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Abstract
On the basis of static and dynamical density functional theory, a phase-field-crystal model is
derived which involves both the translational density and the orientational degree of ordering as
well as a local director field. The model exhibits stable isotropic, nematic, smectic A, columnar,
plastic–crystalline and orientationally ordered crystalline phases. As far as the dynamics is
concerned, the translational density is a conserved order parameter while the orientational
ordering is non-conserved. The derived phase-field-crystal model can serve for use in efficient
numerical investigations of various nonequilibrium situations in liquid crystals.

1. Introduction

Within the phase-field-crystal (PFC) model [1–3] the
crystalline density field is described basically in terms of a
single Fourier mode, i.e. as a sinusoidal density wave. The PFC
model can be understood as a modified Landau expansion of
the full inhomogeneous one-particle density field of the solid.
It has been applied for large-scale numerical investigations of
dynamics in the solid state. Characteristic examples include
calculations of a variety of different quantities: the structure
and free energy of the fluid crystal interface [4, 5], crystal
growth dynamics into a supercooled liquid [6], the structure [7]
and dynamics [8] of grain boundaries, and the Asaro–Tiller–
Grinfeld instability [9–12]. A solid particle just enters as
a ‘blob’, i.e. a weak density modulation, and the dynamics
is diffusive on long timescales, i.e. the density itself is a
conserved order parameter.

Recently, the PFC model was derived from dynamical
density functional theory (DDFT) [13–16]. Static density
functional theory provides a microscopic framework to
describe crystallization in equilibrium [17–20] and a Landau
expansion in terms of density modulations [21–24] can be
used to derive the corresponding approximative free energy for
the PFC. Density functional theory was generalized towards
nonequilibrium dynamics for Brownian systems [25–27] and
the resulting dynamical density functional theory can be used
to derive the dynamics of the PFC [16]. First of all, this
derivation should apply to colloidal dispersions whose short-
time dynamics is clearly diffusive. But also molecular systems
governed by Newtonian dynamics for short times behave
diffusive on longer timescales and therefore the derivation
might have relevance for atomic systems as well.

The PFC model has been generalized to mixtures by
including more than a single density field [24]. However,
it has never been applied to liquid crystals which are made
by particles with orientational degrees of freedom1. Under
appropriate thermodynamic conditions, these particles occur
in liquid–crystalline phases including nematic, smectic A,
columnar, and plastic–crystalline phases [29, 30]. While
the DDFT approach was recently generalized towards
orientational dynamics for Brownian rods both in three [31]
and two [32] dimensions, the link towards the PFC model has
not yet been elaborated for orientational degrees of freedom.

In this paper, we close this gap and propose a PFC
model for liquid–crystalline phases. One motivation here is
to propose a minimal model, i.e. the simplest nontrivial model
for dynamics of liquid crystals. We derive this model from
dynamical density functional theory. Depending on the model
parameters, the resulting model does accommodate isotropic,
nematic, smectic A, columnar, plastic–crystalline phase and
an orientational ordered crystal. It can therefore be used to
describe the statics and nonequilibrium dynamics in various
situations where these phases are relevant. This may stimulate
further numerical investigations. The model is basically
formulated in terms of two density fields, a translational and
an orientational one, plus a local director field. While the
translational density field is conserved, the orientational one
and the director field are non-conserved and relax quicker.

The paper is organized as follows: in section 2, we derive
the PFC model from fluid-based density functional theory by
expanding the orientational dependence of the density field

1 The only recent application of PFC theory is to anisotropic particles with a
fixed orientation, see [28].
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up to the first nontrivial order and performing a gradient
expansion in the translational coordinate. Then, in section 3,
we discuss the parameter space for which stability of the
different phases is obtained. The dynamical equations are
derived from dynamical density functional theory in section 4.
We then discuss possible extensions of the model to more
complicated situations and give final conclusions in section 5.

