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A self-propelled rod which is driven by a constant internal force and torque performs circular motion

in two spatial dimensions with an ‘‘internal’’ radius governed by the torque-to-force ratio and is referred to

as a circle swimmer. Using analytical methods and computer simulations, we study the Brownian

dynamics of a circle swimmer in a confining Petri dish- or ring-shaped geometry and compute the mean of

the swimmer’s position, its steady-state properties and its orientational motion. For small torque-to-force

ratios, the confinement inverts the orientational sense of the motion: a clockwise-directional circle

swimmer moves counter-clockwise in the confinement. Our results are verifiable for self-propelled

colloidal rods, for vibrated granular rods and for motile bacteria in cylindrical confinements.
I. Introduction

There are quite different examples of self-propelled (‘‘active’’)

particles1–3 which move in circles in two dimensions rather than

along a straight line. When confined to a planar substrate, certain

bacteria4–9 and spermatozoa10–12 swim in circles. Spherical

camphors have been shown to swim in circles if confined to an

air–water interface.13 Furthermore it is possible to prepare cata-

lytically driven nanorods14–16 and colloidal particles17 with a tilted

motor which will result in circular motion of the particles. The

effect of confinement on catalytically driven particles has recently

been studied by Popescu et al.18 Next, a vibrated polar granular

rod19 on a planar substrate with an additional left–right asym-

metry will move along circles. Finally, the trajectories of deform-

able particles20 and even of completely blinded and ear-plugged

pedestrians can possess significant circular characteristics.21

The effect of planar confining walls on swimming particles or

organisms in three dimensions has been studied in detail by Elgeti

and Gompper for the case of a model system consisting of

a self-propelled rod22 and by Li et al.23 and Berke et al.24 for the

case of self-propelled bacteria. It is further possible to confine

motile particles into various kinds of additional lateral confine-

ment ranging from linear microfluidic channels of desired

geometry25 to finite circular confinements.19,26 A detailed

knowledge about the dynamics of self-propelled particles in

confinement is crucial for the fabrication of switching devices for

active particles which rectify,27 filter and sort out25 various self-

propelled particles. These devices open up challenging applica-

tions to steer the dynamical behaviour of active soft matter.

Recently we have modelled an active particle performing circular

motion by a Brownian rod which experiences an internal force along

its orientation and a constant torque.28 In the absence of any

thermal fluctuations, this circle swimmer moves on a circle with an
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‘‘internal’’ radius that is inversely proportional to the torque-to-

force ratio. Thermal fluctuations smear out this circular motion

leading to diffusive long-time dynamics. For linear channel geom-

etries, it was shown28 that the long-time motion of a Brownian circle

swimmer is maximal for an optimal torque-to-force ratio.

In this paper we study this model of a Brownian circle swimmer

in circular confinement with Petri dish- and ring-like geometries.

In particular, one can expect a competition of the two length scales

set by the radius of the confinement and the ‘‘internal’’ radius of

the circular motion. One key dynamical property important for

the construction of devices is whether the particles rotates on

average clockwise or counter-clockwise in a confining ring. Since

the clockwise–counter-clockwise symmetry of the ring is broken

by the intrinsic circular motion, there is a nontrivial long-time

limit leading either to clockwise or counter-clockwise rotation. By

using extensive Brownian dynamics computer simulations and an

analytical theory for a wall-induced sliding mode, we show here

that the confinement inverts the orientational sense of the particle

rotation provided the torque-to-force ratio is small enough. In this

case, a clockwise-directional circle swimmer moves counter-

clockwise in the confinement. For the actual rotational sense,

thermal fluctuations play a crucial role. The predicted inversion

from clockwise to counter-clockwise motion can in principle be

verified in a number of possible experimental set-ups for two-

dimensional circle swimmers in confinement.

