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Chemotactic predator-prey dynamics
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A discrete chemotactic predator-prey model is proposed in which the prey secrets a diffusing chemical which
is sensed by the predator and vice versa. Two dynamical states corresponding to catching and escaping are
identified and it is shown that steady hunting is unstable. For the escape process, the predator-prey distance is

diffusive for short times but exhibits a transient subdiffusive behavior which scales as a power law ¢

173 with time

t and ultimately crosses over to diffusion again. This allows us to classify the motility and dynamics of various
predatory microbes and phagocytes. In particular, there is a distinct region in the parameter space where they

prove to be infallible predators.
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I. INTRODUCTION

Phagocytes or predatory microbes hunt their prey by
chemotaxis [1,2], i.e., they sense the concentration of a
chemical which is secreted by the prey and diffuses through the
solution [3]. Typically, the predator moves along the steepest
gradient of the chemical concentration to ultimately find its
ejection source. Likewise the prey (another microbe) “smells”
a secreted chemical from the advancing predator and tries
to escape by moving along in the opposite direction of its
maximal gradient. For biological systems of such chemotacti-
cally coupled microorganisms, questions on how the physical
parameters that describe the predator-prey relationship affect
hunting are relevant not only for studying taxis behavior but
also for the survival of the prey and competition among preda-
tors, where individual attributes and advantages can greatly
vary. A few common microbial predators and phagocytes
include Bdellovibrio [4-6], Pseudomonas aeruginosa [7],
Dictyostelium discoideum [8,9], lymphocytes [10], alveolar
macrophages [11], and Myxococcus xanthus [12,13]. The
eukaryotic cells, being larger in size, can chemotax by direct
gradient sensing of their local chemical environment [14],
and in the present article we are concerned only with the
spatial gradient-sensing scenario. It is argued that prokaryotes,
like bacteria, due to their small size, are unable to detect
spatial chemical gradients across their length [15] and can
sense by temporal comparison of chemical concentrations
[16]. However, the size limit for effective spatial gradient
sensing has been shown to be smaller than a typical bacterium
size [17], and a contribution from direct gradient sensing
toward bacterial chemotaxis can be present under appropriate
situations (like slow speed, a roundish shape, and high
chemical concentration with a steep gradient) [17,18].

Previous theoretical investigations have focused on spa-
tiotemporal pattern formation in predator-prey colonies
[19,20] which are typically described by nonlinear reaction-
diffusion equations [21-23]. While the latter approaches
involve coarse-grained continuum modeling, there are far
fewer model studies on individual microorganisms. A discrete
swarming model of individual self-propelled particles for
bacterial colonies has been proposed by Czirdk et al. [19] based
on experimental observations. This was elaborated recently by
Romanczuk et al. [24] based on a related individual model
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of Schweitzer and Schimansky-Geier [25]. Finally, individual
autochemotactic models have been studied where the microbe
follows its own diffusing secretion [26-29]. In all of these
individual models there is no predator involved, apart from
a recent study [30] which addressed a lattice model with
no chemicals involved. A recent experiment on eukaryotic
chemical gradient sensing showed that cells can vary greatly
in their response behavior even within a genetically identical
population [31]. While the behavior of a single cell remained
highly reproducible in repeated exposures to chemical pulses,
the response magnitude was shown to vary from cell to
cell for the same pulse, pointing out the importance of cell
individuality in the context of chemotactic response.