2. Derivation of the phase-field-crystal model for
liquid crystals: statics

We start our derivation from microscopic static density
functional theory for liquid crystals. We consider N particles
with orientational degrees of freedom described by a set of
unit vectors {ûi; i = 1, . . . , N} and center-of-mass positions
{ �Ri; i = 1, . . . , N}. Though most of the considerations can
be done in three-dimensional space, we restrict ourselves in
the following to two spatial dimensions, where �Ri ∈ R

2 and
ûi(φ) = (cosφ, sinφ) (φ ∈ [0, 2π[). The system has a total
area A and is kept at finite temperature T .

A pair interaction potential V ( �R1 − �R2, û1, û2) between
two particles 1 and 2 is assumed. We henceforth consider
apolar particles implying the following symmetries

V (�r , û1, û2) = V (−�r , û1, û2) = V (�r ,−û1, û2)

= V (�r , û1,−û2) = V (�r , û2, û1). (1)

Examples for V ( �R1 − �R2, û1, û2) comprise: (i) excluded vol-
ume interactions as dictated by hard spherocylinders [30, 33] or
hard ellipsoids [34] which are used for sterically stabilized col-
loids, (ii) Yukawa segment models [35–37] used for charged
colloidal rods. (iii) Gay-Berne potentials [38–40] used for
molecular liquid crystals.

The inhomogeneous one-particle density ρ( �R, û) provides
the joint probability density to find particles at center-of-mass
position �R with orientation û.

ρ( �R, û) =
〈 N∑

i=1

δ( �R − �Ri)δ(φ − φi )

〉
(2)

where for an observable A

〈A〉 = 1

Z

∫
A

d2 R1 · · ·
∫

A
d2 RN

∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφN

× A exp

[
−

N∑
i, j=1;i �= j

V ( �Ri − �R j , ûi , û j )

kBT

]
(3)

is the normalized canonical average, kB denoting Boltzmann’s
constant, and the classical canonical partition function Z
ensures the normalization 〈1〉 = 1. Clearly, for apolar
particles, ρ( �R, û) = ρ( �R,−û).

Classical density functional theory of inhomogeneous
fluids now provides the existence of an excess free energy
density functional such that the functional

�(T, A, μ, [ρ( �R, û)]) = Fid(T, A, [ρ( �R, û)])
+ Fexc(T, A, [ρ( �R, û)])−

∫
A

d2 R
∫ 2π

0
dφμρ( �R, û) (4)

is minimal for the equilibrium density field for a given
chemical potential μ, temperature T and area A. The ideal
rotator gas functional Fid is known exactly:

Fid(T, A, [ρ( �R, û)]) = kBT
∫

A
d2 R

∫ 2π

0
dφ ρ( �R, û(φ))

× [ln(�2ρ( �R, û(φ)))− 1], (5)

where � denotes the (irrelevant) thermal wavelength. The
excess free energy functional Fexc(T, A, [ρ( �R, û)]), on the
other hand, incorporates all correlations and is not known in
general. In the low density limit, a second virial approximation
(Onsager functional) is getting asymptotically exact [29]

Fexc(T, A, [ρ( �R, û)]) ≈ 1
2

∫
A

d2 R1

∫
A

d2 R2

∫ 2π

0
dφ1

×
∫ 2π

0
dφ2

(
exp

(
− V ( �R1 − �R2, û1, û2)

kBT

)
− 1

)

× ρ( �R1, û1)ρ( �R2, û2). (6)

More generally, the Ramakrishnan–Yussouff theory of
freezing [17] can be applied to get the following perturbative
approximation for Fexc

Fexc(T, A, [ρ( �R, û)]) ≈ −kBT

2

∫
A

d2 R1

∫
A

d2 R2

∫ 2π

0
dφ1

×
∫ 2π

0
dφ2c(2)( �R1 − �R2, û1, û2)(ρ( �R1, û1)− ρ̄)

× (ρ( �R2, û2)− ρ̄) (7)

which can be viewed as a truncated density expansion in the
density difference ρ( �R1, û1)− ρ̄ around a mean density ρ̄ with
the kernel representing the direct correlation function of the
reference fluid at temperature T and density ρ̄.