The paper is organized as follows: in section II we introduce

the model and summarize the dynamical behaviour of a circle

swimmer in the bulk. In section III, we summarize analytical

results for the sliding mode and present simulation data in

section IV. In particular, we discuss the noise-averaged trajec-

tories of the swimmer, its radially-resolved probability distribu-

tions and finally its sense of rotation in the ring. We conclude in

section V by discussing realisations of our model for various

circle-swimming systems.
II. The model

The Brownian swimmer under consideration, which was already

introduced in ref. 28, is modelled as a rod-like colloidal particle
This journal is ª The Royal Society of Chemistry 2009



of length L and width d. Neglecting hydrodynamic interactions

with the confining walls, its overdamped motion in two dimen-

sions is governed by the Langevin equations for the rod center-

of-mass position

_r ¼ bD$[Fû � VV(r,f) + f] (1)

and for the rod orientation

_f ¼ bDr[M � vfV(r,f) + s] , (2)

respectively, where dots denote time derivatives and b�1 ¼ kBT is

the thermal energy. The angle f denotes the swimmer’s orien-

tation with respect to the x-axis, as sketched in Fig. 1. The rod’s

short time diffusion tensor

D ¼ Dk(û 5 û) + Dt(I � û 5 û) (3)

is given in terms of the short time longitudinal (D||) and trans-

verse (Dt) translational diffusion constants, with the orientation

vector û¼ (cosf, sinf), I the unit tensor and 5 a dyadic product.

Dr is the short time rotational diffusion constant. Fû is a constant

effective force that represents the internal propulsion mechanism

responsible for the deterministic motion in the rod orientation,

and M is a constant effective torque, originating from the internal

propulsion mechanism or from an external field, which yields the

deterministic circular motion (see the sketch in Fig. 1). V(r, f) is

an external confining potential. f and s are the zero mean

Gaussian white noise random force and random torque origi-

nating from the solvent, respectively. Their variances are given by

fkðtÞ fkðt 0 Þ ¼ 2dðt� t 0Þ=
�
b2Dk

�
;

ftðtÞ ftðt 0 Þ ¼ 2dðt� t 0Þ=
�
b2Dt

�
;

sðtÞsðt 0 Þ ¼ 2dðt� t 0Þ=
�
b2Dr

�
; (4)

where f||, ft are the components of f parallel and perpendicular to

û, respectively. The bars over the quantities denote a noise

average. Henceforth, we consider a very thin rod of length L [ d,

for which the short-time diffusion constants in the three-

dimensional bulk are given by Dr/D|| ¼ 3/(2L2), Dt ¼ D||/2. We
Fig. 1 Sketch of the swimmer in ring-like confinement. Indicated are the

rod center-of-mass position in polar coordinates r ¼ (r, q), the rod

orientation f, and the relative orientation with respect to the wall,

w ¼ f � q. The swimmer is confined to a ring of dimensions R1 < r < R2.

The propelling force F and the torque M are also indicated.
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will denote all times in units of sB ¼ L2/D||, lengths in units of L,

and energies in units of b�1. As already pointed out in ref. 28, F

and M are effective net forces that could be determined in the

bulk from the forward and angular velocities F ¼ j _~r j=ðbDkÞ and

M ¼ | _f|/(bDr), respectively, but are not necessarily directly con-

nected to the internal propulsion mechanism.29 The propulsion

velocities have been calculated including full hydrodynamics for

a set of simple model swimmers, which are, e.g., driven by

chemical reactions30,18 or by the combined motion of three con-

nected spheres.31

Next, we introduce a circular, ring-like potential of purely

repulsive walls, which confines the swimmer’s motion to a ring of

dimensions R1 < r < R2, where r ¼ |r| is the radial coordinate of

the swimmer’s center-of-mass position. For simplicity, we model

the confinement by an integrated segment-wall power-law

potential in the radial direction,

Vðr;wÞ ¼
ð L

2

�L
2

vðr; l;wÞdl ; (5)

where w ¼ f� q is the difference between the angular coordinate

of the swimmer’s center-of-mass position q and its orientation f,

i.e., w is the relative angle of the swimmer’s center of mass with

respect to the closest point on either of the two confining walls

(see Fig. 1). The segment-wall potential of the rod segment at the

position l along the contour is given by

vðr; l;wÞ ¼ ðbLÞ�1

(���� L

R1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2 þ 2rl cosw
p

����
n

þ
���� L

R2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2 þ 2rl cos w
p

����
n)
;

