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Abstract

Overdamped Brownian motion of a self-propelled particle is studied by solving the Langevin
equation analytically. On top of translational and rotational diffusion, in the context of the
presented model, the ‘active’ particle is driven along its internal orientation axis. We calculate
the first four moments of the probability distribution function for displacements as a function of
time for a spherical particle with isotropic translational diffusion, as well as for an anisotropic
ellipsoidal particle. In both cases the translational and rotational motion is either unconfined or
confined to one or two dimensions. A significant non-Gaussian behaviour at finite times ¢ is
signalled by a non-vanishing kurtosis y (¢). To delimit the super-diffusive regime, which occurs
at intermediate times, two timescales are identified. For certain model situations a characteristic
t3 behaviour of the mean-square displacement is observed. Comparing the dynamics of real and

artificial microswimmers, like bacteria or catalytically driven Janus particles, to our analytical

expressions reveals whether their motion is Brownian or not.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There are numerous realizations of self-propelled parti-
cles [1, 2] in nature ranging from bacteria [3—10] and sperma-
tozoa [11-14] to artificial colloidal microswimmers. The latter
are either catalytically driven [15-22] or navigated by exter-
nal magnetic fields [23-27], but also biomimetic propulsion
mechanisms can be exploited [28]. On the macroscopic scale,
vibrated polar granular rods [29-31] and even pedestrians [32]
provide more examples of ‘active’ particles [33, 34]. A suitable
framework for theoretical modelling of self-propellers [35] is
provided by the traditional Langevin theory of an anisotropic
particle with translational and orientational diffusion including
an effective internal force? [36] in the overdamped Brownian
dynamics [37, 38]*. The direction of the theoretically assumed
internal propulsion force (corresponding to an imposed mean

3 Tt is important to note that the motion of swimmers is force-free. Hence the
force entering into the Langevin equation is an effective one which describes
the propulsion mechanism on average.

4 Alternatively, self-propelled particles have been modelled by damped
Brownian dynamics with a Rayleigh friction term [39] or by prescribing a
velocity field on the surface of the particle due to surface deformations [40, 41].
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propagation speed) fluctuates according to rotational Brown-
ian motion [42-44]. It is a challenging question whether real
self-propelled particles can, at least in a rough way, be covered
according to this simple Brownian picture. While for ‘passive’
ellipsoidal particles a comparison revealed very good agree-
ment with the picture of Brownian dynamics [45—47], this has
never been undertaken for self-propellers. Any deviations point
to the relevance of hydrodynamic interactions, non-Gaussian
noise or fluctuating internal forces which are beyond simple
Brownian motion.

Despite its simplicity, the Brownian motion of anisotropic
particles [48-50] has only been considered in the absence
of internal driving forces either in the bulk [45, 51] or in
an external force field derivable from a potential [52]. For
‘passive’ rodlike particles [53, 54] the Smoluchowski—Perrin
equation [42, 55] has been solved exactly in two [56] as
well as in three [57] dimensions. With regard to self-
propellers, so far analytical results are only available if the
orientation vector is confined to two dimensions. For rodlike
particles [58, 59] the first two [37], and for spherical particles
the first four [60], moments of the probability distribution
function for displacements were calculated. In this paper, we

© 2011 IOP Publishing Ltd  Printed in the UK & the USA


http://dx.doi.org/10.1088/0953-8984/23/19/194119
mailto:bhagen@thphy.uni-duesseldorf.de
http://stacks.iop.org/JPhysCM/23/194119

J. Phys.: Condens. Matter 23 (2011) 194119

B ten Hagen et al

close the remaining gaps by presenting a comprehensive model
and calculating the first four moments of the displacement
distribution function for all relevant situations. First, we
provide analytical results for an anisotropic self-propelled
Brownian particle in two dimensions. Furthermore, both
the situations of an isotropic and of an anisotropic particle
are extended to the full three-dimensional case where the
orientation vector is unconfined.

Studying the mean-square displacement reveals a super-
diffusive regime at intermediate times, which is characterized
by a #? time dependence for most cases and beyond that by a
#3 behaviour for some special cases. Moreover, two timescales
that delimit the super-diffusive regime are identified. These can
be extracted from the results for the mean-square displacement
or from the normalized fourth cumulant (kurtosis) y (¢) of
the probability distribution function for displacements, which
measures the non-Gaussian behaviour as a function of time 7.
For small and very large times, the kurtosis vanishes, indicating
Gaussian behaviour, but due to both particle anisotropy and
self-propulsion, y (¢) is non-vanishing for intermediate times.
While Han ef al [45] found the kurtosis of ‘passive’ particles
to be positive for + > 0 with a simple maximum at finite
time [45], here we find that a propulsive force tends to make
the kurtosis negative. There is a rich structure in y (¢) revealing
different non-Gaussian behaviour at different timescales. Quite
generally, the propelling force induces a pronounced long-time
tail of negative sign in y (¢) which tends to zero as 1/¢. This
prediction can, in principle, be verified in experiments on self-
propelled particles.

