NÞ ¼ diag
�
�TT

11 ð ~$1Þ, . . . ,�TT
NNð ~$NÞ

�
, ð19Þ

�TRð ~$NÞ ¼ diag
�
�TR

11 ð ~$1Þ, . . . ,�TR
NNð ~$NÞ

�
, ð20Þ

�RTð ~$NÞ ¼ diag
�
�RT

11 ð ~$1Þ, . . . ,�RT
NNð ~$NÞ

�
, ð21Þ

�RRð ~$NÞ ¼ diag
�
�RR

11 ð ~$1Þ, . . . ,�RR
NNð ~$NÞ

�
ð22Þ

with the 3� 3-dimensional matrices

�TT
ii ð ~$iÞ ¼ �R

�1ð ~$iÞKRð ~$iÞ, ð23Þ

�TR
ii ð ~$iÞ ¼ �R

�1ð ~$iÞC
ðSÞT Rð ~$iÞ, ð24Þ

�RT
ii ð ~$iÞ ¼ �R

�1ð ~$iÞC
ðSÞRð ~$iÞ, ð25Þ

�RR
ii ð ~$iÞ ¼ �R

�1ð ~$iÞ�
ðSÞRð ~$iÞ ð26Þ

for i ¼ 1, . . . ,N, which are related to the translation

tensor K, the coupling tensor CðSÞ, its transpose CðSÞT,

and the rotation tensor �ðSÞ [74] by an orthogonal

transformation with the rotation matrix Rð ~$Þ. The

tensors K, CðSÞ, and �ðSÞ are constant and depend on

the shape and size of the colloidal particles that are

considered, but are independent of the viscosity of the

solvent. In addition, CðSÞ and �ðSÞ depend also on the

reference point S, for which the centre-of-mass position

of the considered colloidal particle should be chosen.

In the special case of no hydrodynamic interaction, the

inverse of the microscopic friction matrix

��1ð~xNÞ ¼ �Dð~xNÞ ð27Þ

with the inverse thermal energy � ¼ 1=ðkBTÞ and the

microscopic short-time diffusion matrix

Dð~xNÞ ¼
DTTð~xNÞ DTRð~xNÞ

DRTð~xNÞ DRRð~xNÞ

 !
, ð28Þ

which we need in the following, has the same structure

as the microscopic friction matrix. We further have the

equation

~KðIÞð~xN, tÞ ¼ � ~r~xNUð~x
N, tÞ ð29Þ

for the interaction force and torque. Moreover, the

Brownian force and torque ~FðBrÞð~xN, tÞ and ~TðBrÞð~xN, tÞ
can be derived from the equilibrium condition

lim
t!1

Pð~xN, tÞ / e��Uð~x
N, tÞ

ð30Þ

when ~KðAÞð~xN, tÞ is neglected and the vector ~vN in

Equation (7) is expressed in terms of the vectors ~xN,
~KðIÞð~xN, tÞ, and ~KðBrÞð~xN, tÞ with the help of Equation (9).

This results in

~KðBrÞð~xN, tÞ ¼ �
1

�
~r~xN ln

�
Pð~xN, tÞ

�
: ð31Þ

Using Equations (9), (17), (29), and (31), the

Smoluchowski equation

@

@t
Pð~xN, tÞ ¼ L̂Pð~xN, tÞ ð32Þ
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with the Smoluchowski operator

L̂ ¼ ~r~xN �
�
Dð~xNÞ �

�
�~r~xNUð~x

N, tÞ � � ~KðAÞð~xN, tÞ þ ~r~xN
��
ð33Þ

follows now directly from the continuity equation (7).

3.2. DDFT equation

Next, we proceed in our derivation by applying
the integration operator N

R
V
dV2� � �

R
V
dVN

R
S
d�2� � �R

S
d�N from the left on the Smoluchowski equation

(32) and obtain the expression

@

@t
�ð~x, tÞ ¼ ~r~x �

�
Dð~xÞ �

�
� � ~KAð~x, tÞ�ð~x, tÞ

þ ~r~x�ð~x, tÞ þ ��ð~x, tÞ~r~xU1ð~x, tÞ � � �Kð~x, tÞ
��
ð34Þ

with the symmetric short-time diffusion tensor1

Dð ~$Þ ¼
DTT

11 ð ~$Þ D
TR
11 ð ~$Þ

DRT
11 ð ~$Þ D

RR
11 ð ~$Þ

 !
ð35Þ

for the one-particle density �ð~x, tÞ � �ð1Þð~x, tÞ, where
we omitted the index 1 in ~r1 and ~$1 and used
the abbreviations ~x ¼ ð~r, ~$Þ, ~r~x ¼ ð~r~r, ~r ~$Þ, ~KAð~x, tÞ ¼
~KðAÞ1 ð~x, tÞ, and �Kð~x, tÞ ¼ ð �Fð~x, tÞ, �Tð~x, tÞÞ. When we fur-
ther introduce the integration operatorZ

