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Using a generalized order parameter gradient expansion within density functional theory, we
derive a phase-field-crystal model for liquid crystals composed by apolar particles in three spatial
dimensions. Both the translational density and the orientational direction and ordering are included
as order parameters. Different terms involving gradients in the order parameters in the resulting
free energy functional are compared to the macroscopic Ginzburg-Landau approach as well as to
the hydrodynamic description for liquid crystals. Our approach provides microscopic expressions
for all prefactors in terms of the particle interactions. Our phase-field-crystal model generalizes
the conventional phase-field-crystal model of spherical particles to orientational degrees of freedom
and can be used as a starting point to explore phase transitions and interfaces for various liquid-
crystalline phases.

PACS numbers: 64.70.M-, 82.70.Dd, 61.30.Dk

I. INTRODUCTION

The traditional Landau theory of phase transitions in
which the free energy is expanded in terms of a conve-
nient order parameter predicts the order and the scaling
behavior of bulk phase transitions [1] in mean field ap-
proximation. The same idea can be used for spatially
dependent order parameters in a free energy functional
where gradient expansions lead to a Landau-type de-
scription of equilibrium interfaces between two coexisting
phases (see e.g. [2]). This approach was very successful
for liquid-gas transition and fluid-fluid phase separation
in mixtures and was generalized to nematic and smectic
liquid crystalline phases by de Gennes [3, 4]. It was also
extended to freezing by a multiple [5–7] or single order
parameter theory. The latter involves a gradient expan-
sion up to fourth order in the density field and leads to
the so-called phase-field-crystal (PFC) model [8–10]. De-
pending on the parameter combinations, the PFC model
leads to stable periodic density modulations and to con-
stant densities both in two and three spatial dimensions
[11]. Therefore it has been used for large-scale numerical
investigations of statics and dynamics in the crystalline
state including: the structure and free energy of the fluid
crystal interface [12, 13], crystal growth dynamics into a
supercooled liquid [14], the structure [15] and dynamics
[16] of grain boundaries, and the Asaro-Tiller-Grinfeld
instability [17–20]. The PFC model can be derived from
microscopic density functional theory (DFT) [2, 21–24]
which describes crystallization in equilibrium [25–28] us-
ing a Landau expansion in terms of density modulations
[5–7, 29]. In two spatial dimensions, this derivation was
recently generalized to liquid crystalline phase which pos-
sess orientational order [30] and within quite few parame-
ters a rich topology of the equilibrium phases were found.
In this paper, we generalize the derivation of the phase-

field-crystal model for apolar orientational degrees of

freedom to three spatial dimensions. We start from mi-
croscopic density functional theory and perform a gra-
dient expansion in three order parameters namely the
translational density and the orientational direction and
ordering (or equivalently the nematic tensor). The result
for the static free energy functional is richer than in two
dimensions [30]. The prefactors of the different gradient
terms are expressed as integrals over microscopic correla-
tion functions allowing thus a microscopic determination
in terms of the interparticle interactions. The results
are compared to macroscopic approaches which provide
a framework of possible gradient terms allowed from gen-
eral symmetry principles. This phase-field-crystal model
generalizes the phase-field-crystal model of spherical par-
ticles [8–10] to orientational degrees of freedom. It can be
used as a starting point to explore phase transitions and
interfaces for various liquid-crystalline phases, in partic-
ular including plastic and full crystalline phases where
the translational density shows a strong ordering.
The paper is organized as follows: in Sec. II, we derive

the PFC model from density functional theory by ex-
panding the orientational dependence of the density field
up to the first nontrivial order and performing a gradi-
ent expansion in the translational coordinate. Then, in
Sec. III, we discuss the relation to symmetry-based ap-
proaches. We finally discuss possible extensions of the
model to more complicated situations and give final con-
clusions in Sec. IV.

II. DERIVATION OF THE

PHASE-FIELD-CRYSTAL MODEL FROM

DENSITY FUNCTIONAL THEORY

Our derivation of the PFC model uses the micro-
scopic static density functional theory for liquid crystals.
We consider N particles with center-of-mass positions

http://arxiv.org/abs/1007.1648v1
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{ ~Ri | i = 1, . . . , N} and two orientational degrees of free-
dom each. The actual orientations of these particles are
described by a set of unit vectors {ûi | i = 1, . . . , N}. In
three dimensions the system has a total volume V and is
kept at a finite temperature T in the domain V ⊆ R

3.