This paper is organized as follows: in section 2 we
present and motivate the various model situations that are
considered in sections 3-6 of this paper. In each case the
first four displacement moments are calculated analytically and
the results are analysed based on appropriate figures. Finally,
we conclude and give an outlook on further expansion of our
model in section 7.

2. Remarks about the various model situations

In this section, we give an overview of the situations to which
the model is applied in this paper (see also figure 1). In
general, the model consists of an isotropic or anisotropic self-
propelled particle which undergoes completely overdamped
Brownian motion. To describe the propulsion mechanism on
average, we theoretically assume an effective internal force
F = Fu that is included in the Langevin equation. The
orientation vector @ is introduced to specify the direction of
the self-propulsion. Depending on the number of translational
degrees of freedom, in some of the cases to be covered this
force is projected either onto a linear channel or onto a two-
dimensional plane. To characterize the different situations
depending on the number of degrees of freedom of the particle,
we introduce the following notation: the (D, d, o) model
refers to the situation with D translational degrees of freedom
and d orientational degrees of freedom. The possible values
for these parameters are D € {1,2,3} and d € {1,2}. The
parameter o € {s, e} refers to the shape of the particle. While
o = s relates to a spherical particle, for an ellipsoidal particle

b Y
u

Figure 1. Sketch of the various situations to which the model is
applied: (a) the (D, 1, s) model, (b) the (D, 1, e) model, (c) the

(D, 2, s) model and (d) the (D, 2, e) model. The notation is
explained in the text. For D = 1 in subfigures (a) and (b) and for

D < 3 in subfigures (c¢) and (d), the effective driving force along the
particle orientation 1 is projected onto the respective number of
translational dimensions. To cover the (1, 1, s) model, for example,
in subfigure (a) only the motion in the x direction is considered.

o = eis used. When no specific value is given for one of these
parameters, we refer to the group of models with an arbitrary
value for that parameter.

We will first refer to the (D, 1, s) model, which is depicted
in figure 1(a) (theoretical investigation in section 3). This
system consists of a self-propelled spherical particle whose
rotational motion is constrained to a two-dimensional plane.
To study the behaviour of the particle, we first refer to the one-
dimensional translation in the x direction (sections 3.1-3.3).
In experiments, this situation can be achieved by confining
swimmers by means of external optical fields [61, 62], for
example. After investigating this (1, 1, s) model the results
can easily be transferred to the two-dimensional case ((2, 1, s)
model), which is done in section 3.4. This model situation
is especially useful to describe the motion of a self-propelled
particle on a substrate.

As the assumption of spherical particles is not justifiable
in many experimental situations, the model is generalized
to ellipsoidal particles (see figure 1(b)) in section 4 by
investigating the (D, 1,e) model. The more complicated
coupling between rotational and translational motion as
opposed to spherical particles leads to qualitatively different
results.

Besides particles moving on a substrate with one
orientational degree of freedom, we study freely rotating self-
propelled particles. Here, the case of free translational motion
in the bulk ((3, 2, o) model) is interesting as well as situations
in which the translation of the particle is constrained either to a
linear channel ((1, 2, o) model) or to a two-dimensional plane
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((2,2, 0) model). Again, a spherical particle (see figure 1(c))
is discussed first (section 5), before the most general case
of a freely rotating ellipsoidal particle (see figure 1(d)) is
considered in section 6.

3. A spherical particle with one orientational degree
of freedom

This section contains the theoretical considerations concerning
the situation in figure 1(a) ((D, 1,s) model). Although a
spherical object is regarded here, one has to consider that a
certain direction is specified through the theoretically assumed
driving force F = Fu. The two-dimensional motion of the
self-propelled particle can be described by the coordinates x
and y of the centre-of-mass position vector r(¢) = (x, y) and
the angle ¢ between €, and & = (cos ¢, sin ¢). Thus, the basic
Langevin equations are given by

dr .
— =BD[Fu—VU +1], (0
dr

d¢ .

E - IBDrg'ez- 2

Here, f(¢) and g(¢) are the Gaussian white noise random force
and torque, respectively. They are characterized by (f; (1)) =
0, (fi(®)fi(t)) = 28;8( —t)/(B*Dy), (gi(1)) = 0 and
(gi()g;()) = 26;6(t — t)/(B%D;), where the indices i
and j refer to the respective components, d;; is the Kronecker
delta and (- - -) denotes a noise average. U(r) is an external
potential. The prefactors in (1) and (2) consist of the inverse
effective thermal energy f = (kg T)~', on the one hand, and
the translational and rotational short-time diffusion constants
D; and D; on the other. In the case of a spherical particle
with radius R these two quantities fulfil the relation D,/D, =
4R?/3, which is used in the following analytical expressions
for the displacement moments. The Langevin equation (2)
can easily be derived from the more general vector equation
(dw)/(dr) = BDrg(1) x 0.

