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Abstract
The recently developed fundamental measure density functional theory (Hansen-Goos and
Mecke 2009 Phys. Rev. Lett. 102 018302) for an inhomogeneous anisotropic hard body fluid is
used as a basic ingredient in treating the Brownian dynamics of hard spherocylinders. After
discussing the relevance of a free parameter in the fundamental measure density functional for
the isotropic–nematic transition in equilibrium, we discuss the equilibrium phase behaviour of
hard spherocylinders in a static external potential which couples only to the orientations. For
external potentials favouring rod orientations along the poles of the unit sphere, there is a
well-known paranematic–nematic transition which ceases to exist above a threshold of the
strength V0 of the external potential. However, when orientations along the equator are more
favoured, in the plane of the potential energy V0 and density, there is a phase transition from
paranematic to nematic for any strength, which becomes second order above a critical threshold
of V0. The full equilibrium phase diagram in the V0–density plane is computed for a fixed rod
aspect ratio of 5. For the equatorial cases, strength V0 is then oscillating in time and dynamical
density functional theory is used to compute the evolution of the orientational distribution. A
subtle resonance for increasing oscillation frequencies is detected if the oscillating V0 crosses
the paranematic–nematic phase transition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Classical density functional theory for inhomogeneous fluids
constitutes a versatile and unifying approach to freezing [1–6].
The primary interest was first on spherical particles whose
interactions are governed by radially symmetric pair potentials.
In principle, however, density functional theory is also
applicable to anisotropic bodies with an orientational degree
of freedom. If the particles are rotationally symmetric with
respect to an orientable body axis, both the translational vector
pointing to their centres-of-mass and their orientational (unit)
vectors are needed to describe a configuration properly.

Density functional theory of freezing has been applied to
orientable hard rod-like particles [7, 8] and different stable
liquid crystalline phases were obtained as a function of the
rod aspect ratio and the particle number density. Most of
those were in agreement with computer simulations [9] and
cell theory [10, 11]. Also the exact Onsager solution of the

isotropic nematic phase in the limit of thin rods can be cast
into the density functional language [12] corresponding to an
inhomogeneous second-virial expansion.

For the simplest nontrivial interacting system, namely that
of hard spheres, Rosenfeld’s fundamental measure theory [13]
turned out to be a reliable and predictive approach to
freezing [6, 14, 15]. Recently the fundamental measure
approach was generalized to hard bodies of arbitrary shape
by Hansen-Goos and Mecke [16]. In particular, the theory
was applied to an isotropic phase near hard walls and
good agreement was obtained for the inhomogeneous density
profiles with simulation data.

For Brownian particles like colloids, the density
functional approach was generalized towards dynamics in
nonequilibrium, e.g. for an imposed time-dependent external
potential. One convenient way is to derive it from the
Smoluchowski equation [17]. Also for orientational degrees
of freedom a dynamical density functional theory was derived
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from the Smoluchowski equation [18] for Brownian rods [19].
Time-dependent situations of an inhomogeneous isotropic
phase were considered in [20]. The orientational dynamical
density functional theory was also recently applied to self-
propelled rods [21].

In this paper, we apply the fundamental measure
functional proposed by Hansen-Goos and Mecke [16] to hard
spherocylinders in a time-dependent external field which solely
couple to the orientational degrees of freedom. The amplitude
of this external coupling is oscillating in time. Furthermore
we evaluate the fundamental measure approach for the bulk
isotropic and nematic phase and discuss thereby the influence
of a free parameter in the theory. After having fixed this
parameter, we calculate the equilibrium phases in a static
external potential which couples only to the orientational
degrees of freedom. In particular, if the external potential
favours rod orientations along the poles of a unit sphere, there
is a first-order paranematic–nematic transition [8, 22] which
ceases to exist above a threshold amplitude V0 of the external
coupling. If orientations along the equator of the unit sphere
are preferred, on the other hand, there is a phase transition from
a paranematic to a nematic phase for any strength V0 which
gets second order above a critical threshold of V0 [23]. Using
fundamental measure density functional theory, we explicitly
calculate the phase diagram in the plane spanned by V0 and
particle density for a fixed rod aspect ratio of 5. After
having established the equilibrium behaviour, we consider an
amplitude V0 oscillating in time. A subtle resonance-like
behaviour is detected for increasing oscillation frequencies
if the oscillating V0 crosses the paranematic–nematic phase
boundary.

Our results can in principle be verified in real
space [24] and scattering experiments [25] of rod-like colloidal
suspensions. The external coupling can be realized by applying
electric or magnetic fields [26, 27].

The paper is organized as follows: we recapitulate
briefly the general fundamental measure theory for anisotropic
hard bodies in section 2 and specialize it then to hard
spherocylinders. The theory leaves a free parameter. In the
same section 2, bulk properties of the isotropic and nematic
phases are presented to fix the free parameter of the theory. In
section 3 a static external aligning field is considered and the
phase behaviour including a paranematic and nematic phase is
computed. A time-dependent coupling is finally considered in
section 4. We conclude in section 5.