Here we propose a discrete model which describes both
the predator and the prey individually and contains explicitly
the diffusion of the two chemicals secreted by the predator
and the prey together with the Brownian motion of the
latter. The deterministic (fluctuation-free) model is analyzed
analytically and by numerical solution which is supplemented
by Brownian dynamics computer simulations at finite temper-
ature. Depending on the physical parameters describing the
model and the initial distance between predator and prey, two
different dynamical processes are identified which correspond
to catching and escaping and an unstable steady hunting.
Within the trapped phase, it is shown that there is a distinct
regime of no escape where the prey’s advantage in terms of
its initial separation from the predator alone cannot decide
the outcome. By analytical treatment, various scaling laws are
extracted characterizing and delineating the different regimes.
In the absence of noise, the mean-square distance between
predator and prey scales with different exponents « as a
function of time with a subdiffusive anomalous exponent
o = 2/3 for escaping [32] and a ballistic behavior « = 0 for
steady hunting. Brownian motion leads to ultimate diffusion
(o« = 1) such that these exponents are transient. Catching is
accompanied by a scaling form of |t — #.,p|%, with a = 2/3,
and #.,p being the time taken by the predator to capture the prey.
In principle, our results allow to map and classify different
biological systems into the different regimes.

Our article is organized as follows: In Sec. I we describe the
model, pointing out typical experimental situations to compare
the estimates of the physical parameters used in our model.
The results of our analysis, both from theory and simulations,
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are presented in Sec. III, explaining the dynamical phase
diagram and the different power laws for escaped and trapped
situations. Finally, in Sec. IV, we discuss these results and
point out situations where our findings can be important and
counting.

II. MODEL

In our discrete predator-prey model, the predator is at
position r(¢) at time ¢, hunting the prey which is at position
r(t) and trying to escape. The concentration field of the
chemical secreted by the predator (prey) at a constant ejection
rate A2 is denoted by ¢;(2)(r,7). Assuming a gradient-sensing
scenario for each microbe in response to the chemical secreted
by the other, and taking into account effective stochastic
fluctuations that are associated with the nonequilibrium self-
propulsion mechanism of each, the overdamped equations of
motion for the predator and the prey, respectively, read

vikr = +x1Vea(ry,t) +9,() 9]
yaky = —K Ve (ra,t) + 1,(t). )

Here, yi2), k12), and ny)(t) are the damping constant in
the medium, the chemical coupling constant (a measure of
the gradient-sensing strength), and the effective noise vector
associated with stochastic self-propulsion of the predator
(prey), respectively. The first term on the right, in both
equations, models the systematic contribution of chemotactic
response through simple gradient sensing. We take both k; » >
0 so c¢; acts as a chemoattractant for the predator, while c; is
a chemorepellant for the prey. We model 7;(¢) as a Gaussian
white noise: (1;(£)) = 0, (n;, (D0, (t")) = 2y B~ 8i;8,,0(t —
t"). The Greek indices refer to spatial components, while
the Roman indices are reserved for the microbe’s attributes
(i = 1 denotes predator, whereas 2 denotes prey). Here, 8
corresponds to an inverse effective temperature associated
with the stochastic fluctuations, such that D; = 1/(y; ) is the
nonchemotactic diffusion constant of the microbe concerned.
Hydrodynamic interaction between the microbes is neglected.

The diffusion equation of each of the chemicals reads
ac;(r,t
% + ui(r?t) . Vci(r’t) = Dcivzci(r3t)

+Aidlr—r; (0], ()

where D is the diffusivity of the corresponding chemical,
and we have assumed each microbe as a point-source emitter.
u; (r,7) is the advective flow-field set in the medium due to the
motion of the microbe. Spatial gradient-sensing microbes are
known to move slowly with velocity on the order v ~ 107—
10~! wm/s and are typically of size a ~ 1-10 wm. Chemicals
are secreted typically at A; ~ 10° molecules/s and diffuse at
D¢ ~ 10-10% ;zm?/s. Under such practical situations, noting
that the magnitude of the flow-field |u;| can be at most on the
order of v, the Péclet number for the problem is av/D. ~
107°-10~2. This makes the advective term negligible, and the
chemical diffusion equation reduces to

ac;(r,1)
ot

Fast-moving microorganisms with v ~ 10-10% um/s (capable
of producing appreciable advection in the medium) are known

— DeiVZci(r,t) = h8[r — ri(t)]. )
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FIG. 1. (Color online) (Left) Chemotactic chase: A predator (red
dot on left) chases a prey (red dot on right), while the latter tries
to escape through chemotactic gradient sensing of the diffusing
chemicals. The arrows indicate their respective direction of motion
in the absence of fluctuations. The contours around each microbe
represent the equiconcentration lines of the secreted chemicals
in a two-dimensional projected plane in this case, indicating the
asymmetry of the distribution. The color code used here for
the spatial distribution of the secreted chemorepellant (c;) and the
chemoattractant (c;), as they mingle in space, is shown in the right
panel.

to chemotax by “temporal sensing” mechanism of the chemical
concentration [16] which we do not address here.