(6)

if the rod segment is situated between the two walls, i.e., if R1
2 <

r2 + l2 + 2rl cos w < R2
2, and infinite otherwise. n is a large exponent,

which is assumed infinite in our analytical studies and set equal to

n ¼ 6 in the Brownian dynamics computer simulations further

down. In the limit of large radii R1,R2 [ L, which we assume in

the following, the potential simplifies to the expression

vðr; l;wÞxðbLÞ�1

(���� L

R1 � rþ l cos w

����n

þ
���� L

R2 � rþ lcos w

����n
)
;

(7)

which yields

Vðr;wÞx Ln�1

bðn� 1Þcos w

(����ðR1 � rþ ðL=2Þcos wÞ�ðn�1Þ

�ðR1 � r� ðL=2Þcos wÞ�ðn�1Þ
����

þ
����ðR2 � rþ ðL=2Þcos wÞ�ðn�1Þ�ðR2 � r� ðL=2Þcos wÞ�ðn�1Þ

����
)
:

(8)

We consider two qualitatively different situations: The radius

of the inner wall R1 is either zero or finite. The former case yields
Soft Matter, 2009, 5, 4510–4519 | 4511



a circular, Petri dish-like confinement with a single outer wall,

whereas the latter case yields the described ring-like confinement

with an inner and an outer wall.

In this final paragraph we shortly comment on the effect of

hydrodynamic interactions between the swimmer and the

confining walls, which depends on the specific experimental

realisation of our model. The hydrodynamics of a bacterium

being confined between two parallel glass plates in three

dimensions has been studied in detail by Berke et al.24

A simplified model system of a self-propelled rod between two

plates was studied by Elgeti and Gompper.22 In our model, as we

are only interested in the motion in the two-dimensional plane,

those effects are captured by the short-time diffusion tensor. The

effect of the additional laterally confining walls deserves addi-

tional discussion. First, if the wall potential only affects the

swimmer position and orientation but not the solvent, hydro-

dynamic interactions can be ignored. Such a setup could be

achieved by applying a laser tweezing potential to an autocata-

lytic colloidal realization of a circle swimmer. However, to our

knowledge, an attempt to confine self-propelled colloids with the

help of a laser tweezer has not been pursued yet. On the contrary,

in case the solvent is confined as well, hydrodynamic interactions

between the swimmer and the wall lead in principle to an

r-dependent diffusion tensor,18,32 which is ignored in our model.

In order to take hydrodynamic interactions into account,

knowledge about the precise nature of the wall, of the particle

shape, of the propulsion mechanism, and of the confinement in

the z-direction perpendicular to the xy-plane is necessary. Since

we do not specify these details in our model we can only refer

to the respective (not yet realized) experiments (cf. the

Conclusions).
Fig. 2 The stable and the unstable solutions to the steady-state eqn (11)

for the angle w for different radii of the circular confinement R1 or R2,

which are both denoted by R, in the case of hard (n ¼N) and soft (n ¼ 6)

walls. The steady-state angles are denoted by (from top to bottom) w2;u

(unstable, outer wall), w2;s (stable, outer wall), w1;s (stable, inner wall if

cos w1;s < 0 and outer wall if cos w1;s > 0), and w1;u (stable, outer wall),

respectively. The different stable modes are sketched in the pictograms.
III. Deterministic steady-state motion in the noise-
free case