2. Fundamental measure DFT for hard
spherocylinders

2.1. General framework of edFMT

As for an equilibrium density functional for anisotropic
hard bodies, we adopt the so-called ‘extended deconvolution
fundamental measure theory’ (edFMT) which was recently
proposed by Hansen-Goos and Mecke [16]. For a one-
component system, the excess (i.e. over the ideal rotator)
part of the Helmholtz free energy functional, Fexc(T, [ρ]), is

written as

Fexc(T, V , [ρ(1)]) = kBT
∫

V
d3r �(�r , [ρ(1)]) (1)

with kBT denoting the thermal energy and V the total volume
of the system. Here the reduced excess free energy density
�(�r , [ρ]) is

�(�r , [ρ]) = −n0 ln(1 − n3) + n1n2 − �n1�n2 − ξTr[↔n 1
↔
n 2]

1 − n3

+ 3

16π

�nT
2

↔
n 2�n2 − n2�n2�n2 − Tr[↔n 3

2] + n2Tr[↔n 2

2]
(1 − n3)2

(2)

which involves a free parameter ξ and a set of weighted
densities nα . The latter are obtained by weighting the original
density with weight functions wα(�r , ω̂) such that

nα(�r) =
∫

S2

d2ω̂′
∫

V
d3r ′ ρ(1)(�r ′, ω̂′)wα(�r − �r ′, ω̂′), (3)

with S2 denoting the surface of the unit sphere. The weight
functions themselves are explicitly given by

w0(�r, ω̂) = K (r̂, ω̂)

4π
· δ(| �R(r̂ , ω̂)| − |�r |) · 1

n̂(r̂ , ω̂) · r̂
(4)

w1(�r, ω̂) = H (r̂, ω̂)

4π
· δ(| �R(r̂ , ω̂)| − |�r |) · 1

n̂(r̂ , ω̂) · r̂
(5)

w2(�r, ω̂) = δ(| �R(r̂ , ω̂)| − |�r |) · 1

n̂(r̂ , ω̂) · r̂
(6)

w3(�r, ω̂) = 	(| �R(r̂ , ω̂)| − |�r |) (7)

�w1(�r, ω̂) = H (r̂, ω̂)

4π
· n̂(r̂ , ω̂) · δ(| �R(r̂ , ω̂)| − |�r |)

· 1

n̂(r̂ , ω̂) · r̂
(8)

�w2(�r, ω̂) = n̂(r̂ , ω̂) · δ(| �R(r̂ , ω̂)| − |�r |) · 1

n̂(r̂ , ω̂) · r̂
(9)

↔
w1(�r , ω̂) = (�vI(r̂ , ω̂) · �vI(r̂ , ω̂)T − �vII(r̂ , ω̂) · �vII(r̂ , ω̂)T)

· 
κ(r̂, ω̂)

4π
· δ(| �R(r̂ , ω̂)| − |�r |) · 1

n̂(r̂ , ω̂) · r̂
(10)

↔
w2(�r , ω̂) = n̂(r̂ , ω̂) · n̂(r̂ , ω̂)T · δ(| �R(r̂, ω̂)| − |�r |)

· 1

n̂(r̂ , ω̂) · r̂
. (11)

Here the following notations has been used. δ(x) and 	(x)

are the Dirac δ-function and the Heaviside unit step function
respectively. For a given shape B of a hard body characterized
by its centre-of-mass �C and orientation ω̂ (see figure 1),
�R(r̂ , ω̂) is parametrizing the body’s surface, n̂(r̂ , ω̂) is the

surface normal vector and H (r̂, ω̂) and K (r̂ , ω̂) are the mean
and Gaussian curvatures on the surface which are given
in terms of the main curvatures κ I(r̂, ω̂) and κ II(r̂ , ω̂) via
H (r̂, ω̂) = 1

2 (κ I(r̂ , ω̂) + κ II(r̂ , ω̂)) and K (r̂ , ω̂) = κ I(r̂ , ω̂) ·
κ II(r̂ , ω̂). Furthermore 
κ(r̂ , ω̂) = 1

2 (κ
I(r̂ , ω̂) − κ II(r̂ , ω̂)).

�vI(r̂ , ω̂) and �vII(r̂ , ω̂) are the two directions of the main
curvatures tangential to the surface. In equilibrium, for a
given external potential Vext(�r , ω̂), the one-particle density
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Figure 1. Parametrization of an anisotropic hard body of orientation
characterized by a unit vector ω̂ and a centre-of-mass C . �R points
from C towards the particle’s surface and r̂ = �R/| �R|. n̂ is the surface
normal vector.

ρ(1)(�r , ω̂) is given by minimizing the grandcanonical free
energy functional �(T, V , μ, [ρ]), i.e.