As ¢ is a linear combination of Gaussian variables
according to (2), the respective probability distribution
function has to be Gaussian as well and proves to be

Ry
p<_<¢ $0) ) )

P@.n= 4D,

—————ex
45 Dt

where ¢9 = ¢ (¢t = 0) is the initial angle. Technically, we can
let ¢ run ad infinitum instead of confining it to an interval of
2m. For the theoretical analysis, the two-dimensional motion
in the xy plane can be split up into its components in the x and
y directions, respectively. In the following subsections, we
first refer to the x component of (1). As some calculations
for the (1, 1, s) model have already been presented in [60] in
more detail, we only summarize the most important results
and briefly refer to systems with additional linear or quadratic
potentials after that.

3.1. The (1, 1, s) model

Integrating the averaged equation (1) for U = 0 over time and
considering only the x component yields

(x(t) — x0) = 2BFR* cos(¢po)[1 — e~ 7] 4

and

((x(1) —x0)*) = $R*Dyt + (3BFR*)’
x [Det — 14 e 2" + L cos(2¢p)
X (3 —4e P 4 e4Pi1y] 5)
for the mean position and the mean-square displacement.
As usual, the skewness S and the kurtosis y are defined as

RS
ST = ©
and .
5 NN o

{((x = (x))?)?
respectively. A non-Gaussian behaviour is manifested in non-
zero values for § and y. Using the notation F = BRF for
spherical particles and a scaled time T = D¢, the third and
fourth moments are given by the analytical results

_ 3
<M> = 33_2F:TCOS(¢0)(1 —e)

R3
+ %F:3[COS(¢0)(3‘L’ — % + %tefr + % T — 2]—467“)
+ cos(B3n) (55 — 1" + et — she ™)) ®)
and
1) — x0)* 64 256
(@) —x0)7\ _ 64 , 4 20p2,
R4 3 9

x[e7T+ 17— 14 % cospp) (e —4e " +3)]
T _ 49 -1 4 Le—4t

+ % F;‘4[3r2 - %t + 2]%1 — 5te” € yrS

+ cos(2¢0)(%r - % + %te” + %e” — 3—10te’4f

— Le ™ 4 Le ™) 4 cos(dgo) (15 — age "

+ ﬁefh _ %67% + ﬁeflér)]. ©)

In the case of large forces SRF > 1, the particle
motion (see figures 2 and 3) is separated into three qualitatively
different time regimes, two diffusive regimes at short and
at large times, and a super-diffusive regime at intermediate
times, which is characterized by a 2 or a £3 behaviour of the
mean-square displacement, depending on the initial particle
orientation. In particular, the super-ballistic > behaviour
requires some explanation because there is no obvious
acceleration in the overdamped system. The interpretation is
given below after characterizing the different regimes in more
detail.

The regimes are separated by the two timescales #; and
1, respectively: at early times 1 < t;, the particle undergoes
simple translational Brownian motion, which is governed by
the short-time translational diffusion term (8/3)R%D,t in (5).
As seen in figures 2 and 3 the mean-square displacement
displays a crossover to an intermediate super-diffusive regime
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Figure 2. Mean-square displacement of a spherical particle with
initial orientation angle ¢y = 0.5 for different values of

F} = BRF. The different time dependences in the various regimes
are illustrated by straight lines.

at a timescale #; which, in turn, depends on the initial
orientation ¢y and the effective force F;" = BRF. In particular

(3/2)(BRFDy)™",

- [cos(¢o)| < 1/4/BRF (10)

(3/2)[cos(¢o)BRF17D; ",
| cos(¢po)| > 1/\/BRF.

If the initial orientation has a sufficiently large component
parallel to the x axis, i.e. if | cos(¢g)| > 1/+/BRF, the mean-
square displacement displays a crossover to a ballistic regime,
which is governed by a scaling relation ((x(f) — x¢)2) o< #%.
The crossover is observed earlier the larger the initial force
component | cos(¢g)|B R F parallel to the x axis is. In contrast,
if the initial particle orientation points along or almost along
the y axis at t = 0, i.e. |cos(¢)| < 1/+/BRF, the crossover
time #; is substantially larger. In the latter case #; is the time
it takes the particle to undergo an angular displacement by
rotational diffusion, such that the projected force onto the x
axis becomes as large as demanded in the former case. Only
then does the force bring about a lateral displacement that is
compatible or larger than the displacements due to original
translational Brownian motion. Due to this multiplicative
coupling of a diffusive and a ballistic behaviour for the
angular and the translational displacements, respectively, the
mean-square displacement shows a super-ballistic power-law
behaviour for ¢ 3> #;, with ((x(¢) — x0)?) o< £3. Although there
is no obvious acceleration in the system, the velocity along
the x direction changes correspondingly to the projection of
the force onto the x axis due to rotational Brownian motion.
This induces some kind of accelerated motion and explains the
super-ballistic #> power law.

The intermediate regime is terminated by free rotational
Brownian motion at the second timescale r, = D/~ 1 beyond
which the particle motion is diffusive again. As already
reported in [60], the long-time translational diffusion constant

106 T T T T T
10*
= 102 N
5 i
| 100 g
= é
&3 :
= 1072 :
107+ :
10—6 L “' L L i
107° 1074 1073 1072 1071 100 10!
Dt

Figure 3. Mean-square displacement of a spherical particle with
effective force F = 100 for different values of ¢. The regime of
super-diffusive motion is defined by the timescales #, and 7,. While #,
is independent of the initial angle ¢y, the timescale #; becomes larger
the more the initial orientation of the particle deviates from the x
direction.