Before considering the stochastic motion of the swimmer in

confinement, we present here the deterministic motion in the case

of no thermal noise present. At first, we briefly recall the prop-

erties of the free swimmer, which serves as a reference point, i.e.,

we set V(r, f) ¼ 0. In this simplest situation, the rod center of

mass describes a perfect circle of radius

R0 ¼
DkF

DrM
; (9)

with the circular frequency

u0 h _f ¼ bDrM (10)

which has the same sign as the internal torque M. In the presence

of the ring-like confinement, however, this circular motion is

disturbed and the swimmer eventually performs a steady-state

sliding motion along the inner or outer wall, depending on

whether the ratio M/(LF) lies within an R1- and R2-dependent

range and if the initial coordinates r0¼ r(t¼ 0) and f0¼ f(t¼ 0)

are chosen appropriately. The following consideration is similar

to the situation in a linear channel, which has been discussed in

ref. 28. The sliding motion is characterized by a constant

r-position close to one of the walls and by a constant relative

angle w of the rod orientation with respect to the wall. Making
4512 | Soft Matter, 2009, 5, 4510–4519
use of the zero-noise versions of eqn (1) and (2) the steady-state

coordinates are obtained as the solutions of the two conditions

_r ¼ b
n

D,
�
Fû� vrVðr;wÞêr

�o
,êr ¼ 0 ;

_w ¼ bDr

�
M � vwVðr;wÞ

�
� _q ¼ 0 ; (11)
where êr ¼ (cosq, sinq) is the unit vector in radial direction and
_q is the yet unknown constant angular velocity at which the rod

moves along the channel. The constancy of _q, in turn, implies

that the angular velocity of the swimmer’s orientation _f, which

we refer to as spinning frequency henceforth, takes the same

value _f ¼ _q.

Without loss of generality, we consider the case M > 0, i.e., the

rod would rotate counter-clockwise in the bulk with a frequency

u0 > 0, according to eqn (10). During the steady state in

confinement, however, the rod is hindered in its intrinsic motion

by the presence of the walls, as is sketched in Fig. 2. In particular,

if the rod performs its steady-state sliding motion at the outer

wall, it might move in negative angular direction, _q ¼ _f < 0,

which implies an inversion of the spin in confinement as

compared to the situation in the bulk, i.e., _f < 0 whereas u0 > 0.

In the following, we first discuss the situation in which the

intrinsic radius of the swimmer is smaller than both the inner and

the outer radii R0 < Ri, i ¼ 1, 2, i.e., the torque-to-force ratio is

assumed to obey M/(LF) > (2/3)L/Ri. The opposite case of M/

(LF) < (2/3)L/Ri is discussed further down. In the considered

regime of intermediate torque-to-force ratios, counter-clockwise

rotational motion with _q ¼ _f > 0 does only persist if the rod is

situated in the sliding mode at the inner wall. At the outer wall,

on the contrary, the rod slides in negative angular direction,
_q¼ _f < 0. In the limit of hard walls (n / N), the solutions to the

steady-state conditions (11) simplify to the real-valued roots

coswa of a sixth-order polynomial in cosw, where the index

a refers to the different–yet to be determined–solutions. Equiv-

alently, the roots fulfill the implicit equation for the angle wa,

cos2 wa ¼
3ra þ 2 L cos wa

3ra

�
M=ðLFÞcot wa þ 1

�� 1 : (12)
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Here,

ra ¼ R � (L/2) coswa (13)

is the position of the rod center of mass in the steady state,

i.e., the front rod tip is situated right at the radial position of the

inner or outer wall, R ¼ R1, R2. For simplicity, we denote the

radius of the inner and outer wall here by R; this is justified

because V(r, w) in eqn (8) is symmetric under interchange of

R1 and R2. Whether R refers to the inner or outer radius depends

on the sign of coswa: If cos wa > 0, then ra < R and R corresponds

to the outer wall; if coswa < 0, the opposite is the case.

The solutions to eqn (12) as a function of the positive torque-

to-force ratio M/(LF) for different values of R are plotted in

Fig. 2. Upon change of the sign of M/(LF), also the sliding angle

wa changes sign. However, the value of coswa is clearly inde-

pendent of whether M/(LF) is positive or negative. The upper

two branches in Fig. 2, which are characterized by a positive

value of coswa > 0, describe the two sliding modes at the outer

wall. The lower two branches describe the respective modes at the

inner wall, as long as coswa < 0. For small torque-to-force ratios,

however, if the swimmer’s intrinsic radius R0 ¼ (2/3)L2F/M is

larger than the radius of the inner confining wall R1, i.e., if M/

(LF) < (2/3)L/R1, the upper of the two lower branches is positive

(i.e., coswa > 0). In this regime, which is discussed in detail

further down, there is only one mode at the inner wall.