G

dV ¼

Z
V

dV

Z
S

d� ð36Þ

with the total integration domain G ¼ V � S and the
corresponding differential dV ¼ dVd�, the average
force �Fð~x, tÞ and torque �Tð~x, tÞ due to the interaction
with other particles in Equation (34) are given by

�Kð~x, tÞ ¼ �

Z
G

dV0 �ð2Þð~x,~x0, tÞ~r~xU2ð~x,~x
0Þ: ð37Þ

In equilibrium with ~KAð~x, tÞ ¼ ~0 and U1 ¼ U1ð~xÞ,
Equation (34) reduces to the first equation of the
Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy
for molecular fluids [71]:

� �K0ð~xÞ ¼ ~r~x�0ð~xÞ þ ��0ð~xÞ~r~xU1ð~xÞ: ð38Þ

Here, a zero in the index of a function denotes
the time-independent equilibrium state of this function.
For example, the function �0ð~xÞ denotes the equili-
brium one-particle density field that corresponds to
the time-independent prescribed external potential

U1ð~xÞ. On the other hand, we have in equilibrium the

relation

~r~x�0ð~xÞ þ ��0ð~xÞ ~r~xU1ð~xÞ ¼ ���0ð~xÞ ~r~x
	F exc½�0ð~xÞ�

	�0ð~xÞ

ð39Þ

with the equilibrium Helmholtz excess free-energy

functional F exc½�0ð~xÞ�. This relation follows with

~r~xc
ð1Þ
0 ð~xÞ ¼

Z
G

dV0 c
ð2Þ
0 ð~x,~x

0Þ ~r~x0�0ð~x
0Þ, ð40Þ

where c
ðnÞ
0 ð~x1, . . . ,~xnÞ is the n-particle direct correlation

function in equilibrium, and

c
ð1Þ
0 ð~xÞ ¼ ��

	F exc½�0ð~xÞ�

	�0ð~xÞ
ð41Þ

from the more general form

~r~x�0ð~xÞ þ ��0ð~xÞ~r~xU1ð~xÞ ¼ �0ð~xÞ

Z
G

dV0 c
ð2Þ
0 ð~x,~x

0Þ~r~x0�0ð~x
0Þ

ð42Þ

of Equations (14) and (16) in reference [75]. Equations

(38) and (39) lead to the equilibrium relation

�K0ð~xÞ ¼ ��0ð~xÞ~r~x
	F exc½�0ð~xÞ�

	�0ð~xÞ
, ð43Þ

which we use instead of Equation (37) as closure

relation for Equation (34) in the time-dependent (non-

equilibrium) situation. A similar adiabatic approxima-

tion was used in the derivations of the DDFT

equations for isotropic [1,3] and uniaxial [4] colloidal

particles. The approximation results in the generalized

DDFT equation

@�ð~x, tÞ

@t

¼ �~r~x �

�
Dð~xÞ �

�
�ð~x, tÞ

�
~r~x
	F½�ð~x, tÞ�

	�ð~x, tÞ
� ~KAð~x, tÞ

���
ð44Þ

for anisotropic colloidal particles with the total equi-

librium Helmholtz free-energy functional

F½�0ð~xÞ� ¼ F id½�0ð~xÞ� þ F exc½�0ð~xÞ� þ F ext½�0ð~xÞ� ð45Þ

that can be decomposed into the ideal rotator gas

part [76]

�F id½�0ð~xÞ� ¼

Z
G

dV �0ð~xÞ
�
ln
�
�3�0ð~xÞ

�
� 1

�
ð46Þ
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with the thermal de Broglie wavelength �, the excess

free-energy part F exc½�0ð~xÞ�, and the contribution [76]

F ext½�0ð~xÞ� ¼

Z
G

dV �0ð~xÞU1ð~x, tÞ ð47Þ

due to the external potential U1ð~x, tÞ. The DDFT

equation (44) describes the time evolution of the

one-particle density for a system of similar anisotropic
self-propelled colloidal particles that interact over a

pair potential and is the main result of this paper.