0.6 : . . . .
0.4 : : 1
7t1( ftlb ftla
0.21 : : : I
O“Mﬁwb—-égz .i i
DY : /"’
-02f R NS : 1
—~ Y : /
\; -04r ‘i‘ \/‘ I'I 4
0.6 \‘ ‘/ 4 1
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Dyt

Figure 4. Kurtosis y (¢) of the probability distribution function
W(x, t) of a spherical particle with initial orientation angle

@9 = 0.57 for the same values of F; = BRF as used in figure 2.
Comparing figures 2 and 4 shows that the timescales 7y, #1, and ;.
can be extracted from the plots of the kurtosis as well as from the
mean-square displacement.

is given by

i ((x(t) — x0)%)
m —
t—00 2t

l)L =

= 4D, R’[1 + 2(BRF)*. an

As can be seen in figure 4, the beginning of the super-
diffusive regime also shows up in the kurtosis. Here, the
deviation from zero clearly indicates the crossover to non-
Gaussian behaviour. Interestingly, the kurtosis features a
pronounced long-time tail. Therefore, the behaviour of the
particle is still non-Gaussian when its motion is (nearly)
diffusive again. Analysing the analytical result for the kurtosis
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Figure 5. Mean position of a spherical particle with driving force

F? =10 that is exposed to an external square potential. The strength
of the potential U (x) = (1/2)kx? is determined by the parameter

) = (4/3) Bk R?. The dimensionless quantity ¢ = x,/R is the
distance between the initial position of the particle and the position
of minimal potential given in units of particle radius R.

gives the leading long-time behaviour as

—21F>*
9+ 12F2 +4Fr*

Y () = (D) + 0 (}2) . a2

As the amplitude vanishes for F* = 0, this negative 1/¢ long-
time tail in y (¢) proves to be characteristic for self-propelled
particles.

The previous calculation of the displacement moments
can also be performed for systems in which the self-
propelled Brownian particle is exposed to x-dependent linear
or quadratic potentials. This is illustrated in the following.

3.2. The (1, 1, s) model with an additional linear potential

The Langevin equations in this case are obtained from (1)
and (2) by simply inserting a linear potential of the form
U (x) = mgx into the first component of (1). Thus, the motion
of a particle that is exposed to gravity is described by the
moments

(x(1) = x0) = 3BR’[F cos(o)(1 —e ") —mgDy] (13)

and

((x(1) — x0)*) = ER*Dyt + (3BR*)*{(mgD;t)*
+ F?[Dt — 14+ e P + L cos(2¢0)
X (3 _ 4e—D,t + e—4D,t)]

— 2Fmg cos(¢po) Dyt (1 — e P}, (14)

While the first moment (13) is a simple superposition of the
terms due to the self-propulsion of the particle and the external
force, respectively, the mean-square displacement (14) has an
additional term which depends on both of these forces.

140 ' ' '
— \=0.5,c=0,00 =7
1200 . A=25,c=1,¢9 =057
== A=10,c=—=5,¢4=0
100 om e
.... A=25c=3,¢=0
i 80t
T 60}
40t
200 " TTTEea L
R
0 .
103 10-2 107! 10° 10!
Dt

Figure 6. Second moment of a spherical particle that is exposed to
an external square potential. The plots refer to the same parameters
as the plots in figure 5.

3.3. The (1, 1, s) model with an additional square potential

Based on the Langevin equations (1) and (2) one also obtains
analytical results for the harmonic oscillator or square potential
Ux) = (1/2)kx>. Using the dimensionless parameter
A = (4/3)BkR?, which determines the strength of the square
potential, the mean position is given by

4BR’F

_ —ADyt
30— 1) e ") (15)

(x(1)) = xpe " + cos(¢o) (e

and the second moment is calculated as

((x(1))?) = xge P!
8BR’F
30—1)

4R 4 S
+ | —e 2Dy 4 ( ZBR2F
T T G+ D)
x [%(1 — e by (e~ DD _ e—mf’)}

cos(2¢p) 1
x=3) [(2A —4)

+ X0 COS(¢O)67AD,[ (efD,t _ e*)»Dr[)

=D

(e—4D,l —ZADrZ)

— €

1

—(e—()»+l)D,z _ e—ZADrz)i| }

— 0D (16)

Figure 5 shows that the mean position of the particle reaches
the position of the minimal potential and stays there. Note that
we plot (x(¢)) instead of (x(#) — x¢) here so that the long-
time behaviour is independent of the initial conditions. Due
to the square potential the second moment (see figure 6) does
not diverge as in the cases that have been regarded up to this
point. As expected, the long-time behaviour depends only on
the strength A of the square potential and not on the initial
conditions (see the dotted and dashed—dotted lines in figure 6).
The value of the second moment for very short times is directly
determined by the initial displacement c of the particle from the
position of minimal potential.
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Figure 7. Mean-square displacement of an ellipsoidal particle with
one orientational degree of freedom and anisotropy AD/D, = 0.8.
Plots are shown for (a) a self-propelled particle with

F! = BFy/D,/D; = 100 and (b) a ‘passive’ particle with vanishing
effective force. The solid lines refer to a parallel and the dashed lines
to a perpendicular initial orientation.