In the case of intermediate but not too large torque-to-force

ratios it turns out that for each of the walls there is a stable and

an unstable solution to the steady-state conditions: The two

central branches with the smaller absolute values of | cos wa|

describe the stable modes whereas the outer branches describe

the unstable modes. The latter are characterized by the obser-

vation that a small fluctuation in the swimmer’s coordinates r or

w leads away from the unstable solution. Depending on the width

of the channel R2 � R1 with respect to the swimmer’s intrinsic

radius R0, the fluctuation leads the swimmer coordinate either to

a neighboring stable branch at the same or opposite wall, or to

the central region of the confining ring, where the swimmer might

not find another stable sliding mode. The stable modes, on the

contrary, are robust against small disturbances. Large fluctua-

tions, however, might make the swimmer leave one stable mode

in favor of a neighbouring, other stable mode.

We denote the angles, which correspond to the different

branches in Fig. 2 (from top to bottom), by w2;u (unstable, outer

wall), w2;s (stable, outer wall), w1;s (stable, inner wall), and w1;u

(stable, outer wall), respectively, where the numbers refer to the

two radii R1 and R2 and the subscripts ‘‘u’’ and ‘‘s’’ to the

unstable and stable modes.

In the limit of large radii R1,2 [ L the ring-like confinement

locally resembles a linear channel and the upper and the lower

two solutions to eqn (12) become mirror-symmetric about cos

w ¼ 0. Furthermore, the four solutions to the steady-state

conditions can then be given analytically, as was already

presented in ref. 28:

cos w1;2;s;u ¼H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

�
M
LF

	2

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

�
M
LF

	2
r

2þ 2
�

M
LF

	2

vuuuuut : (14)
This journal is ª The Royal Society of Chemistry 2009
Here, the minus sign in front of the outer square root corre-

sponds to the two modes at the inner wall, whereas the plus sign

describes the two modes at the outer wall. The minus sign in front

of the inner square root corresponds to the stable and the plus

sign to the unstable solution. The solutions, eqn (12), are plotted

in Fig. 2.

If the torque-to-force ratio exceeds an R- and wall-dependent

critical value, M/(LF) > xi(Ri), i ¼ 1, 2, there is no solution to the

steady-state conditions; instead, the rod keeps on rotating,

whenever it hits one of the walls. The indices 1 and 2 refer to the

inner and outer walls, respectively. In the case of a linear channel

or a ring-like confinement of diverging radii R1 and R2, the

critical torque-to-force ratio is determined by a vanishing inner

square root in eqn (14). It is thus given by

x ¼ ð2
ffiffiffi
2
p
Þ�1z0:35 : (15)

For a ring-shaped confinement of finite radii, the limiting tor-

que-to-force ratios of stability at the inner and the outer walls

depart from the analytical solutions, eqn (15). For large radii, we

found numerically that the difference of the limiting values xi(Ri)�
x displays a power-law behaviour as a function of Ri; in particular,

xi(Ri) � x x �C/Ri , (16)

where C z 0.41 is a common prefactor to both limiting values at

the inner and the outer walls. In eqn (16), the plus sign corre-

sponds to the limit of stability at the outer wall x2 (i.e., the limit of

the lower two branches in Fig. 2) and the minus sign to the limit

of stability at the inner wall x1 (i.e., the limit of the upper two

branches in Fig. 2).

In the region of small M/(LF) < (2/3)L/Ri, i ¼ 1, 2, the

behaviour at the inner and the outer walls is qualitatively

different: At the inner wall, the stable solution to the steady-state

conditions disappears, if the swimmer’s intrinsic radius

R0 ¼ (2/3)L2F/M is larger than the radius of the inner confining

wall R1, i.e., if M/(LF) < (2/3)L/R1. At the outer wall, in contrast,

there appears a second stable solution in the same regime of

torque-to-force ratios, i.e., if M/(LF) < (2/3)L/R2. In this second

branch, the swimmer rotates clockwise, i.e., _q > 0, instead of

counter-clockwise, as in the other stable and unstable modes.