δ�(T, V , μ, [ρ])
δρ(�r , ω̂)

∣∣∣∣
ρ(�r,ω̂)=ρ(1)(�r,ω̂)

= 0. (12)

Here μ is the prescribed chemical potential. The functional
�(T, V , μ, [ρ]) itself is decomposed as

�(T, V , μ, [ρ(1)]) = F(T, V , [ρ(1)])
+

∫
S2

d2ω̂

∫
V

d3r ρ(1)(�r , ω̂)(Vext(�r , ω̂) − μ) (13)

with

F(T, V , [ρ(1)]) = Fid(T, V , [ρ(1)])+Fexc(T, V , [ρ(1)]) (14)

where

Fid(T, V , [ρ(1)]) = kBT

×
∫

S2

d2ω̂

∫
V

d3r ρ(1)(�r , ω̂)[ln (ρ(1)(�r , ω̂)3) − 1] (15)

denotes the ideal gas functional of free rotators with  being
the (irrelevant) thermal de Broglie wavelength. Consequently,
in (12), crucially the functional derivative δFexc(T,V,[ρ])

δρ
enters.

Typically equation (12) is a nonlinear integral equation in
ρ(1)(�r , ω̂) which needs to be solved numerically.

2.2. Application of edFMT to orientational distributions of
hard spherocylinders

We now consider the special case of hard spherocylinders of
aspect ratio L/D, see figure 2. In the following we assume
throughout the paper that the one-particle density distribution
ρ(1)(�r , ω̂) solely depends on ω̂. Thereby we neglect smectic
and other positionally-ordered phases but focus on isotropic,
paranematic and nematic phases. Hence,

ρ(1)(�r , ω̂) = ρ(ω̂) = ρ f (ω̂) (16)

where f (ω̂) is normalized to one,
∫

S2
d2ω̂ f (ω̂) = 1. In

this case the excess free energy functional simplifies and its
functional derivative can be written as

δFexc(T, V , [ρ])
δρ(ω̂)

= kBT
∑

α

Tα · mα(ω̂) (17)

with

mα(ω̂) =
∫

V
d3r wα(�r, ω̂). (18)

Figure 2. Hard spherocylinder of cylindrical length L and diameter
D at centre-of-mass position �r with orientation ω̂. Right: orientation
of the spherocylinder on the unit sphere characterized by a polar
angle ϕ and an azimuthal angle ϑ .

Moreover

T0 = − ln (1 − n3) (19)

T1 = n2

1 − n3
(20)

T2 = n1

1 − n3
+ 3

16π

Tr(
↔
n

2

2)

(1 − n3)2
(21)

T3 = n0

1 − n3
+ n1n2 − ξ · Tr(

↔
n 1 · ↔

n 2)

(1 − n3)2

+ 6

16π

n2Tr(
↔
n

2

2) − Tr(
↔
n

3

2)

(1 − n3)3
(22)

(
↔
T 1)i j = −ξ

(
↔
n 2)i j

1 − n3
(23)

(
↔
T 2)i j =

[
−ξ

↔
n 1

1 − n3
− 9

16π

↔
n 2 · ↔

n 2

(1 − n3)2

+ 6

16π

n2

(1 − n3)2

↔
n 2

]
i j
, (24)

where (3) with (18) reads

nα =
∫

S2

d2ω̂ ρ(ω̂)mα(ω̂) (25)

and

m0(ω̂) = 1 (26)

m1(ω̂) = L

4
+ D

2
(27)

m2(ω̂) = π D(L + D) (28)

m3(ω̂) = π D2

(
L

4
+ D

6

)
= vhsc (29)

�m1(ω̂) = �0 (30)

�m2(ω̂) = �0 (31)

(
↔
m1)11(ω̂) = L

8
(1 + 3 cos2(ϕ) cos2(ϑ) − 3 cos2(ϕ)) (32)

(
↔
m1)22(ω̂) = L

8
(3 cos2(ϑ) − 3 cos2(ϕ) cos2(ϑ) − 2

+ 3 cos2(ϕ)) (33)

(
↔
m1)33(ω̂) = L

8
(1 − 3 cos2(ϑ)) (34)

(
↔
m1)21(ω̂) = −3L

8
sin(ϕ) cos(ϕ) sin2(ϑ) (35)

3
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(
↔
m1)31(ω̂) = −3L

8
cos(ϕ) sin(ϑ) cos(ϑ) (36)

(
↔
m1)32(ω̂) = −3L

8
sin(ϕ) sin(ϑ) cos(ϑ) (37)

(
↔
m2)11(ω̂) = π D

6
(−3L cos2(ϕ)

+ 3L cos2(ϕ) cos2(ϑ) + 3L + 2D) (38)

(
↔
m2)22(ω̂) = π D

6
(3L cos2(ϑ)

− 3L cos2(ϕ) cos2(ϑ) + 3L cos2(ϕ) + 2D) (39)

(
↔
m2)33(ω̂) = π D

6
(3L − 3L cos2(ϑ) + 2D) (40)

(
↔
m2)21(ω̂) = −π L D

2
sin(ϕ) cos(ϕ) sin2(ϑ) (41)

(
↔
m2)31(ω̂) = −π L D

2
cos(ϕ) sin(ϑ) cos(ϑ) (42)

(
↔
m2)32(ω̂) = −π L D

2
sin(ϕ) sin(ϑ) cos(ϑ), (43)

where all tensorial parameters are symmetric.