3.4. The (2,1, s) model

In this section we briefly want to present the results for
the (2, 1,s) model. As the one-dimensional case with the
theoretically assumed internal force projected onto the x axis
was already considered in the preceding subsections, the
analytical expressions for the first and second moments based
on the two-dimensional Langevin equation (1) are given by
superposition of the motion in the x and y directions. Thus,
using (4) and (5) one obtains the vectorial mean position

cm@w) an

uor—m>=%ﬂFR“1—64”]<mm¢w

and the mean-square displacement

((ce(t) —ro)?) = WR?D,t + 2(3BFR*?[Dyt — 1 + e 7).

(18)
As expected, the ¢y dependence vanishes in (18) due to
the free translational motion in the two-dimensional plane.
Furthermore, the diffusive term given by the first summand
in (18) is naturally twice as large as in (5).

4. Ellipsoidal particle with one orientational degree
of freedom

We now generalize the previous considerations to ellipsoidal
particles. To cover the situation depicted in figure 1(b) we have
to take into account that, as opposed to the case of spherical
particles, the translational diffusion coefficient is anisotropic,
which means that the diffusion tensor
D=D,(0®0) + Dy(I—ua®u) (19)
has to be applied. Here, I is the 2 x 2 unit matrix, @ =
(cos ¢, sin @) is the orientation vector, ® a dyadic product, and
D, and Dy, respectively, indicate the diffusion coefficients for

translation in the direction of the two semi-axes of the ellipsoid.
The index a stands for the semi-major axis, while b marks the
semi-minor axis. Using the diffusion tensor (19), the Langevin
equation for the centre-of-mass position of the particle can be
written in the form

dr

— = BD,-[Fii— VU] +w.

& (20)

Due to the anisotropy of the diffusion coefficient we cannot
include the Gaussian white noise random force exactly in the
same way as in (1). Instead of that, we use the zero mean
random noise source w(#). The variances of the components
i, j € {x,y}are given by (w;()w; (")) = 2D (¢ (1))8(t —1).
Thus, w; (t) are Gaussian random variables at fixed ¢ (¢). This
follows the procedure presented in [45] for ‘passive’ ellipsoidal
particles.

4.1. The (1, 1, e) model

It can easily be seen from (19) that D; -t = D,u. Therefore, in
the context of the (1, 1, e) model the Langevin equation for the
centre-of-mass position x of the self-propelled particle without
external potentials can be written as

dx
— = BD,F cos(¢) + w,.

” 21

The Langevin equation for the angle ¢, which is needed in
addition to (21), does not differ from (2). For the following
calculations, it is convenient to write the diffusion tensor (19)
as

A 1 cos(2¢) sin(2¢)
Dy = DI+ zAD(sin(zqs) —Cos(2¢))’ @2

where D = 1/2(D,+ D,) marks the mean diffusion coefficient
and AD the difference D, — D, between the diffusion
coefficients along the long and short axes of the ellipsoid.

The mean position of an ellipsoidal particle is given by
the first component of (24) (presented later in the text). For the
mean-square displacement one obtains the relation

_ AD _
((x(1) = x0)%) = 2Dt + 2D, Sos@do) (1 —e iy

T

D 2
+ <5FF“) [Dif — 1 +e P

+ L cos(2y) (3 — 4e™ P 4 7PN, (23)

For an isotropic particle with AD = 0, (23) reduces to the
result (5) for a spherical particle in one dimension, as expected.
For an anisotropic particle the additional (second) term in (23)
yields a ¢y dependence at very early times, in the regime of
bare translational diffusion, which is not present in the case
of an isotropic particle (see the discussion in section 3.1).
This additional term represents the relative orientation of the
initial direction of the long axis of the ellipsoidal particle and
the direction of the linear channel. The ¢y dependence can
also be seen in figure 7, where the strength of the driving
force is determined by the parameter F = BFy/D,/D; for
ellipsoidal particles.
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Figure 8. Comparison of the mean position of a spherical particle
with one and with two orientational degrees of freedom. The graphs
for which the initial angle ¢, is given refer to the (1, 1, s) model
while the graphs designated by a certain value for the angle 6, show
the results for the (1, 2, s) model. In all cases the effective force is
F¥ =10 and the motion in the z direction is considered.