4. Special cases and possible applications

There is no translational-rotational coupling in the

uniaxial case, which means that DTRð~xNÞ and DRTð~xNÞ
and therefore also DTR

11 ð ~$Þ and DRT
11 ð ~$Þ vanish in

this case. Furthermore, the one-particle density and

the free-energy functional do not depend on the
angle � for uniaxial particles and the translational

diffusion tensor can then be written as the matrix

DTTðûÞ ¼ Dkû� ûþD?ð1� û� ûÞ, which obviously
only depends on the two independent short-time

diffusion coefficients Dk and D? for diffusion parallel

and perpendicular to the orientation of the symmetry
axis û ¼ ðsinð�Þ cosð�Þ, sinð�Þ sinð�Þ, cosð�ÞÞ of the uni-

axial particle, respectively, where 1 denotes the 3� 3-

dimensional unit matrix. Also the rotational diffusion
matrix becomes quite simple for uniaxial particles.

When we use DRR ¼ DR1 with the rotational short-

time diffusion coefficient DR and the considerations
above and neglect the self-propulsion, we obtain the

uniaxial DDFT equation [4] from our more general

DDFT equation (44). From the uniaxial DDFT
equation, one can in turn derive the DDFT equation

for two spatial dimensions [77] as well as the tradi-

tional DDFT equation for colloidal particles with
spherical symmetry [1,3] as special cases.

The generalized dynamical density functional

theory for passive and active biaxial particles as

proposed in Equation (44) can be numerically solved
for plenty of different problems. For passive particles,

one can explore for example: (i) the relaxation

dynamics towards equilibrium [4], (ii) the response of
the system to time-dependent external potentials [78],

and (iii) the growth of a thermodynamically stable

phase into an unstable phase [79]. Interesting effects
for self-propelled particles include among others:

(i) the swarming and clustering behavior of biaxial

particles in the bulk and in confinement [77,80],
(ii) the combined impact of self-propulsion and

external forcing [77], and (iii) the effect of space- and

time-dependent internal forcing [81].

5. Conclusions and outlook

In conclusion, starting from the multi-body
Smoluchowski equation, we have derived a dynamical
density functional theory for self-propelled Brownian
colloidal particles with arbitrary shape. This study was
motivated by recent progress in synthesizing colloidal
particles with (almost) arbitrary shape. Our results
constitute an important framework for further numer-
ical explorations. This is in particular appealing since
recently an equilibrium density functional has been
found for arbitrarily shaped hard colloids [6,82,83]
which can serve as an input for the dynamical density
functional theory. Another possibility to construct a
density functional for biaxial particles is a mean-field
approximation for repulsive segment potentials [4],
which works for soft interactions [84], or a perturba-
tion theory [85,86] for anisotropic attractions around a
spherical reference system. A large number of dynam-
ical problems can then in principle be addressed
including the dynamics [87–89] and relaxation of
nematic-like order in confined systems [4,90], nematic
phases driven by external fields [78], nucleation kinetics
of liquid crystalline phases [91–94], and collective
behavior of self-propelled particles [77,80]. The results
can be checked against Brownian dynamics computer
simulations [95,96].

Possible extensions for the future are the inclusions
of hydrodynamic interactions between the particles
which are mediated by the solvent. Dynamical density
functional theory of spherical particles was generalized
for hydrodynamic interactions [97–99], but this has not
yet been done for anisotropic particles. Another
interesting extension would be towards molecular
dynamics which is the appropriate dynamics for
molecular liquid crystals. But even for spheres it is
much more complicated to formulate a dynamical
density functional theory for molecular dynamics
[100–102]. Finally, the theory can readily be general-
ized towards binary mixtures [103].
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de Graaf for helpful discussions. This work has been
supported by DFG within SFB TR6 (project D3).

Note

1. The reason we write Dð~xÞ instead of Dð ~$Þ in Equation
(34) is that one could in principle also describe systems
with a space-dependent short-time diffusion tensor. This
is especially relevant for fluids with a space-dependent
viscosity.
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