2.3. Bulk isotropic–nematic transition

To calculate the equilibrium one-particle density ρ(ω̂) for
a given chemical potential μ in a volume V , we use
equations (12) and (13) to obtain the recursive conditional
equation

ρ(1)(�r , ω̂) = 1

3
· exp

{
μ

kBT
− Vext(�r , ω̂)

kBT

− 1

kBT

δFexc(T, V , [ρ])
δρ(�r, ω̂)

∣∣∣∣
ρ(�r,ω̂)=ρ(1)(�r,ω̂)

}
. (44)

By iterating this equation (44), we obtain the equilibrium
density (resp. orientational distribution) ρ(ω̂) that minimizes
the grandcanonical free energy functional �[ρ], at least locally.
This density ρ(ω̂) corresponds to a bulk equilibrium pressure p
which can be obtained as p = −�[ρ(ω̂)]/V . In the following
we express the pressure in reduced units by defining the
dimensionless reduced pressure p� = pvhsc/kBT where vhsc =
π D2( L

4 + D
6 ) is the volume of a single spherocylinder. We

further characterize orientational order using the dimensionless
nematic order parameter S which is defined as S = 3

2λS −
1
2 , where λS is the biggest eigenvalue of the nematic order
parameter tensor

↔
S =

∫
S2

f (ω)ω̂ · ω̂T d2ω̂. (45)

Its corresponding unit eigenvector λ̂S is called the nematic
director.

Varying the chemical potential μ, we computed the
equilibrium densities ρ(ω̂) for a fixed aspect ratio of L/D = 5
by starting the iteration from nematically pre-ordered densities
ρN(ω̂) and ending in a nematic equilibrium density field. The
integrals are solved numerically by using a static grid for the
density field on the unit sphere with 128×64 equidistant points
in spherical coordinates along the interval [0–2π] × [0–π].

On the other hand, we use isotropic densities ρI(ω̂) =
const as starting profiles. They stay constant and converge

Figure 3. Several parameters describing the isotropic–nematic phase
transition in a grandcanonical system of orientational hard
spherocylinders with aspect ratio L/D = 5. For calculations edFMT
with ξ = 1.6 has been used. (a) Reduced pressure difference
between the nematic and isotropic phase versus the reduced chemical
potential μ� = μ/kBT − 3 ln(D−1). (b) Reduced mean density
ρ� = ρ/ρcp in the isotropic and nematic phase versus reduced
chemical potential μ�. (c) Nematic order parameter S versus reduced
chemical potential μ�. (d) Orientational dependence of the density
profile in the coexisting nematic and isotropic phase versus the
azimuthal angle ϑ relative to the nematic director λ̂S . Coexistence
occurs at μ�

c = 19.852.

towards the equilibrium isotropic density. In figure 3(a) the
difference between nematic and isotropic pressures is shown
against the reduced chemical potential μ� = μ/kBT −
3 ln(D−1) and it is obvious that nematic energies are lower
than isotropic energies for μ� > μ�

c resulting in isotropic–
nematic coexistence at μ�

c = 19.852. The corresponding
reduced density defined as ρ� = ρ/ρcp, where ρcp D3 =

2√
2+√

3L/D
is the close packing density, is plotted in figure 3(b)

versus the reduced chemical potential. There is a small density
jump of about 1% at coexistence showing that the isotropic–
nematic transition is weakly first order. The nematic order
parameter jumps from 0 to 0.41 at the transition as shown in
figure 3(c). Finally in figure 3(d) the orientational dependence
of the coexisting density profiles are shown.

2.4. Comparison between theory and simulation

In the following, we compare bulk data of the edFMT theory
with exact simulation results. The idea here is to get a feeling
about the relevance and influence of the free parameter ξ

occurring in the edFMT theory.
In figure 4 the pressure difference and the nematic order

parameter are shown versus the reduced chemical potential
as in 3(a) and (c) but now for different parameters ξ . The
vertical line indicates the exact transition point at μ� = 21.772
according to computer simulations [9, 28]. From this one can
already conclude that a ξ value of about 1.5–1.6 fits the exact
data best as the data for ξ = 1.5 and 1.6 bracket the simulation
data.

For various aspect ratios L/D a comparison of the
coexistence pressures is shown in figure 5. Here slightly higher

4
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Figure 4. Same as in figures 3(a) and (c) but now for different
parameters ξ . The vertical line marks the simulation data of [9, 28]
for the isotropic nematic transition point where μ� = 21.772,
p� = 5.30, ρ�

I = 0.461 and ρ�
N = 0.470. edFMT predicts the

following transition points: for ξ = 1.0: μ� = 51.904, for ξ = 1.25:
μ� = 32.506, for ξ = 1.5: μ� = 22.536, for ξ = 1.6: μ� = 19.844
and for ξ = 1.9: μ� = 14.150.