Another expression which works complementary at high
density for very soft interactions [31] is a mean-field
approximation

Fexc(T, A, [ρ( �R, û)]) ≈ 1
2

∫
A

d2 R1

∫
A

d2 R2

∫ 2π

0
dφ1

×
∫ 2π

0
dφ2 V ( �R1 − �R2, û1, û2)ρ( �R1, û1)ρ( �R2, û2). (8)

More accurate forms for Fexc have been proposed for hard
particles using weighted density approximations [41, 42] or
fundamental-measure theory [20].

In the following we shall adopt the Ramakrishnan–
Yussouff theory and approximate further by only considering
weak anisotropies in the orientations. The leading expression
in the density parametrization is then

ρ( �R, û) = ρ̄+ ρ̄ψ1(�r)+ ρ̄ψ2(�r)
(
(û · û0(�r))2 − 1

2

)+· · · . (9)

Here, the real-valued dimensionless orientationally averaged
density is ψ1(�r) which is identical to the original treatment of
the PFC model [1, 2]. The dimensionless field ψ2(�r), on the
other hand, measures the local degree of orientational order.
For apolar particles, the leading anisotropic contribution is the
third term on the right-hand side of equation (9). Finally, the
field û0(�r) defines the local director of the orientational field2.
2 As an equivalent description, a position-dependent nematic tensor could be
used in the density parametrization instead of using the fields ψ2(�r) and û0(�r).
This notation has formal advantages and could be helpful in order to derive
generalizations of the present model to three spatial dimensions.

2
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We now derive the static free energy functional. With

x = ψ1 + ψ2 P2(û · û0) (10)

where P2(y) = y2 − 1
2 , the ideal rotator gas part reads as

Fid = kBT ρ̄
∫

A
d2 R

∫ 2π

0
dφ(1 + x)[ln(�2ρ̄(1 + x))− 1]

= F0 + kBT ρ̄
∫

A
d2 R

∫ 2π

0
dφ

× ( 1
2 x2 − 1

6 x3 + 1
12 x4 + O(x5)) (11)

where F0 = 2π AkBT ρ̄(ln(�2ρ̄) − 1) and irrelevant terms
linear in x on the right-hand side of equation (11) were
absorbed in a scaled chemical potential. Inserting (10) and
performing the angular average, we obtain

Fid[ψ1, ψ2, û0] = F0 + ρ̄kBTπ
∫

A
d2 R

{
ψ2

1 + ψ2
2

8

− ψ3
1

3
− ψ1ψ

2
2

8
+ ψ4

1

6
+ ψ2

1ψ
2
2

8
+ ψ4

2

256

}
. (12)

The correlational part within the Ramakrishnan–Yussouff
approximation is

Fexc = −kBT ρ̄2

2

∫
A

d2 R1

∫
A

d2 R2

∫ 2π

0
dφ1

∫ 2π

0
dφ2

× (ψ1( �R1)+ ψ2( �R1)P2(û(φ1) · û0( �R1)))

× (ψ1( �R2)+ ψ2( �R2)P2(û(φ2) · û0( �R2)))

× c(2)( �R1 − �R2, φ1, φ2). (13)

We now decompose

c( �R, φ1, φ2) =
∞∑

m=−∞

∞∑
m′=−∞

cmm′( �R)e2imφ1 e2im′φ2 (14)

and consider only the leading terms where m,m ′ ∈ {−1, 0, 1}.
The relevant expansion coefficients are

cmm′( �R) = 1

(2π)2

∫ 2π

0
dφ

∫ 2π

0
dφ′e−2imφe−2im′φ ′

c(2)

× ( �R, φ, φ′). (15)

By symmetry, it can be shown that c00( �R), c−11( �R) and
c1−1( �R) only depend on | �R|. Therefore

Fexc = −kBT ρ̄2

2

∫
A

d2 R1

∫
A

d2 R24π2[c00(| �R1 − �R2|)
× ψ1( �R1)ψ1( �R2)+ 1

4ψ1( �R1)ψ2( �R2){c0−1( �R1 − �R2)