For an unconfined space in three dimensions, the Green’s
function solution to Eq. (4) yields

b 1 —[r —r:(t))?
e t)=»% | dfl ————— exp{ ———— 1.
0 (@Dt —t')):> 4Di[t — ']
(%)

Brownian dynamics of the predator-prey system is imple-
mented to simulate the chemotactic motion [Egs. (1) and
(2)] and we used Eq. (5) to calculate the spatial gradient
of the chemical concentration. We measured time in units
of kz_l, lengths in units of /o = 0.1/D./X,, and energy in
units of €y = y»D.,. Real estimate yields «; ~ 1036018 for
Dictyostelium [9] moving at 0.2 um/s up the cAMP gradient
of 0.01 nM/uum, secreted at 10* molecules/s with diffusivity
300 pum?/s. Microglial cells [33] moving at 2 wm/min in
response to an interleukin gradient of 0.003 nM/um secreted
at 200 molecules/min and diffusing at 900 xm?/min has
ki ~ 1060l

III. RESULTS AND ANALYSIS

A first look at the problem suggests that in addition to
the chemical diffusivities, the attributes of the individual
microbes, viz., their mobility, chemical ejection rates, and
gradient-sensing strengths, as well as the predator’s advantage
in terms of its initial distance from the prey, ro = r;x(t = 0) =
[r2(0) — r;(0)|, combined, will be deciding factors. Thus, the
fate of the prey, i.e., whether it will be captured, can escape,
or will be steadily hunted for ever, depends on a multitude of
parameters. Having set the model, it is therefore instructive to
examine the zero-noise [5;(¢) = 0] deterministic case first, in
order to understand the combination of variables relevant in
predicting the outcome. Figure 1 shows a simulation snapshot
of the chemotactic chase process in the absence of fluctuations.
Assuming a steady-state velocity v; for microbe i, moving
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FIG. 2. (Color online) (a) Dynamical phase diagram of the
chemotactic predator-prey system, constructed in the A*-§ parameter
space, showing the trapped (shaded) and escaped phases. The phase
boundary (thick solid line) is obtained analytically and matches
the simulation data (boxes). The horizontal thin dotted line (6 = 1)
represents the upper bound for the trapped-to-escaped dynamical
phase transition (see text). (b) The dependence of the catching range
(A*) on the initial separation (r¢*), as obtained from simulations.

along the x axis, the concentration profile for the chemical
secreted by it simplifies to

ci(r,t =0) = (A /27 Deir) exp[(—vi(x +7)/2Dci].  (6)

In the presence of chemotactic coupling, one then expects
Yivi = (1 = 8;;)k;[0c;(r)/dx]r=r, for each of them. In ad-
dition, demanding a condition for steady hunting, whence
v; = v;, maintaining a constant separation rj» = A, leads to

S(A*) = (1 + A" Hexp(—A*h). (7

Here, A* = A /Ay, Ag = k1A2/(4m Doy Dy yy), being a length
scale, and 6 = (k1y2r2D.1)/(k2v121 D) will be termed a
sensibility ratio in the predator-prey relationship. Figure 2(a)
shows the resulting phase diagram. For a given A*, if the
sensibility ratio is increased, there is a transition from the
escaped (free) to the trapped (capture) phase. To understand
this we note that an increase in the chemoattractant coupling
or its emission or a decrease of the prey’s mobility would
prove advantageous to the predator in sensing the prey at
a given distance. Also, a decrease in the chemoattractant
diffusivity will enable the predator to easily track its prey
and ultimately trap it. Similarly, for a given §, increase in
the separation distance will be advantageous to the prey
in escaping. Further, since A > 0 (predator follows prey),
the validity of Eq. (7) requires § < 1. This implies that
the phase boundary between the trapped and escaped state
lies below the §(A*) =1 line in the parameter space. For
8 > 1, there is no escape; whatever the separation between
the microbes, the predator will ultimately capture the prey in
this case.