Figure 5. Reduced pressure at isotropic–nematic coexistence versus
the aspect ratio L/D of the spherocylinders for various values of the
parameter ξ . Simulation data were taken from [28] (a) and [9] (b).
Figures (a) and (b) show different ranges in the aspect ratio L/D.

values for ξ would give a better fit, but still ξ = 1.6 is a
reasonable choice.

The next comparison concerns the density jump across
the isotropic–nematic transition in figure 6 as it has been done
in [16]. Here it is obvious that edFMT underestimates the size
of the jump, but is in fair agreement with its position.

Figure 6. Size and position of the density jump at the isotropic
nematic transition point versus aspect ratio L/D, written below the
bars. These bars are showing the size of the density jump and its
position relative to a chosen value ρ0 = 1

2 (ρI + ρN) as centre of the
density jump in simulations, written above the bars and shown in the
second graph. Simulation data were taken from [28] for L/D � 5
and from [9] otherwise.

Figure 7. Pressure at the isotropic/plastic crystal coexistence. The
isotropic densities ρ�

I at coexistence are taken from [9].

Interestingly, edFMT’s pressures are also in good
agreement with simulations for high densities. Finally, in
figure 7 pressures of the isotropic phase at coexistence with
the plastic crystal are shown at low aspect ratios. For ξ = 1.6
there is good agreement with the simulation data [9]. In case
of spherical particles for L/D = 0 these data are compared
to Rosenfeld’s FMT [13, 14] which is the natural reduction of
edFMT in the limit of spherical particles.

edFMT does not reproduce the Onsager limit [29] of
infinitely thin rods, L/D → ∞, on the level of the functional,
but gives nevertheless reasonable data for the isotropic nematic

5
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Table 1. Comparison between edFMT data and Onsager theory [29] for the coexisting isotropic density at the isotropic–nematic transition.
The ratio between the Onsager and the edFMT expression is denoted by 
. This ratio has been averaged over an aspect ratio interval
L/D ∈ [100; 600] with a maximal variance which is also given as the error.

ξ 1.0 1.25 1.5 1.6 1.9

 0.768 ± 0.011 0.965 ± 0.02 1.15 ± 0.017 1.255 ± 0.03 1.52 ± 0.05

transition. For instance, the number density of the coexisting
isotropic phase is analytically given in the Onsager limit as
13.16
π L2 D . The ratio of this density with that obtained from
edFMT can be averaged over an aspect ratio interval L/D ∈
[100; 600]. The resulting average 
 is shown for different ξ in
table 1. Obviously, in the Onsager limit ξ = 1.25 is a better
choice consistent with what was found in [16, 30].

In the following we shall concentrate on a rod aspect ratio
of 5. We shall therefore keep the parameter ξ fixed to 1.6.
However, if longer rods are considered, clearly smaller values
for ξ should be used.

3. Paranematic–nematic transition in a static
external aligning field

Now we introduce an external aligning field

Vext(ω̂) = −V0 · sin2(ϑ) (46)

that depends only on the particle orientations. With positive
prefactor V0, this potential forces the orientation of particles
to be within the xy-plane, away from the z-axis which is the
reference axis for the azimuthal angle ϑ . On the other hand, a
negative field strength V0 < 0 causes a potential that forces
the orientations to be along the z-axis, away from the xy-
plane. As a remark, since sin2 = − cos2 +1, apart from a
trivial additive constant, the potential Vext(ω̂) is equivalent to
V0 · cos2(ϑ) which is sometimes a more convenient expression
in the literature.

In the low density limit, the external field causes
an isotropic system to develop a nontrivial orientational
distribution, so that for nonzero field strength V0 	= 0
isotropic phases get orientational order and are therefore called
paranematic.

The edFMT density functional is used to calculate the
phase diagram for hard spherocylinders (with fixed ξ = 1.6)
in the external field. The functional is minimized in the
grandcanonical ensemble at a prescribed chemical potential
μ and temperature T . Coexistence of paranematic and
nematic phases is identified by searching for two orientational
distributions with the same grandcanonical free energy density
(corresponding to equal pressure). The corresponding
coexisting densities are plotted in figure 8 for fixed aspect ratio
L/D = 5 and varied aligning strength V0.