A pair interaction potential W (~R1 − ~R2, û1, û2) be-
tween two particles 1 and 2 is assumed. We henceforth
consider apolar and uniaxial particles. The apolarity im-
plies the following symmetries:

W (~r, û1, û2) =W (−~r, û1, û2) =W (~r,−û1, û2)
=W (~r, û1,−û2) =W (~r, û2, û1) .

(1)

Examples for W (~R1 − ~R2, û1, û2) comprise excluded vol-
ume interactions (e.g. hard spherocylinders [31, 32] or
hard ellipsoids [33]), Yukawa segment models [34–36] and
Gay-Berne potentials [37–39].
The inhomogeneous one-particle density

ρ(~R, û) =

〈

N
∑

i=1

δ(~R− ~Ri)δ(û− ûi)

〉

(2)

provides the joint probability density to find particles

at center-of-mass-position ~R with orientation û. For an
observable A the symbol

〈A〉 = 1

Z

∫

V

d3 ~R1· · ·
∫

V

d3 ~RN

∫

S2

d2û1· · ·
∫

S2

d2ûN

×A exp



−
N
∑

i6=j=1

W (~Ri − ~Rj , ûi, ûj)

kBT





(3)

denotes the normalized canonical average, with the clas-
sical canonical partition function Z, the unit sphere S2 =
{~x ∈ R

3 : |~x| = 1} and Boltzmann’s constant kB. Apolar

particles involve the symmetry ρ(~R, û) = ρ(~R,−û).
From classical density functional theory of inhomoge-

neous fluids we know about the existence of an excess free
energy functional Fexc such that the Landau free energy
functional

Ω(T,V , µ, [ρ(~R, û)]) = Fid(T,V , [ρ(~R, û)])

+ Fexc(T,V , [ρ(~R, û)])−
∫

V

d3 ~R

∫

S2

d2ûµρ(~R, û)
(4)

is minimal for the equilibrium density field for a given
chemical potential µ, temperature T and domain V . The
ideal rotator gas functional Fid is known exactly:

Fid(T,V , [ρ(~R, û)]) =kBT
∫

V

d3 ~R

∫

S2

d2û ρ(~R, û)

×
(

ln
(

Λ3ρ(~R, û)
)

− 1
)

.

(5)

Here, Λ is the thermal de Broglie wavelength. The ex-

cess free energy functional Fexc(T,V , [ρ(~R, û)]) incorpo-
rates all correlations and is not known in general, but

there are several approximations available. Well known
approximations include the Onsager functional

Fexc(T,V , [ρ(~R, û)]) ≈ −kBT
2

∫

V

d3 ~R1

∫

V

d3 ~R2

×
∫

S2

d2û1

∫

S2

d2û2 ρ(~R1, û1)ρ(~R2, û2)

×
(

exp

[

−W (~R1 − ~R2, û1, û2)

kBT

]

− 1

)

(6)

that becomes asymptotically exact in the low density
limit [40], the mean-field approximation

Fexc(T,V , [ρ(~R, û)]) ≈
1

2

∫

V

d3 ~R1

∫

V

d3 ~R2

∫

S2

d2û1

×
∫

S2

d2û2W (~R1 − ~R2, û1, û2)ρ(~R1, û1)ρ(~R2, û2)

(7)

which becomes asymptotically exact at high densities for
bounded potentials [41] and the Ramakrishnan-Yussouff

approximation [25]

Fexc(T,V , [ρ(~R, û)]) ≈ −kBT
2

∫

V

d3 ~R1

∫

V

d3 ~R2

×
∫

S2

d2û1

∫

S2

d2û2 c
(2)(~R1 − ~R2, û1, û2)

×
(

ρ(~R1, û1)− ρ
)(

ρ(~R2, û2)− ρ
)

.