4.2. The (2, 1, e) model

Again, we provide the analytical results for the case with two-
dimensional translation as well. For an ellipsoidal particle, one

obtains the expressions
oo ()

D,
(r(t) =r0) = BF [ A

T

for the first moment and
_ D \2
((r(r) —ro)?) = 4Dt +2 <,8FH“) [Dit — 1 +e P (25)

for the mean-square displacement, respectively. As in
the mean-square displacement (18) of a spherical particle,
the ¢o dependence also vanishes in (25). Furthermore,
the contribution to the diffusive motion due to the initial
orientation of the particle disappears for two-dimensional
translation so that the diffusive motion is simply reflected by
the term 4Dt in (25).

5. A freely rotating spherical particle

Up to now, particles with only one orientational degree of
freedom have been examined. In this section we transfer our
model to particles whose orientation is freely diffusing on the
unit sphere. Considering a spherical particle, this situation is
shown in figure 1(c). In the Cartesian lab frame the particle
orientation & = (sin6 cos @, sin 6 sin ¢, cos 0) is now given in
terms of the two orientation angles 6 and ¢. Using the updated
orientation vector the Langevin equation for the centre-of-mass
position is identical to (1) if the third component of all vectorial
quantities is considered additionally.

The orientational probability distribution for the freely
diffusing orientation vector [55] is given by

00 [
P@O.g.0)=>_ Y e Py gy, 00)Y" (6. @), (26)
=0 m=—I

10* T T T

102 L

101 L
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Figure 9. Comparison of the mean-square displacement of a
spherical particle with one and with two orientational degrees of
freedom. The remarks in the caption of figure 8 are also valid for this
figure.

where Y;" are the spherical harmonics. In (26) we use the
notation 8y = O(t = 0) and ¢y = ¢(t = 0) while the star
indicates complex conjugation.

5.1. The (1,2, s) model

To eliminate the ¢ dependence in the equation of motion, we
choose the z axis to point in the direction of the linear channel,
which we consider first. Moreover, we omit external potentials
in the following. By calculating (cos(8)) via (26) the first
moment is obtained as

(z(t) — z0) = 2BFR* cos(fp) (1 — e 7). 27

The mean position in the (1, 2,s) model is very similar to
the same in the (1, 1, s) model (see (4)). Here, the azimuthal
angle 0 takes the role of the angle ¢ in the (1, 1,s) model.
In particular, the two results agree up to linear order in time
t, whereas they deviate for longer times due to the enhanced
probability of the sphere with full orientational freedom to
assume a configuration with an orientation pointing in the
direction of the equator. This, in turn, on average causes a
smaller force component along the z axis and a smaller plateau
value of the excursion lim;_, o (z() —z(0)), which is illustrated
in figure 8.

Using (26) and, thus, the fact that every function that
depends exclusively on 6 and ¢ can be expanded as a
linear combination of spherical harmonics, we also obtain the
analytical result for the mean-square displacement, which is
given by
((2(t) = 20)*) = SR* Dt + (5BFR?)?

x [12D;t — 8 + 92D — 760

+ c0s?(Bp) (6 — 9e2Prt 4 30Dy, (28)

Comparing (28) and (5) (as shown in figure 9) it turns out
that the mean-square displacements of the spheres with two

or one orientational degree of freedom in a linear channel are
almost identical. In particular, their functional forms are the
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Figure 10. Comparison of the skewness S(#) of the probability
distribution function W (x, ) for a spherical particle with one and
with two orientational degrees of freedom. The solid and the
dashed—dotted lines refer to the (1, 1, s) model while their
counterparts for the (1, 2, s) model are given by the dashed and the
dotted lines.

same up to second or third order in time #, for the cases of a
parallel (¢9 = 6y = 0) or a perpendicular (¢pg = 6y ~ 7/2)
initial configuration, respectively. Therefore, the crossover
timescale from the diffusive to the super-diffusive regime t,
is exactly the same as in the (1, 1, s) model and given by (10).
The second timescale from the super-diffusive to the diffusive
regime is in the (1, 2, s) model given by #, = 2D,)"" and
therefore half as large as in the (1, 1, s) model. Concomitantly,
the long-time diffusion constant is smaller as compared to (11)
and given by
Dy = 3D:R*[1 + 5(BRF)*]. (29)

As for the long-time limits of the mean positions, the difference
to (11) reflects the fact that the freely oriented sphere is
more likely oriented perpendicular to the channel axis than the
sphere that is confined to rotate in the plane.

The non-Gaussian behaviour of the self-propelled particle
with free orientation on the unit sphere is embodied in the third
moment

<(X(t) _x0)3>
R3

2 F7cos()(1 —e ")

+ SFP[— 8L cos(0) + 4 cos(30)
+ % cos(f)e " — % cos(30)e ** + 1 cos(0)t

— 505 cos(0)e "2 — e cos(B)e " + 55 cos(30)e "

—+ 110 cos(@)re 2" — L e7127 cos(36)]

180 (30)

and in the fourth moment
< (x(1) — xO)4>
R4
=%+ %F;‘Zt [127 =8 +9e > —e "
+ (cos(0)*(6 — 9™ + 3¢ ™) + gz Fi*
x [27e729% 4+ 588 cos(20)e™ 2" — 16 8007 cos(20)e %"
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Figure 11. Comparison of the kurtosis y () of W(x, t) for a
spherical particle with one and with two orientational degrees of
freedom. See also the remarks in the caption of figure 10.