× e−2iφ0( �R2) + c01( �R1 − �R2)e
2iφ0( �R2)} + 1

4ψ1( �R2)ψ2( �R1)

× {c−10( �R1 − �R2)e
−2iφ0( �R1) + c10( �R1 − �R2)e

2iφ0( �R1)}
+ 1

16ψ2( �R1)ψ2( �R2){c−1−1( �R1 − �R2)e
−2iφ0( �R1)−2iφ0( �R2)

+ c−11(| �R1 − �R2|)e−2iφ0( �R1)+2iφ0( �R2)

+ c1−1(| �R1 − �R2|)e2iφ0( �R1)−2iφ0( �R2)

+ c11( �R1 − �R2)e
2iφ0( �R1)+2iφ0( �R2)}]. (16)

Now a gradient expansion is performed [24] up to fourth order
in the ψ1ψ1 term of equation (16) and up to second order in the

ψ1ψ2 and ψ2ψ2 terms. We assume that the highest gradient
term ensures stability. Thereby one obtains

Fexc = F (1)
exc + F (2)

exc + F (3)
exc (17)

with

F (1)
exc

kBT
= 2π2ρ̄

∫
A

d2 R[Aψ2
1 (

�R)− B( �∇ψ1( �R))2

+ C(	ψ1( �R))2] (18)

and

F (2)
exc

kBT
= 2π2ρ̄

∫
A

d2 R[Dψ2
2 (

�R)+ E{( �∇ψ2( �R))2

+ 4ψ2
2 (

�R)( �∇φ0( �R))2}] (19)

and

F (3)
exc

kBT
= 2π2ρ̄

∫
A

d2 RF[( �∇ψ1( �R)) · ( �∇ψ2( �R))
+ 2ψ2( �R)(û0( �R) · �∇)2ψ1( �R)]. (20)

In detail, in (20), (û0( �R) · �∇)2 := ∑2
i, j=1 u0i( �R)u0 j( �R)∂i∂ j

where u0i( �R) = ( cosφ0( �R)
sinφ0( �R)

)
i
.

In (18)–(20), the coefficients A, B,C, D, E and F are
generalized moments of the direct correlation function. In
general, they depend on the thermodynamic conditions (T, ρ̄).
In detail3 (for A = R

2),

A = −2πρ̄
∫ ∞

0
dR Rc00(R) (21)

B = πρ̄

∫ ∞

0
dR R3c00(R) (22)

C = −πρ̄
12

∫ ∞

0
dR R5c00(R) (23)

D = −πρ̄
4

∫ ∞

0
dR Rc−11(R) (24)

E = πρ̄

∫ ∞

0
dR R3c−11(R) (25)

F = −π
8

∫ ∞

0
dR R3c01(R cosφR, R sinφR)e

2iφR . (26)

As a remark: F does not depend on φR . For stability reasons,
we henceforth assume C, E > 0.

Let us now discuss the static free energy functional. In
the limit of no orientational order, ψ2 ≡ 0, one recovers the
phase-field-crystal model of Elder et al [1, 2]. The expansion
up to fourth order is formally similar to a Landau expansion
of the smectic A–isotropic phase transition if ψ1 represents the
smectic order parameter [43]. In the opposite case of constant
ψ1 and constantψ2, Frank’s elastic energy with a nonvanishing
splay and vanishing bend modulus is recovered in the term
∼( �∇φ0( �R))2 in (19). In fact, in two spatial dimensions there
are only two Frank elastic constants since the twist modulus
vanishes. If ψ1 is constant and both ψ2 and û0 are space
dependent, we obtain the Landau–de Gennes free energy [44]

3 These coefficients can also be fitted to the correlation function at nonzero
wavevector resulting in effective fit parameters.

3
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Table 1. Characteristic values for the number density ψ1, the
nematic order parameter ψ2 and the director field û0 for six different
liquid–crystalline phases, namely isotropic, nematic,
plastic–crystalline, orientationally ordered crystalline, smectic A and
columnar.