(8)

This approximation is used in the following. It can be
viewed as a truncated density expansion in the density

difference ρ(~R, û)− ρ around a mean density ρ with the
direct correlation function c(2) of a reference fluid. More
accurate forms for Fexc for hard particles are given by
weighted-density-approximations [42, 43] or follow from
the fundamental-measure theory [28]. As a further ap-
proximation we only consider weak anisotropies in the
orientations. Thus, the leading terms in the density
parametrization for uniaxial particles are

ρ(~R, û) ≈ ρ
(

1 + ψ1(~R) + ψ2(~R) P2

(

û0(~R) · û
)

)

(9)

with P2(x) = 1
2 (3x

2 − 1) denoting the second Legendre
polynomial. In this expression, the real-valued dimen-
sionless orientationally averaged density is represented
by

ψ1(~R) =
1

4πρ

∫

S2

d2û
(

ρ(~R, û)− ρ
)

. (10)

It is identical to the original treatment of the PFC model
[8, 9]. The dimensionless field

ψ2(~R) =
5

4πρ

∫

S2

d2ûρ(~R, û) P2

(

û0(~R) · û
)

, (11)

on the other hand, measures the local degree of orienta-
tional order. For apolar particles, the leading anisotropic
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contribution is the third term in the big brackets on the
right-hand-side of Eq. (9). Furthermore, the unit vector

field û0(~R) defines the local director of the orientation
field [44].
To begin with the derivation of the static free energy

functional F = Fid + Fexc we insert the truncated ex-
pansion (9) into Eq. (5) and expand the logarithm up to
third order. After performing the angular integration the
approximation

Fid[ψ1, ψ2, û0] ≈ F0 + kBTρ2π

∫

V

d3 ~R

×
(

2ψ1 + ψ2
1 −

ψ3
1

3
+
ψ4
1

6
+
ψ2
2

5
− ψ1ψ

2
2

5

+
ψ2
1ψ

2
2

5
− 2ψ3

2

105
+

4ψ1ψ
3
2

105
+
ψ4
2

70

)

(12)

with

F0 = kBTρ 4πV
(

ln(Λ3ρ)− 1
)

and V =

∫

V

d3 ~R (13)

is obtained. Next, we derive the excess free energy
functional. For this purpose we insert Eq. (9) into the
Ramakrishnan-Yussouff approximation (8) and decom-
pose the direct correlation function into spherical har-
monics Yl,m(û) up to second order:

c(2)(~R, û1, û2) ≈
2
∑

lj=0
16j62

lj
∑

mj=−lj
16j62

c̃
(2)
l1,l2,m1,m2

(~R)

×Yl1,m1
(û1)Yl2,m2

(û2) .

(14)

The angular integration leads to the final expression

Fexc[ψ1, ψ2, û0] ≈ −kBTρ28π2

∫

V

d3 ~R1

∫

V

d3 ~R2

×
1
∑

lj=0
16j62

2lj
∑

mj=−2lj
16j62

5−l1−l2 c̃
(2)
2l1,2l2,m1,m2

(~R1 − ~R2)

×Y2l1,m1

(

û0(~R1)
)

ψl1+1(~R1)

×Y2l2,m2

(

û0(~R2)
)

ψl2+1(~R2) .

(15)

Here, the expansion coefficients

c̃
(2)
l1,l2,m1,m2

(~R) =

∫

S2

d2û1

∫

S2

d2û2 c
(2)
(

~R, û1, û2
)

×Yl1,m1

(

û1
)

Yl2,m2

(

û2
)

(16)

are not independent. If they are further decomposed into
a series of spherical harmonics with respect to the remain-

ing orientational unit vector (~R1 − ~R2)/|~R1 − ~R2|, it is
possible to use the identities

c(2)(Rû, û1, û2) =

∞
∑

l1,l2,l=0

ωl1,l2,l(R)

lj
∑

mj=−lj
16j62

l
∑

m=−l

× C(l1, l2, l,m1,m2,m)Yl1,m1
(û1)

×Yl2,m2
(û2)Yl,m(û)

(17)

and

ωl1,l2,l(R) =

√

4π

2l+ 1

∫

S2

d2û1

∫

S2

d2û2

min{l1,l2}
∑

m=−min{l1,l2}

× C(l1, l2, l,m,−m, 0)Yl1,m(û1)Yl2,−m(û2)

× c(2)(Rêz, û1, û2)