For V0 > 0, shown in figure 8(b), we found a critical
endpoint at V0 ≈ 0.35kBT in accordance to the finding of
Wensink and Vroege [23]. Below this point the transition is
first order, above, i.e. for V0 > 0.35kBT , it is second order. In
both situations, the transition is characterized by spontaneous
orientational order on the equator of the unit sphere. In the
paranematic phase, the orientations are uniformly distributed
along the equator, i.e. the density profile ρ(ω̂) = ρ(ϑ) does

Figure 8. Phase diagram with the external potential (46) for an
aspect ratio L/D = 5. Shown are the densities at the transition line
in the isotropic/paranematic phase and in the nematic phase. The
critical endpoint is at V0 ≈ 0.35kBT , ρ� ≈ 0.4219 ± 0.0001 and the
threshold point below which there is no transitions at all lies at
V0 ≈ −0.054kBT and ρ� ≈ 0.4378 ± 0.0004. (b) and (c) are the
same data on a larger scale for positive and negative V0 respectively.

not depend on the polar angle ϕ. In the nematic phase, on
the other hand, there is an orientational peak along the equator
in the (reduced) profile with a maximum ρ�

max. Therefore
the paranematic–nematic transition can be characterized by an
order parameter that measures the equatorial inhomogeneity
of the density profile. Accordingly, we define an equatorial
nematic order parameter Seq which is related to the first
non-vanishing Fourier coefficient in an expansion of the
orientational profile along the equator with respect to the polar
angle ϕ for fixed ϑ = π/2. In detail, we define

Seq =
√

c2 + d2 (47)
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Figure 9. Peak amplitude ρ�
max of the equatorial density field (a) and

equatorial nematic order parameter Seq (b) versus aligning field
amplitude V0 at fixed density ρ� = 0.4. The second-order
paranematic–nematic transition occurs at V0 ≈ 0.87kBT . The further
parameters are L/D = 5 and ξ = 1.6.

Figure 10. Nematic order parameter S at the isotropic/paranematic
to nematic transition in orientable hard spherocylinders with aspect
ratio L/D = 5 in an aligning external potential at different negative
field strengths V0 ((a)–(c)) versus the reduced chemical potential:
(a) V0 = −0.04kBT , (b) V0 = −0.052kBT , (c) V0 = −0.055kBT .
These different values for V0 are plotted in the V0–density plane in
(d). The reduced chemical potential at the phase transition is
μ� = 18.7691 (a) and μ� ≈ 18.4505 (b).

with the coefficients

c = 1

πρ�

∫ 2π

0
sin(2ϕ)ρ�

(
ϕ,

π

2

)
dϕ (48)

d = 1

πρ�

∫ 2π

0
cos(2ϕ)ρ�

(
ϕ,

π

2

)
dϕ. (49)

In figure 9, both ρ�
max and Seq are shown for fixed overall

density ρ� = 0.4. The range of alignment strength considered
is sketched as a double arrow in figure 11. In fact, at about
V0 ≈ 0.87kBT , the order parameter Seq levels off from zero
continuously indicating the second-order paranematic–nematic
transition. Likewise the density peak ρ�

max exhibits a second-
order nonanalyticity at the transition.

For V0 < 0, shown in figure 8(c), there is a threshold
strength below which no transition exists at all, as known from
earlier investigations [8, 22, 23]. This produces a ‘finger’ in
the coexistence densities. For our parameters, the threshold

Figure 11. Range of the time-dependent amplitude V0 shown as a
path (arrow) in the equilibrium phase diagram of figure 8. The
parameters are L/D = 5, ρ� = 0.4, ξ = 1.6. The transition point for
the mean density ρ� = 0.4 is at V0 ≈ 0.875kBT .

strength is about −0.055kBT . Clearly there is no V0 → −V0

symmetry due to the different topology of the two regions on
the unit sphere (equator and pole) which are preferred by the
aligning field. More details across the paranematic–nematic
transition at various negative field strengths are contained in
figure 10 where the nematic order parameter S is shown across
the transition (a) and (b) and below the threshold strength (c).

In section 4 the external coupling V0 is made time
dependent. The equilibrium phase diagram discussed here
therefore serves as a reference situation for very slow time
dependencies where the relaxed system will follow the
instantaneous equilibrium situation.

4. Dynamical density functional theory

4.1. Theoretical framework

For Brownian rods, the equilibrium density functional
theory can be generalized towards nonequilibrium dynamics,
generated e.g. by time-dependent external potentials. This
leads to so-called dynamical density functional theory (DDFT)
which can be derived from the Smoluchowski equation [17]
with the only approximation that the one-particle density
evolves much slower than any other higher-order correlation
function. DDFT first was considered for spherical interactions
but was recently generalized to both translational and
orientational degrees of freedom [20]. As a result, there is a
deterministic evolution equation for the time-dependent one-
particle density which can be understood as a generalized
continuity equation conserving the overall density. If the
one-particle density solely depends on the orientations, the
dynamical equation reads as follows [20]:

kBT
∂ρ(ω̂, t)

∂ t
= Dr R̂ ·

[
ρ(ω̂, t)R̂

δ�[ρ(ω̂′, t)]
δρ(ω̂, t)

]
, (50)

where Dr is the rotational diffusion coefficient of the Brownian
rods which sets the timescale τB = 1/Dr and R̂ = ω̂ ×
�∇ω̂ is the rotational gradient operator1. In the following,

1 As a remark, one could also take the Helmholtz free energy functional on
the right-hand side of equation (50) which leads to exactly the same equation
of motion.
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we use edFMT to describe the density functional input for
hard spherocylinders and consider an external time-dependent
aligning field Vext(ω̂, t). The equation (50) is then solved
by a straightforward numerical finite difference method with
respect to time involving typically 108 time steps 
t = 5 ×
10−5τB.