Liquid–crystalline
phase ψ1 ψ2 û0

Isotropic 0 0 Irrelevant
Nematic Constant �=0 Constant
Plastic–crystalline Oscillatory 0 Irrelevant
Orientationally
ordered crystalline

Oscillatory �=0 Constant or oscillatory

Smectic A Planar
oscillatory

�=0 Constant,

oscillatory ‖ �∇ψ1

Columnar Planar
oscillatory

�=0 Constant,

oscillatory ⊥ �∇ψ1

used for inhomogeneous uniaxial nematics. In two dimensions,
the Landau–de Gennes free energy has only one gradient
coefficient [45] which is again the parameter E . For space-
dependent ψ1 and û0, but constant ψ2, the free energy derived
by Pleiner and Brand [46] is recovered. Finally, for space-
dependent ψ1 and ψ2, we obtain the coupling terms in F (3)

exc
proposed by Brand and Pleiner [47]. However, the full free
energy functional (17) with fourth order gradients in ψ1 and
the appropriate couplings to ψ2 and û0 is new and constitutes
the basic static result of this paper.

3. Equilibrium bulk phase diagram

By minimizing the free energy functional, for given
thermodynamic parameters T and ρ̄, the equilibrium phase
diagram is gained. In the special case of ψ2 = 0, the PFC
phase diagram of Elder et al [2] is obtained. By scaling
out a length scale, there are only two remaining parameters
for which a fluid, a triangular phase and an (unphysical)
stripe phase is stable (see figure 4 in [2]). For D < −π

4 ,
a nonzero stable value for ψ2 occurs. Combined with the
PFC phase diagram, the possibility of a nematic phase and
an orientationally ordered crystal emerges. The stripe phase
at ψ2 �= 0 becomes either a smectic A or columnar phase
depending on the sign of the parameter F . In fact, it was
already shown in [48] that an Onsager functional yields a
smectic A phase.

All the possible liquid–crystalline phases are summarized
in table 1 together with their characterizing values for the
number density ψ1, the nematic order parameter ψ2 and the
director field û0. For D > −π

8 , a plastic crystal and the
ordinary isotropic phase can be stable. The full numerical
calculation of the equilibrium phase diagram as a function of
the parameters A, B , C , E , and F is planned in a future study.

4. Derivation of the phase-field-crystal model for
liquid crystals: dynamics

4.1. Dynamical density functional theory

In two spatial dimensions, the dynamical density functional
theory for Brownian systems is a deterministic equation for the

time-dependent one-particle density field ρ( �R, û, t) [32]:

∂ρ( �R, û, t)

∂ t
= �∇T · DT ·

(
ρ( �R, û, t)

kBT
�∇ δF
δρ( �R, û, t)

)

+ DR
∂

∂φ

(
ρ( �R, û, t)

kBT

∂

∂φ

δF
δρ( �R, û, t)

)
. (27)

Here, DT is the diagonal translational short-time diffusion
tensor which we assume to be isotropic in the following,
DT = diag(DT, DT), and DR is the rotational diffusion
constant. Furthermore, F = Fid + Fexc is the total free energy
functional. If the density parametrization (9) is used, this
becomes a functional F[ψ1( �R), ψ2( �R), φ0( �R)] of the three
scalar fields ψ1( �R), ψ2( �R), φ0( �R). Now the chain rule of
functional differentiation yields:

δF
δρ( �R, φ)= 1

2πρ̄

δF
δψ1( �R) + 4

πρ̄

δF
δψ2( �R) P2(cos(φ − φ0( �R)))

+ 1

πρ̄

δF
δφ0( �R)

sin(2(φ − φ0( �R)))
ψ2( �R) . (28)

By inserting this into equation (27), coupled equations of
motion can be obtained.