(18)

to derive necessary relations between the expansion co-
efficients from the properties of the Clebsch-Gordan co-
efficients C(l1, l2, l,m1,m2,m) [45]. Now a gradient ex-
pansion is performed [29] up to fourth order in the ψ1ψ1

terms of Eq. (15) and up to second order in the ψ1ψ2 and
ψ2ψ2 terms. We assume that the highest gradient terms
ensure stability. By partial integration and omission of
surface terms one obtains the result

Fexc[ψ1, ψ2, û0] ≈
1

2

∫

R3

d3 ~R

×
(

A1ψ
2
1 +A2

(

~∇ψ1

)2
+A3

(

△ψ1

)2

+B1ψ
2
2 +

1

9

(

K̃1 + 2K̃2

)(

~∇ψ2

)2

+
1

3

(

K̃1 − K̃2

)(

û0 · ~∇ψ2

)2

+B2

(

~∇ψ1 · ~∇ψ2 − 3
(

û0 · ~∇ψ1

)(

û0 · ~∇ψ2

)

− 3ψ2
~∇ψ1 ·

((

û0 · ~∇
)

û0 + û0
(

~∇· û0
))

)

+ 2ψ2
~∇ψ2 ·

(

(

K̃2 − K̃1

)((

û0 · ~∇
)

û0
)

+
1

3

(

2K̃1 + K̃2

)(

û0
(

~∇· û0
))

)

+ ψ2
2

(

K̃1

(

~∇· û0
)2

+ K̃2

(

û0 ·
(

~∇×û0
))2

+ K̃1

(

û0×
(

~∇×û0
))2
)

)

(19)

for V = R
3. The coefficients are given by

A1 = −kBTρ24πM(0)
0,0 ,

A2 = kBTρ
2 2π

3
M

(2)
0,0 ,

A3 = −kBTρ2
π

30
M

(4)
0,0 ,

B1 = −kBTρ2
4π

25

(

M
(0)
2,0 − 2M

(0)
2,1 + 2M

(0)
2,2

)

,

B2 = −kBTρ2
4π

15
√
5
M

(2)
0,2 ,

K̃1 = kBTρ
2 2π

175

(

9M
(2)
2,0 − 16M

(2)
2,1 + 10M

(2)
2,2

)

,

K̃2 = kBTρ
2 2π

175

(

3M
(2)
2,0 − 10M

(2)
2,1 + 22M

(2)
2,2

)

(20)
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and depend on the moments

M
(n)
0,0 = 4π

∫ ∞

0

dRRn+2c̃
(2)
0,0,0,0(R) ,

M
(n)
0,2 = 4π

∫ ∞

0

dRRn+2c̃
(2)
0,2,0,0(Rêz) ,

M
(n)
2,0 = 4π

∫ ∞

0

dRRn+2c̃
(2)
2,2,0,0(Rêz) ,

M
(n)
2,1 = 4π

∫ ∞

0

dRRn+2c̃
(2)
2,2,1,−1(Rêz) ,

M
(n)
2,2 = 4π

∫ ∞

0

dRRn+2c̃
(2)
2,2,2,−2(Rêz)

(21)

of the expansion coefficients of the direct correlation func-
tion, where êz is the cartesian unit vector codirectional
with the z-axis. These moments in turn depend on the
thermodynamic conditions expressed by T and ρ.
The functional (19) contains a few simpler models as

special cases which follow by setting ψ1, ψ2 and û0 suc-
cessively to zero or to a constant. In detail, if ψ1 = 0
and ψ2 and û0 are constant, the PFC model corresponds
to a completely isotropic system and all terms in Eq.
(19) vanish or are constant (∼ B1). Alternatively, when
ψ1 = 0, ψ2 is constant and û0 is space-dependent, the
Frank free energy functional [46] is recovered. Up to the
common prefactor ψ2

2 the Frank constants for splay, twist

and bend are K̃1, K̃2 and K̃3 = K̃1, respectively. The
more general case with ψ1 = 0 and space-dependent ψ2

and û0 can be referred to as constant-density approxima-
tion. If then û0 is a constant unit vector, the constant-
density excess free energy functional reduces to a simple
gradient expansion of second order for ψ2, where only
the terms four to six are not vanishing. Otherwise, for
a space-dependent û0, the PFC model corresponds to
the Landau-de Gennes free energy [46] for uniaxial ne-
matics. More complex models are recovered for non-