— 735 cos(40)e™ 2" +4704007% + 147¢7 '3 4 1100e %"
— 56007 + 480298 — 481 572¢ 2" — 211 680Te ™"
+ 105¢ 727 cos(40) + 60e 27 cos(26) + 1470 cos(46)
— 237160 c0s(20) — 7369607 — 2940 cos(46)e 2"

+ 249312 cos(20)e " + 211 6807 cos(26)e ™"

+ 2352007 cos(26) + 2100 cos(46)e ™%

— 12800 cos(26)e 7. (31)

The curves for the skewness (see figure 10) and the kurtosis
(see figure 11) of the probability distribution function W (x, ¢)
for the (1,2,s) model are obtained by shrinking their
counterparts for the (1, 1, s) model in the x direction as well as
in the direction of the ¢ axis. This is very similar to the findings
concerning the mean position of the particle (see figure 8). The
extrema of skewness and kurtosis and the change of sign of
the kurtosis, which is observed for non-perpendicular initial
configurations, already occur at smaller times. Obviously,
the existence of the negative 1/t long-time tail in y (t) (see
section 3.1) is not affected by the number of orientational
degrees of freedom of the particle.

5.2. The (2,2, s) model

For more than one translational degree of freedom, if the
particle motion takes place in the xy plane, the first and second
moments are given by

_2 201 _ 2Dy [ sin(Bo) cos(¢o)
and
((x(t) — 10)*) = WR*Dt + RBFR?)?
X [24D,t — 16 4 1820 — 20D
+ sin?(6p) (6 — 9e 2P 4 376Dy, (33)

respectively. As before, the results for the mean position and
the mean-square displacement are almost identical with respect
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Figure 12. Skewness S(¢) of the probability distribution function
W (x, t) for an ellipsoidal self-propelled particle as a function of
time. This figure illustrates the analytical results of the (1, 2, e)
model. While the initial angle 6, and the anisotropy AD/D, are
constant as given in the figure, graphs for various values of the
effective force F are shown.

to their lower-dimensional counterparts. Besides the change
from a cosine to a sine in the last part of (33), which is due to
the change of accessible dimensions, the only difference of the
mean-square displacements in the (2, 2, s) and in the (1, 2, s)
model consists in an additional factor of 2 for all terms that do
not depend on 6.

5.3. The (3, 2, s) model

The (3, 2, s) model is the most general situation concerning a
spherical particle. In this case, the mean position of the particle
is obtained by adding the z component (27)—(32). The mean-
square displacement is given by

((r(t) —r9)?) = 8R*Dyt + S(3BFR*)’[2D,t — 1 + 2],

(34)
The simplicity of (34) can be explained by the fact that no
dependence on the initial orientation can appear due to the
completely free motion®.

6. Freely rotating ellipsoidal particle

To complete our examination of the different model situations,
we now consider a freely rotating self-propelled ellipsoidal
particle as sketched in figure 1(d). The (D, 2,e) models,
where D € {1, 2,3} is the number of translational degrees
of freedom, are based on the Langevin equation (20).
To transfer this two-dimensional equation to the three-
dimensional case regarded here, the orientation vector Gt =
(sin @ cos @, sin 6 sin ¢, cos @) is used and the third component
is added to all vectorial quantities. The explicit form of the
diffusion tensor Dy is given by (19) by means of the updated
orientation vector.

5 We note that, due to the independence of the initial configuration, (34)
can also be derived directly from the correlation function (i(t) - i) =
exp (—2Dyt) [42].
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Figure 13. Kurtosis y (¢) of W(x, t) for an ellipsoidal self-propelled
particle as a function of time. The graphs correspond to the graphs in
figure 12 as far as the values of the various parameters are concerned.

6.1. The (1,2, e) model

As in the previous sections, we begin by considering the
case of one-dimensional translational motion without external
potentials, i.e. with the (1, 2, ) model. Using the ansatz based
on spherical harmonics according to (26) for an ellipsoidal
particle leads to the analytical results

1, Da 2Dy
(z(t) —z0) = E'BFF[I —e " ]cos(b) (35)
for the mean position and

_ 1 D,\*
((z(t) — 20)*) = 2Dt + (EﬁFa)

x [12D,t — 8 + 9e™2Dr" — 0D

+ cos2(0p) (6 — 9e 2P 4 370Dy

AD
——[-3Dy — 1 4¢P
+ 5 Dr[ +

+ 3cos?(0p) (1 — e %P7 (36)