In our simulations, the control parameter is the initial
distance, ry, between predator and prey. By tuning § for a
given ry, we actually found the point of transition from trapped
to escaped state. The borderline case of steady hunting was
found to be unstable. Close to the borderline situation, the
predator-prey distance ri, remains constant for a long time
before fluctuations throw them into either the trapped or
the escaped state. This constant distance, if identified with
A, matches the phase boundary [Eq. (7)] perfectly, and A*
depends on r(= ro/ Ag) in aroughly linear fashion [Fig. 2(b)].
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FIG. 3. (Color online) Mean-squared displacement of the prey
with respect to the predator as a function of time, with A; =1,
y1 =10, y» = 0.01, Dy = 103, Doy = 102, k; = 10* for (a) B~ =
1.0,0.1,0.01 (top to bottom) and «x, = 15.5 x 10*; (b) the zero noise
case (87! =0) and «, = 1.5 x 10%, 5.5 x 10%, 15.5 x 10* (bottom
to top). The power-law behaviors +>/*> and ¢ are illustrated by the
corresponding reference lines.

What are the dynamical features of the escaped and
the trapped phases? Our simulations show that for escape
[Fig. 3(a)], the mean-squared displacement of the prey with
respect to the predator gradually deviates from the initial value,
ro, and grows subdiffusively with time as rj2 ~ 1%, with an
exponent o = 2/3, where the bar denotes an averaging over
noise for a given ry. This behavior finally crosses over to
diffusion, r;2 ~ ¢, for long times. The crossover time f,
decreases with increasing fluctuation strength 8~!. Zero-noise
simulations show the subdiffusive motion as the final long-time
behavior, with the same exponent « [Fig. 3(b)]. This implies
that within this phase, the hunting process continues with a
subdiffusive dynamics of the prey in the comoving frame
of the predator; but, due to the effects of fluctuation, the
prey finally diffuses away freely. It is therefore appropriate
to look for a theoretical estimate of « within the noiseless
ideal case. We note from Eq. (6) that at the advancing predator
position, the chemoattractant profile behind the prey is of the
form c¢,(|x|) = Ay/(4mw D»|x|) in the steady-state condition,
since x < 0. Solving the resulting equation of motion in
steady state, ;X = k1|Vca(x)|, gives x? ~ /3, explaining the
subdiffusive exponent. When the fluctuations ultimately over-
come the chemotactic coupling, crossover to final diffusion
results, requiring ﬁ’l = k1c2(]x]) = k1h2 /(4 Do |x|). At the
crossover point from subdiffusive to the diffusive regime,
x(t = teo) ~ 1eo!/3; implying that the crossover time scales
with the inverse effective temperature as ., ~ 8 3,