constant densities, i.e. for ψ1 = ψ1(~R). If only ψ1 is
space-dependent, the PFC model has no orientational
dependence and is equivalent to the three-dimensional
extension of the PFC-model of K. R. Elder and cowork-
ers [29] for isotropic particles. With a space-dependent
û0, this model is extended to the free energy for uniax-
ial nematics with a constant amount of ordering. Also
for non-constant scalar fields ψ1 and ψ2 but a constant
nematic director û0, the model is much simpler than the
full excess free energy functional in Eq. (19), because the
computationally expensive terms that describe the cou-

plings of ~∇ψ1 and ~∇ψ2 with derivatives of the nematic
director as well as the very involved Frank free energy
drop out.
In the full excess free energy functional (19) all these

special cases are properly comprised. This new func-
tional clarifies the relation between already existing sim-
pler PFC models, contains the appropriate couplings of
the fields ψ1, ψ2 and û0, relates the constant prefactors
of the terms in Eq. (19) to the direct correlation function
and is therefore the main result of this paper.

III. RELATION TO SYMMETRY-BASED

APPROACHES

In this section we make contact between the three-
dimensional PFC model for liquid crystals based on den-
sity functional theory with two macroscopic symmetry-
based approaches, namely the Ginzburg-Landau descrip-
tion and generalized hydrodynamics. The goal is to com-
pare the central results of this paper summarized in Eqs.
(19) to (21) with corresponding results from Ginzburg-
Landau analysis appropriate as a mean field description
in the vicinity of phase transitions and the hydrodynamic
description applicable for long wavelengths (continuum
approximation) and low frequencies.
For the contributions associated with density varia-

tions and their gradients given in the second line of Eq.
(19) this can be done very easily. From the Ginzburg-
Landau description for the smectic A - nematic descrip-
tion we have for the corresponding terms [47] in the en-
ergy density

1

2
α|ψ|2 + 1

2
b1|~∇iψ|2 +

1

2
b2|△ψ|2 (22)

where we have used the smectic order parameter ψ =
ψ0 exp(−iφ) with magnitude ψ0 and phase φ introduced
by de Gennes [4, 46], which is directly proportional to
density variations (compare, for example [48]). Compar-
ing the second line of Eq. (19) and Eq. (22), we can iden-
tify A1, A2 and A3 with α, b1 and b2, respectively.
In addition, we can also make contact with the bulk

description of smectic A, where one uses the layer dis-
placement u parallel to the layer normal as a hydrody-
namic variable [46, 49]. For the gradient terms associated
with the layer displacement, u, which is proportional to
phase changes, one has in the energy density

1

2
B(~∇‖u)

2 +
1

2
K(~∇2

⊥u)
2 (23)

where in Eq. (23) the contribution ∼ B is associated with
the compressibility of the layering and the contribution
∼ K is connected with bending of the layering. Since the
macroscopic description is dealing with the bulk of the
smectic A phase, the uniaxial anisotropy is reflected in
the terms given in Eq. (23).
For the terms associated exclusively with orientational

order in Eq. (19) in lines 3, 4 and 7-10 we start the com-
parison with the continuum description of the bulk phase
for which we have for the analogous terms in the energy
density

K1(~∇ · ~n)2 +K2(~n · [~∇× ~n])2 +K3(~n× [~∇× ~n])2

+ L‖(ni
~∇iS)

2 + L⊥δ
tr
ij(~∇iS)(~∇jS)

+M(~∇iS)[δ
tr
iknj + δtrjkni](~∇jnk) .

(24)

In Eq. (24) the first line is connected to gradients of the
director field, ~n. It contains splay, twist and bend and
goes back to Frank’s pioneering paper [46, 50]. Lines 2
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and 3 are associated with gradients of the nematic modu-
lus, S, and with a coupling term, ∼M , between gradients
of the director and gradients of the modulus [51, 52].
The Frank free energy can be easily compared with

lines 9 and 10 of Eq. (19). We identify ψ2 in the last
section with the nematic modulus, S, and û0 with the
director field, ~n. The splay constant K1 in Eq. (24) reads