for the mean-square displacement, respectively. Correspond-
ing expressions for the third and fourth moments and, thus, for
skewness and kurtosis were calculated as well. The analytical
results are presented graphically in figures 12 and 13. Dif-
ferent regimes of non-Gaussian behaviour are manifested by
different signs of the kurtosis. For ‘passive’ particles with van-
ishing internal effective force F = 0 (solid line in figure 13)
no change of sign is observed. The kurtosis is positive and a
simple maximum occurs at t &~ t, = (2D;)~!. These findings
correspond to the results for ‘passive’ ellipsoidal particles in
two dimensions that were studied in [45]. In contrast to sim-
ple non-Gaussian behaviour, the situation turns out to be much
more complex if self-propelled particles are considered. If the
self-propulsion outweighs the effect of the kicks of the sol-
vent particles (dashed line and dotted line in figure 13), several
maxima, minima and changes of sign induce a rich structure in
y (1), indicating different non-Gaussian behaviour at different
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timescales. The characteristic 1/¢ long-time tail observed for
spherical particles is also found for ellipsoidal self-propelled
particles. The skewness S(¢) (see figure 12), which is a mea-
sure of the asymmetry of the probability distribution, reveals
a higher degree of complexity as well. While S(¢) is zero for
‘passive’ particles (solid line in figure 12), this parameter also
shows a much richer structure if self-propelled particles are re-
garded.

6.2. The (2,2, e) model

By simply combining the results for one-dimensional
translation in the x and y directions, for the (2, 2, e) model
we obtain the expressions

) (37

sin(6) cos(go)
sin(6) sin(¢o)

D, _
%,BFF[I —e ZDr’](

2
((r(t) —ro)?) = 4Dt + ( )

x [24D,t — 16 + 18e 2P — 20D
+ sin%(0y) (6 — 9e 2P 4 370D

(r(t) —ro) =
for the mean position and

1ﬁFDa
6" D

T

AD
—6D,t — 2 + 2e D
+ 9Dr[ + 2e

+ 3sin%(6p) (1 — e Py

(38)

for the mean-square displacement.

6.3. The (3, 2, e) model

In a last step, we now add the third translational degree of
freedom. Hence, in this subsection we consider the most
general case with free translational and rotational motion of
an ellipsoidal self-propelled particle. By adding the third
component (35)—(37) we obtain the result for the mean
position.  The analytical expression for the mean-square
displacement is simply given by

((r(1) — ro)?) = 6Dt — ADt

+ ! ,BF& : 2D, — 1 +e 0] (39)
2 D, ! '

To explain the simplicity of this result we want to point to the

short discussion after equation (34).

7. Conclusion

In conclusion, we have analytically solved the Brownian
dynamics of an anisotropic self-propelled particle in different
geometries by presenting explicit results for the first
four moments of the probability distribution function for
displacements. The particle is driven along an axis which
itself fluctuates according to rotational Brownian dynamics.
After a transient regime which is characterized by two distinct
timescales, there is diffusive behaviour for long times. The
results for the long-time diffusion constants Dy for the
different groups of model situations are given in table 1. For
intermediate times, non-Gaussian behaviour is revealed by

10

Table 1. Long-time diffusion constant Dy for the different model
situations. Using the definition in (11) the analytical results are
directly obtained from the respective results for the mean-square
displacement.

Model Long-time diffusion constant

(D, 1,5)  (4/3)DR*[1 4 (2/3)(BFR)*]

(D,1,e) D +1/2D)(BF(D + (1/2)AD))?

(D,2,5)  (4/3)DR’[1 4 (2/9)(BFR)’]

(D,2,e) D —(1/6)AD +1/(6D)(BF(D + (1/2)AD))?

a non-vanishing kurtosis in the particle displacement which
decays as 1/t for long times ¢. For special initial conditions
(nearly perpendicular initial orientation and large effective
forces), we find a super-diffusive transient regime where
the mean-square displacement scales with an exponent 3 in
time. The analytical results can be used to compare with
experimental systems of, for example, swimming bacteria or
self-propelled colloidal particles. Any deviations point to the
importance of hydrodynamic interactions with the substrate
and with neighbouring particles at finite density.

It would be interesting to generalize the analysis towards
various situations. First of all, hydrodynamic interactions
were neglected in our studies.  While this is justified
in the bulk, hydrodynamic interactions become important
at finite densities [63] and may significantly influence the
distribution of the mean-square displacements [64]. If the
particle is moving close to a substrate and the substrate is
not hydrodynamically flat, then hydrodynamic interactions
play a significant role, too [65]. Second, it would be
interesting to include an additional torque in the Langevin
equations of motion.  This leads to circular motion in
two dimensions [37] while for three spatial dimensions
helical motion is expected as also suggested by a slightly
different model presented in [66]. Next, a non-Gaussian
noise [67] in the Langevin equations might be relevant for
modelling real swimming objects [13, 66]. Furthermore,
the actual propulsion mechanism was modelled just by an
effective force. A consideration of more details about
the actual propulsion mechanism might be necessary to
analyse short-time dynamics in more depth. In addition to
that, the model might be transferred to more complicated
geometries [9, 68—70] and flexible particle shapes [71, 72].
Finally, the collective dynamics [73—75] of many swimmers
in colloidal suspensions [76] will lead to further effects like
swarming, swirling and jamming. While at high densities
hydrodynamic interactions are expected to play a minor role,
the direct particle—particle interactions become relevant and
should be incorporated in theory [77] and simulation [78].
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