At the front of each microbe, on the other hand, the respec-
tive chemical profile decays much faster N)lc exp (—v;x /D).
The predator is thus always at an advantage of sensing the
prey from much longer distances. Therefore, for very low 4§,
a small increase in § greatly increases the catching range for
the predator. This accounts for the almost vanishing slope of
the phase boundary for low § in the dynamical phase diagram
[Fig. 2(a)]. In this part of the phase diagram, for two predators
with a close sensibility ratio, the one with the slightly larger &
will successfully trap prey which were initially much further
away. For intermediate values of §, the catching range A*
increases at a slower rate with increase in §. This is because
the initial separation is large enough that small changes in
A* do not appreciably increase the chemoattractant gradient
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FIG. 4. (Color online) (a) Probability distribution of the capture
time for the typical values of § and A* inside the trapped phase, for
B =100,500,2000,withA; = 1,y = 10,9, = 10,D,y = 10, D, =
10, k; = 10%, i, = 500, ry* = 1.59155. (b) Mean capture time (feap)
and variance (o,) of the capture time, as a function of 8. (¢) Mean-
squared predator-prey separation (r1,2), close to trapping situations,
as a function of the time interval |T| = |t — f4p|. The thick reference
line indicates 7% power-law behavior. (d) Divergence of the capture
time with decrease in 8, for a fixed catching range (A*), as the trapped-
to-escape transition (6 = §., shown by the vertical line) is approached.
The parameters used are A} = 1, y; =10, y, =10, D,y =5, D, =
5, k1 = 10%, ry* = 0.31416, and 8. = 0.17342.

(~1/x?) for the predator. One then needs to considerably alter
the sensibility ratio for obtaining a significant change in the
chemotactic coupling. As § is further increased, A* increases
to diverge at § = 1.

For the trapping situation we find a broad skewed dis-
tribution [P(f..p)] of capture time, f.p, for a fixed 8, ro,
and § [Fig. 4(a)]. The mean capture time 7, is, however,
independent of the effective fluctuation strength, while the
variance 0; = [(fcap — 7cap)2]1/ 2 decreases with increasing 8
[Fig. 4(b)] on keeping the other parameters unchanged. The
trapping dynamics also show nontrivial power-law behavior,
very close to capture: ri;2(t — 0—) ~ |t|>3, where 7 =
t — teqp [Fig. 4(c)]. We note that initially, close to t = 0, when
the predator-prey distance is ~rg, fluctuations dominantly
control the individual microbe’s motion until a steady chemical
concentration profile sets up in the process to favor a systematic
dynamics. This time scale depends on the individual diffu-
sivities of the chemical. When the chemical diffusivities are
higher compared to those of the nonchemotactic diffusivities
of the microbes, the faster the predator-prey systematics will
set in. For trapping dynamics that are very close to capture,
therefore, the predator is already responding to the steady
chemoattractant gradient, ;X = k|Veca(r)|=x ~ 1/x%. Thus,
integrating the equation of motion up to final capture, we
obtain the scaling form x* ~ (feap — 1)*/3, with # < tcap. For
fixed initial separation, 7., diverges on approaching the
corresponding critical value of the sensibility ratio (8.) for
escape from above [Fig. 4(d)].
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IV. DISCUSSIONS

In this article, we studied the dynamics of gradient-sensing
chemotactic microorganisms in a predator-prey relationship.
Although prokaryotes like most bacteria chemotax chiefly
through a temporal comparison of chemical concentrations,
the direct spatial sensing of a local chemical gradient studied
here is prevalent among eukaryotes like amoeba, yeast cells,
neutrophils, lymphocytes, and glial cells. Finding distinct
dynamical signatures in chemotactic hunting and criteria for
determining the trap and escape situations in these systems are
important questions that can help understand, for example,
survival of a prey [30,34], nutrient uptake, dynamics of
macrophages [11] in antimicrobial defense, and perhaps the
selection strategies for predator(s) when several signaling
sources are present (e.g., prey colony [13] or chemical targets
[35]). Our studies have shown when and when not the initial
predator-prey separation counts in concluding the hunt, in
combination with the many parameters involved, even at the
level of a single predator and a prey. These basic features at the
discrete individual level should, therefore, also be playing a
part when collective motion in microbial colonies is involved
and complex emergent phenomena are expected [11,13,31].
Rippling behavior in a cell population of M. xanthus pre-
dataxing through an Escherichia coli colony, for instance,
has been explained by the predators’ effort to maintain close
contact with each other to achieve maximum glide velocity,
counterbalanced by the tendency of each individual to achieve
maximum feeding potential by directed movement to enhance
contact with prey cells [13]. Thus, it remains to be seen whether
an interplay between the distinct subdiffusive and diffusive
time scales observed in the escape regime in our model can
give rise to complex patterns in a chemotactic gradient-sensing
predator-prey colony with varying predator-prey distances and,
perhaps, with a variation in individual attributes.