4.2. Results for an oscillating external aligning potential

We now apply the dynamical theory to an orientationally
inhomogeneous fluid of hard spherocylinders. In doing so, we
prescribe the mean density ρ� = 0.4. This density will be
time independent as it is conserved. A time-dependent external
potential is applied in which the aligning amplitude V0 depends
on time t . We chose a harmonic variation with an external
shaking frequency ω̄:

V0(t) = V̄0 + V̄1 · cos(ω̄ · t) (51)

such that the total external potential becomes

Vext(ω̂, t) = −V0(t) · sin2(ϑ). (52)

Here V̄0 is the mean (or time-averaged) amplitude. For any
fixed time, the situation corresponds to a point in the ρ�V0

plane of the equilibrium phase diagram. Formally one can
therefore represent the time dependence in V0(t) as a path in
this phase diagram. However, it is only for very slow variation
in V0(t) that the actual state is in equilibrium. This path in the
ρ�V0 plane is schematically shown in figure 11.

Starting from an equilibrated density profile at V0 = V̄0 +
V̄1 the system relaxes towards an oscillatory nonequilibrium
steady state. Properties of this oscillatory steady state are
presented in figure 12 for two different shaking frequencies
ω̄ and the ‘adiabatic’ limit ω̂ → 0+. The response of
the density field to the external shaking is characterized by
the time-dependent peak amplitude ρ�

max of the orientational
order along the equator and the equatorial nematic order
parameter Seq, see 12(b) and (c). While the response is mainly
harmonic in time for the larger frequencies, anharmonicities
are clearly visible for the smaller frequency. This has to do with
dynamical asymmetries in the paranematic and nematic phase
which are touched along the periodic oscillation and fully show
up in the limit ω̂ → 0+. As is revealed by figure 12, both
nonzero frequencies considered here (ω̂τB/2π = 0.01, 0.1) are
significantly off from the adiabatic limit ω̂ → 0+. As typical
for overdamped systems there is a phase shift of the response
relative to the drive.

The relaxation into the oscillatory steady state is explored
in figure 13 for a fixed frequency ω̄τB/2π = 1 and V̄0 =
0.88kBT and various V̄1. For V̄1/kBT being the range of 0–0.5,
the relaxation behaviour—as revealed in the time dependencies
of the equatorial peak amplitude ρ�

max(t) = maxω̂ ρ(ω̂, t)
and the equatorial nematic order parameter Seq—is shown
for 300 cycles in figure 13(a). Even after this long periodic
external driving, the system is still a little bit away from its
final steady state as signalled by long-time tail apparent in
figure 13(a). Most data were obtained for 300 cycles but
we checked longer cycles as well. As a result, fortunately,

Figure 12. Oscillation cycle in the steady state for the frequencies
ω̄τB/2π = 0+, 0.1, 0.01. The harmonic time dependency of the
aligning amplitude V0(t) is shown in (a) with V̄0 = 0.9kBT . The
peak maximum ρ�

max and the equatorial order parameter Seq are
presented in (b) and (c).

one has to be careful for long-time corrections only when
V̄0/kBT < 0.92. Moreover, qualitative trends are not affected
at all by these corrections. In addition, ρ�

max is plotted on a finer
resolution as a function of time in 13(c) for various V̄1 which
resolves the band shown in (a).

Ignoring the small long-time corrections, we show in
figure 14 the dependence of the time-averaged equatorial
nematic order parameter 〈Seq〉 in the steady state as a function
of V̄0 for various V̄1. Clearly 〈Seq〉 increases with increasing
V̄0, while the trend with varied oscillation amplitude V̄1 is a bit
less obvious. Increasing V̄1, leads to larger excursions in the
V0ρ

� plane. Delving deeper into the paranematic region will
not change Seq since it vanishes there anyway while exploring
the nematic region more will lead to an increase of equatorial
nematic order. Therefore 〈Seq〉 rises with increasing V̄1, too.
Strikingly, the nonequilibrium steady-state transition seems to
be again second order and shifts to larger aligning amplitudes
V0 relative to the equilibrium transition (solid line in figure 14).
This can be intuitively understood by the argument that shaking
leads to more disorder and hence a stronger aligning force is
needed for the transition. A similar effect was seen for freezing
in shaken solids in [31].

Finally, we study the response as a function of
the external oscillation frequency ω̄. The maximal
peak amplitude maxt (maxϕ ρ(ϕ, π/2, t)), the minimal peak

8
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Figure 13. Relaxation from an equilibrated nematic profile with S = 0.26 to the steady state for ω̄τB/2π = 1 and V̄0 = 0.88kBT . Equatorial
peak amplitude ρ�

max (a) and equatorial nematic order parameter Seq (b) versus time during 900 oscillation periods for various V̄1 as indicated
in the inset, (c) ρ�

max versus time after 296 cycles (same as (a)) but on a finer scale.