2K̃1ψ
2
2 , the twist elastic constant in Eq. (24) reads 2K̃2ψ

2
2

and the bend elastic constant in Eq. (24) is 2K̃1ψ
2
2 . A

similar comparison can be performed for the expressions
given in lines 3, 4, 7 and 8 of Eq. (19). We obtain for the

contribution ∼ M in Eq. (24) ψ2(K̃2 − K̃1) and for the
gradient terms of the nematic modulus L‖ and L⊥ are

given by L‖ = 2
9 (4K̃1 − K̃2) and L⊥ = 2

9 (K̃1 + 2K̃2).
We thus arrive at the conclusion that instead of 6 in-

dependent coefficients in the symmetry-based continuum
description only two independent ones are left over in the
PFC model. This reduction in the number of indepen-
dent coefficients is a well known feature of approximate
approaches. It is even known in fields such as superfluid
3He where one finds a reduction from 6 to 3 coefficients
for analogous terms [51, 53]. In this connection it turns
out to be quite instructive to compare the terms associ-
ated with gradients of the orientational order in Eq. (19)
with the gradient terms in the Ginzburg-Landau descrip-
tion of the nematic - isotropic phase transition given by
de Gennes [3] with the same terms also occuring in the
Ginzburg-Landau description of the smectic A - isotropic
phase transition.
In the vicinity of the isotropic - uniaxial nematic phase

transition one takes traditionally the second order trace-
less tensor Qij [3] as the order parameter. It vanishes
in equilibrium, < Qij >≡ 0 in the isotropic phase and
assumes in the uniaxial nematic phase the structure [46]
Qij = S(ninj − 1

d
δij), with d = 2 in two dimensions and

d = 3 in three dimensions. The gradients in Qij give rise
to the gradient energy

FQ =

∫

R3

d3 ~RLijklmn(~∇iQjk)(~∇lQmn) . (25)

In the uniaxial nematic phase the tensor Lijklmn has six
independent coefficients. Using the decomposition, for
example, in three dimensions Qij = S(ninj − 1

3δij) one
obtains in total six coefficients as above: 3 Frank coef-
ficients for the pure deformations of the director field, 2
coefficients for the deformations of the modulus S, and
one coupling term between gradients of the director and
gradients of the modulus. In the isotropic phase this ex-
pression reduces to [3]

FQiso
=

∫

R3

d3 ~R
[

L1(~∇iQjk)(~∇iQjk)

+ L2(~∇iQik)(~∇jQjk)
]

(26)

and thus to the same number of independent coefficients
as in the PFC approach given above. We close the dis-
cussion of the terms associated purely with orientational

order by pointing out that the first term on the third line
in Eq. (19) is the analog of the term ∼ β1 in Eq. (2a) of
Ref. [52].

Next we compare the results given in Eq. (19) for
the coupling terms between gradients of the density and
gradients of the orientational order with the results of
the two macroscopic symmetry-based approaches. These
terms are listed in lines 5 and 6 of Eq. (19) and are pro-
portional to B2. For spatial gradients in the director
field coupling to spatial variations in the density we find
[52, 54]

Fnc =

∫

R3

d3 ~Rλρ(~∇iρ)[δ
tr
iknj + δtrjkni

]

(~∇jnk) (27)

where the transverse Kronecker delta projects onto the
plane perpendicular to the preferred direction ~n: δtrij =
δij − ninj . By comparison with Eq. (19) we find λρ =
−3B2ψ2. Finally we have for the terms coupling gradi-
ents of the order parameter modulus to gradients of the
density [52]

FSc =

∫

R3

d3 ~RNρ
ij(
~∇iS)(~∇jρ) (28)

where the second rank tensor Nρ is of the standard uni-
axial form Nρ

ij = Nρ
1ninj + Nρ

2 δ
tr
ij . A comparison with

Eq. (19) yields N1 = −2B2 and N2 = B2. The cou-
pling terms listed in Eqs. (27) and (28) exist in both,
two and three spatial dimensions. Thus in comparison
to the hydrodynamic description of the bulk behavior,
which is characterized by three independent coefficients,
we find one independent coefficient in the PFC model. In
the framework of a Ginzburg-Landau approach using the
orientational order parameter Qij we find in the isotropic
phase

FQrhoiso
=

∫

R3

d3 ~RP ξ(~∇iQjk)(~∇lρ)(δijδkl+δikδjl) (29)

and thus one independent coefficient - as has also been
the case for the PFC model.