The search time of an individual predator for its prey [36]
is limited by its life span (e.g., a sperm cell in search for
the egg cell within its lifetime); a hunt for an indefinite
period is impractical. How the target capture time and its
statistics depend on the amount of fluctuation in the system
and the sensibility ratio, which we considered here, is thus of
practical interest. Recently, a lattice model for group chase
and escape in two dimensions has been formulated [37].
The model considers simple predation and evasion rules
for the individuals and shows complex behaviors like the
existence of an optimal number of predators, for a given
number of prey, to maximize success of the catch, as well
as the self-organized spatial structures that emerge. Though
no explicit chemical sensing was involved in the model, the
lifetime statistics of all targets (prey), taken together, shows
a broad skewed distribution with a peak at the mean typical
survival time, as also seen in our chemotactic system, and
a sharp peak at unit time. The additional sharp peak was a
result of targets positioned just next to some of the predators
in the initial condition and caught in the next step. This also
indicates that the initial predator-prey separation is, indeed, an
important factor to consider. Understanding the dependence
of capture time on cell motility is significant, for example, in
estimating cell-target encounter rates in the immune response
dynamics of neutrophils and macrophages. A mathematical
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model for the cell-target encounter time was proposed in
Refs. [38] and [39] to investigate phagocytosis of alveolar
macrophages over pathogens on lung surface and for system
of neutrophils inside three-dimensional tissues. This was based
on different probability considerations for forward, backward,
and transverse moves of the cell in its chemotactically biased
motion. The resulting average encounter time was shown to
rapidly decrease with an increase in the the probability of the
forward move and with the chemotactic index defined as the
ratio of the net displacement of the cell toward the target to the
actual total distance traveled. This is qualitatively similar to the
sharp decrease in the mean capture time with the increase in
sensibility ratio in our model. In Ref. [38] it was further noted
that although a modest degree of chemotactic bias reduced
the mean encounter time by orders of magnitude, there was
very little additional benefit for nearly perfect bias. This is also
similar to our finding that the mean capture time is not affected
by fluctuations in the system for a given sensibility ratio and a
fixed initial distance, clearly identifying the parameters on
which the capture time will depend when chemotaxis and
random motility are both involved. The only benefit from a
more perfect bias (less fluctuations), we observed, is in making
the capture time more well defined and sharper by reducing
the distribution width. While the cell-target encounter rate
models were examined for fixed target positions or, at best,
for randomly moving targets when averaging over all possible
cell-target distances were considered, our model also explores
the condition of finite sensibility ratio when the prey can as well
be chemosensitive to the advancing predator and when escape
might be possible. Given that it is by now possible to detect
the individual and collective motion of cells simultaneously
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[11], we believe that our predictions should be experimentally
verifiable in various biological systems. Chemically driven
“microbots” [40], phoretic “chuckers” [41], and chemotactic
nonbiological rods [42] are recently being studied through
experiments and simulations for their convincing similarities
with dynamics in the biological microworld. These elements
self-propel in direct response to concentration gradients and
should be ideal candidates for realizing our model outside the
biological domain.

We have been able to delineate power-law behaviors in the
chasing process, both from theory and numerical simulations,
and crossover time scaling with fluctuation strength. A dynam-
ical phase diagram has been obtained to identify conditions for
escape and catching, with a borderline unstable steady-hunting
situation (“win-win situation”). A broad class of phagocytic
cells and microorganisms varying widely with respect to their
mobility, secretion rates, and diffusivities of ejected chemicals
and strength of spatial gradient sensing of chemicals, can
be located on the phase diagram. Interestingly, a sensibility
ratio resulting from our model calculation allows a criterion
to predict the outcome of such hunting processes: a trapped
or an escaped situation depending on the initial predator-prey
separation and a no escape situation independent of their initial
separation.
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