Figure 14. Time-averaged equatorial order parameter 〈Seq〉 in the
steady state, i.e. after 300 cycles for fixed ω̄τB/2π = 1 as a function
of V̄0 for various V̄1 as indicated in the legend. The value used in the
preceding figure is indicated by an arrow. The location of the
equilibrium second-order transition is approximately marked by a bar
including a long-time relaxation correction. If the cycle number goes
to infinity the data shift a bit to the right. The long-time corrections
are irrelevant for V̄0 � 0.92kBT and for V̄0 � 0.85kBT .

amplitude mint(maxϕ ρ(ϕ, π/2, t)) and the time average peak
amplitude

∫ T +2π/ω̄

T dt (maxϕ ρ(ϕ, π/2, t)) are plotted in the
steady state as a function of ω̄ in figure 15. Here T � τB

is a large time ensuring full relaxation into the steady state.
The two extreme limit can be easily understood first: for very
large frequencies ω̄ → ∞ this is a static equilibrium situation
with V0 = V̄0 where there is no time oscillation. Therefore
the maximal and the minimal peak amplitude coincide and the
equatorial order parameter saturates to its corresponding static
value. The second opposite limit is ω̄ → 0+ which is different

Figure 15. Maximal peak amplitude, time-averaged peak amplitude
and minimal peak amplitude (a) as well as the time-averaged
equatorial order parameter 〈Seq〉 (b) versus external frequency ω̄τB

after a time of 180τB (500τB for ω̄τB/2π � 0.1). The further
parameters are L/D = 5, ρ� = 0.4, V̄0 = 0.9kBT and V̄1 = 0.2kBT .

from the case ω̄ = 0 where everything is a priori static, see
equation (51). In fact, for ω̄ = 0 we get from figure 9 the
values ρ�

max = 1.271 and Seq = 1.093 at V0(0) = 1.1kBT .
These data are different from those plotted in figure 15, where,
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for ω̄ → 0+ we expect an ‘adiabatic’ response described by
the equilibrium phase diagram. In between, a resonance pops
up as visible in a weak secondary maximum at ω̄τB = 6 for the
maximal peak amplitude. This possibly reveals an asymmetry
of relaxation dynamics in the paranematic and nematic phase
but its detailed origin is still unclear. In fact, the resonance
is subtle since it does not occur in the difference between
the maximal and minimal peak amplitude. Nevertheless it is
unusual for completely overdamped Brownian dynamics.

5. Conclusions

In conclusion, we have applied the fundamental measure
density functional for hard spherocylinders, proposed recently
by Hansen-Goos and Mecke [16], to equilibrium situations
and nonequilibrium dynamics. For the latter, we used
the framework of dynamical density functional theory for
orientable bodies. In particular, an external field was applied
which only couples to the orientations of the particles.
First, the static phase behaviour was computed involving
paranematic and nematic phases. The topology of the
paranematic–nematic phase behaviour in the plane spanned by
the density and aligning field strength is different if the rods
are preferentially oriented towards the poles or the equator
of a unit sphere. In the former case (alignment along the
poles) the transition is first order but vanishes above a critical
amplitude. In the latter it changes from first to second order
but is persistent at any coupling strength. If the aligning
field amplitude is oscillatory in time, scanning the static phase
diagram, there is a resonance effect for increasing driving
frequency.

Our results can be realized in experiments on rod-
like colloids in aligning external fields [24, 25, 32]. For
future studies it would be interesting to relax the essential
constraint that the full one-particle density does not depend
on the translational position. Though numerically more
complicated, this would be a promising route towards the
full equilibrium phase behaviour which involves various liquid
crystalline phases like a plastic crystal, smectic layering and
full crystalline ordering [9]. Once the coexisting phases
are identified, their interfaces can also be accessed using
density functional theory [33]. For instance,the structure of
the isotropic–nematic [34–36] and the nematic–smectic [37]
interface can be computed and the corresponding interfacial
free energy can be extracted. Furthermore the tagged particle
dynamics [19, 38] can in principle be studied in equilibrium
by generalizing the idea of Archer, Hopkins and Schmidt [39]
towards orientational degrees of freedom.

Nonequilibrium dynamics is expected to become even
more complex. In particular, regarding the smectic phases,
unusual features have been detected in its homogeneous
nucleation behaviour [40, 41]. Heterogeneous nucleation at
imposed nucleation clusters [42] and behaviour of rods in time-
dependent confining traps [43] is expected to bear many more
fascinating effects which are yet unexplored. These can in
principle be addressed using the dynamical theory proposed
in this paper.
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[5] Löwen H 1994 Phys. Rep. 237 249
[6] Tarazona P, Cuesta J A and Martı́nez-Ratón Y 2008 Theory and

Simulation of Hard-Sphere Fluids and Related Systems
(Springer Lecture Notes in Physics) vol 753 (Berlin:
Springer) chapter 7, pp 247–341

[7] Poniewierski A and Holyst R 1988 Phys. Rev. Lett. 61 2461
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100 108302
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