In conclusion we find that the PFC model expand-
ing the generalized energy up to quadratic order in ori-
entational and density variations and their gradients
can be compared easily with corresponding terms in
the symmetry-based Ginzburg-Landau description in the
isotropic phase. It also emerges that the number of in-
dependent coefficients obtained in the framework of a
PFC model based on a density functional approach typ-
ically contains a smaller number of independent coeffi-
cients than predicted from generalized hydrodynamics.
This feature is shared by other approximate approaches
such as BCS for superfluid 3He, but has the advantage
to predict concrete values for these coefficients, which are
left as unknown parameters in a hydrodynamic descrip-
tion.
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IV. CONCLUSIONS AND POSSIBLE

EXTENSIONS

In conclusion, we derived a phase-field-crystal model
for liquid crystals in three dimensions from density
functional theory. Two approximations are involved:
first the density functional is approximated by a trun-
cated functional Taylor expansion similar in spirit to the
Ramakrishnan-Yussouff theory. Then a generalized gra-
dient expansion in the order parameters is performed
which leads to a local free energy functional. There are
three order parameters, namely the translational density
which corresponds to the scalar phase-field variable ψ1 in
the traditional phase-field-crystal model, an orientational
direction given by a three-dimensional unit vector û0 and
the nematic order parameter ψ2. In the two latter quan-
tities the gradient expansion is performed up to second
order while it is done to fourth order in ψ1. This ensures
that the traditional phase-field-crystal model [8, 9] is re-
covered as a special case in which there is no orientational
dependence of the full density. The additional terms are
all in accordance with macroscopic approaches based on
symmetry considerations [52, 55]. The full static free en-
ergy functional allows for a wealth of stable liquid crys-
talline phases. How the phase diagram depends on the
prefactors should be explored by further numerical stud-
ies. Once the stable phases are known, the structure
of interfaces between two coexisting phases can be ad-
dressed, not only the isotropic-nematic interface [56–58]
but also interfaces which involve one or two translational
ordered crystalline phases.
The analysis presented here can be generalized or ex-

tended to quite a number of different situations. First
of all one could in principle include higher order gradi-
ents both in ψ1 as well as in û0 and ψ2. The former is
in particularly mandatory if a more realistic description
of the translational crystalline density field is targeted
which is highly peaked in a three-dimensional solid [59]
or if higher-order orientational distributions should be
resolved which is relevant for smectic A phases [60].
Second, the generalization to dynamics is in principle

straightforward following the lines given in two spatial

dimensions in Ref. [30]. For Brownian dynamics, the
dynamical density functional theory [61–63] was gener-
alized to orientational dynamics [41] and can be used as
a starting point to derive the order parameter dynamics.
In general, the dynamics for ψ1 is conserved while that
for û0 and ψ2 is not. However, though the derivation
can be done in principle, it turns out in practice that
the actual equations of motions for the order parame-
ters involve a huge number of terms such that it is too
tedious to state them all explicitly. The dynamical ex-
tension could in principle be applied to the dynamics of
topological defects [64] and to interfacial dynamics near
three-phase coexistence [65]. Also, the dynamics in ori-
entational glasses [66] could be explored.

Third, polar particles with a head-tail asymmetry will
violate the symmetry conditions used here for the direc-
tor field. There should not be a principle obstacle to
derive the free energy functional for polar particles as
well. Furthermore, throughout the paper, we assumed
uniaxiality. Biaxiality in the orientational distribution
could also be included in the gradient expansions at the
expense of more coefficients entering the picture. It will
also be most interesting to see how the treatment of bond-
orientational order in the framework of the PFC-model
compares with the results available from continuum-type
approaches.

Finally it would be interesting to generalize the anal-
ysis to active particles which are driven by a constant
propagation speed along their orientation [67, 68]. A
dynamical density functional approach was recently [69]
proposed for active particles which could be used as a mi-
croscopic starting point to derive systematically gradient
expansions.
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[66] C. Renner, H. Löwen and J.-L. Barrat, Phys. Rev. E,
1995, 5, 5091.

[67] J. Toner, Y. Tu and S. Ramaswamy, Annals of Physics,
2005, 318, 170.

[68] F. Peruani, A. Deutsch and M. Bär, Phys. Rev. E, 2006,
74, 030904(R).

[69] H. H. Wensink and H. Löwen, Phys. Rev. E, 2008, 78,
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