4.2. Derivation of the dynamics (PFC1 model)

First we describe the dynamics for the most case which
is called PFC1 model in [16]. The PFC1 model avoids
two further approximations, namely the expansion of the
logarithm (11) and a constant mobility assumption. By
inserting the chain rule (28) into the dynamical density
functional theory (27), one obtains dynamical equations for the
three scalar fields ψ1( �R, t), ψ2( �R, t) and φ0( �R, t) as follows:

kBT ρ̄ψ̇1 = kBT ρ̄DT	ψ1 + DT

π

(
1

2
�∇
(
(1 + ψ1) �∇ δFexc

δψ1

− δFexc

δφ0

�∇φ0 + ψ2 �∇ δFexc

δψ2

))
(29)

kBT ρ̄ψ̇2 = kBT ρ̄(DT	ψ2 − 4DRψ2 − 4DTψ2( �∇φ0)
2)

+ DT

π

(
�∇
(

4(1 + ψ1)

(
�∇ δFexc

δψ2
− δFexc

δφ0

�∇φ0

ψ2

)

+ ψ2

2
�∇ δFexc

δψ1

)
+ (1 + ψ1)

(
−16

δFexc

δψ2
( �∇φ0)

2

− 4 �∇
(
δFexc

δφ0

1

ψ2

)
�∇φ0

))
− DR

π

(
16(1 + ψ1)

δFexc

δψ0

)

(30)

kBT ρ̄ψ2φ̇0 = kBT ρ̄(DTψ2	φ0 + 2DT( �∇ψ2 · �∇φ0))

+ DT

π

[(
4(1 + ψ1)

(
�∇ δFexc

δψ2
− δFexc

δφ0

�∇φ0

ψ2

)

+ ψ2

2
�∇ δFexc

δψ1

)
�∇φ0 + �∇

(
(1 + ψ1)

(
4
δFexc

δψ2

�∇φ0

+ �∇
(
δFexc

δφ0

1

ψ2

)))]
− DR

π

(
4(1 + ψ1)

δFexc

δφ0

1

ψ2

)
. (31)

The right-hand side of equation (30) clearly shows that
the time-derivative ψ̇1 is proportional to a divergence of a
generalized current. This implies that a generalized continuity

4
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equation holds such that the order parameter field ψ1( �R, t) is
conserved. On the other hand, this is not true for the two
remaining orientational order parameter fields ψ2( �R, t) and
φ0( �R, t) which are therefore non-conserved.

The functional derivatives are local and given by

1

4π2kBT ρ̄

δFexc

δψ1
= Aψ1 + B	ψ1 + C	2ψ1

− F

2
	ψ2 + F

2∑
i, j=1

∂i∂ j (ψ2u0i u0 j), (32)

1

4π2kBT ρ̄

δFexc

δψ2
= Dψ2 − E	ψ2 + 4Eψ2( �∇φ0)

2

− F

2
	ψ1 + F

2∑
i, j=1

u0i u0 j∂i∂ jψ1, (33)

1

4π2kBT ρ̄

δFexc

δφ0
= −4Eψ2

2	φ0 + Fψ2

×
2∑

i, j=1

∂u0i u0 j

∂φ0
∂i∂ jψ1 (34)

where
∂u0iu0 j

∂φ0
=

( − sin 2φ0 cos 2φ0

cos 2φ0 sin 2φ0

)
i j

. (35)

Combining these equations yields explicit deterministic
and coupled equations of motion for the three order
parameter fields ψ1( �R, t), ψ2( �R, t) and φ0( �R, t) which can be
implemented for a numerical solution.

4.3. Derivation of the phase-field-crystal model with constant
mobility (PFC2 model)

In the constant mobility approximation, the prefactor in front
of the density functional derivatives on the right-hand side
of equation (27) is replaced by the constant ρ̄

kB T . Then the
dynamical density functional equations simplify to

∂ρ( �R, û, t)

∂ t
=

(
DT	+ DR

∂2

∂φ2

)
ρ̄

kBT

δF
δρ( �R, û, t)

. (36)

In this case, the equations of motion for the three scalar
fields ψ1( �R, t), ψ2( �R, t) and φ0( �R, t) read as

kBTπρ̄ψ̇1 = 1

2
DT	

δF
δψ1

(37)

kBTπρ̄ψ̇2 = DT

[
4	

δF
δψ2

− 16( �∇φ0)
2 δF
δψ2

− 8

(
�∇
(
δF
δφ0

1

ψ2

))
· �∇φ0 − 4

δF
δφ0

	φ0

ψ2

]
− 16DR

δF
δψ2

(38)

and finally

kBTπρ̄ψ2φ̇0 = DT

[
8

(
�∇ δF
δψ2

)
�∇φ0 + 4

δF
δψ2

	φ0

+ 	

(
δF
δφ0

1

ψ2

)
− 4

δF
δφ0

1

ψ2

(
�∇φ0

)2]
− 4DR

1

ψ2

δF
δφ0

.

(39)

The ordinary phase-field-crystal model is obtained by a
subsequent expansion of the ideal rotator term (11) up to fourth
order. Following [16], the resulting dynamics is called PFC2
model. In this case, the density functional derivatives are again
local and given by

1

kBT ρ̄

δF
δψ1

= π

(
2 + 2ψ1 − ψ2

1 − ψ2
2

8
+ 2

3
ψ3

1 + ψ1ψ
2
2

4

)

+ 4π2

(
Aψ1 + B	ψ1 + C	2ψ1 − F

2
	ψ2

+ F
2∑

i, j=1

∂i∂ j (ψ2u0i u0 j)

)
(40)

1

kBT ρ̄

δF
δψ2

= π

(
ψ2

4
− 1

4
ψ1ψ2 + 1

4
ψ2

1ψ2 + ψ3
2

64

)

+ 4π2

(
Dψ2 − E	ψ2 + 4Eψ2( �∇φ0)

2

− F

2
	ψ1 + F

2∑
i, j=1

u0i u0 j∂i∂ jψ1

)
(41)

1

kBT ρ̄

δF
δφ0

=
(

−4Eψ2
2	φ0 + Fψ2

2∑
i, j=1

∂u0i u0 j

∂φ0
∂i∂ jψ1

)
.

(42)

The advantage of these equations is that they reduce to the
dynamics of the traditional phase-field-crystal model in the
pure translational case. For a rough numerical exploration, the
PFC2 model should give the same qualitative answer as the
PFC1 model. For spherical particles this was shown in [16].
The dynamical equations (37)–(39) represent the main result
of this paper.

5. Conclusions

In conclusion, we derived from static and dynamical density
functional theory phase-field-crystal equations which govern
the diffuse nonequilibrium dynamics for liquid–crystalline
phases. Two approximations are involved: first the density
functional is approximated by a truncated functional Taylor
expansion similar in spirit to the Ramakrishnan–Yussouff
theory. Then a generalized gradient expansion in the order
parameters is performed which leads to a local density
functional. In addition to the traditional scalar phase-field
variable ψ1, a local scalar nematic order parameter ψ2 and
a local nematic director field φ0 was introduced and coupled
to the phase-field variable ψ1. If the additional variables are
zero, the phase-field-crystal model of Elder et al [1, 2] is
recovered. If, on the other hand, ψ1 is set to zero we recover
the Landau–de Gennes free energy for uniaxial nematics
extended by Pleiner and Brand [46, 47]. The proposed phase-
field-crystal model for liquid crystals allows for a wealth of
stable liquid–crystalline phases including isotropic, nematic,
smectic A, columnar, plastic–crystalline and orientationally
ordered crystals. How the stability of these phases depends
in detail on the model parameters still needs to be explored
numerically. The new coupled phase-field-crystal equations
can be used to simulate the nonequilibrium dynamics of
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liquid crystals. Possible problems are dynamics of topological
defects in the nematic phase [49] and the formation of
metastable phases at a growing interface [50]. As the dynamics
in nematic states can be obtained by using other approaches
like the one in [47], the present model may be applicable in
particular to smectic films and to two-dimensional crystalline
phases.

In the present paper, the derivation of the phase-field-
crystal model was performed in two spatial dimensions.
Though more tedious there is no principle problem in doing
the same analysis in three spatial dimensions with the use of
spherical harmonics for the orientational degrees of freedom.
Moreover the present derivation can in principle be done to
higher order in the orientational degrees of freedom. The
translational degrees of freedom can be anisotropic for the
dynamical mobility matrix4.
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