Since the sliding mode at the outer wall is still described by the

same branch in Fig. 2, which describes the sliding mode at the

inner wall for larger torque-to-force ratios, we denote it by the

same variable w1;s.

The angular velocities corresponding to the stable sliding

modes are given by

Ui;s ¼ vi;s=ri;s ;

vi;s ¼
bDkF

2

sin wi;s

1þ cos 2 wi;s

: i ¼ 1; 2 :
(17)

This is formally the same result as for a linear channel.28 A

summary about the properties of the stable sliding modes in ring-

like confinement for positive torque-to-force ratios is given in

Table 1. In the case of a dish-like confinement, which is formally

characterized by a vanishing radius R1 ¼ 0, the sliding mode at

the inner wall disappears.
Soft Matter, 2009, 5, 4510–4519 | 4513



Table 1 Characterisation of the stable sliding modes in ring-like
confinement: Denoted are the ranges of the angles of stability wi;s, the
ranges of torque-to-force ratios M/(LF), the walls, at which the sliding
modes are present, and the sign of the corresponding angular velocity Ui;s

Angle Stability range Wall Velocity

�p

4
\w1;s\0 2L

3R1

\
M

LF
\x1

inner U1;s > 0

p

4
\w2;s\

p

2
0\

M

LF
\x2

outer U2;s < 0

0\w1;s\
p

4 0\
M

LF
\

2L

3R2

outer U1;s > 0 Fig. 3 Trajectories of the mean position �r of the self-propelled rod for

fixed bFL¼ 60 and bM¼ 5 (r0¼ 0, f0¼ 0), yielding an intrinsic radius of

R0¼ 8L, in dish-like confinements of different radii R2/R0¼2.5, 3.75, which

is compared to the mean trajectory in the bulk (bV ¼ 0 or R2/R0 ¼N).
In summary, we found that a counter-clockwise circle

swimmer can swim clockwise if it is situated in the stable sliding

mode characterized by the angle w2;s. It turns out, that this

sliding mode is highly relevant for the stochastic swimmer in

confinement, which is discussed in the following section.

For large but finite exponents n, the stable and unstable modes

change their quantitative values. The qualitative features are the

same, as seen for n ¼ 6 in Fig. 2 as well.
Fig. 4 Typical trajectories of the rod for bFL ¼ 60, bM ¼ 5 (yielding an

intrinsic radius R0 ¼ 8L), in dish-like confinement of radii R1 ¼ 0 and R2

¼ 30L (a) and ring-like confinement of radii R1 ¼ 15L and R2 ¼ 30L (b),

respectively, for times 0 < t < 5sB in (a) and 0 < t < 7sB in (b). In (a) the

swimmer starts moving at the center at r0 ¼ 0 with an orientation f0 ¼ 0.

In (b) the swimmer is initially situated at a random position between the

two confining walls.
IV. Stochastic motion at finite temperature

If noise is turned on, the swimmer eventually leaves one of

the stable sliding modes and tumbles in between the two

confining walls until it reaches the original or the opposite

wall under an appropriate angle for the respective sliding

mode. However, before we discuss the intricate effects of the

two walls in the presence of noise on the swimmer’s long-time

motion, we shortly recall the properties of the free swimmer

in the bulk, which have been discussed at length in ref. 28:

For finite temperature all moments of r and f can be calcu-

lated exactly. The first and second moments of f(t) are simply

given by

�f ¼ f0 + u0t , (18)

Df2 ¼ ½fðtÞ � f0�
2 ¼ ðu0tÞ2þ2Drt ; (19)

where f0¼ f (t¼ 0), and where we let f run ad infinitum. The first

and second moments of Dr h r(t) � r(0) are given by

Dr ¼ l



Drû0 þ u0ût

0 � e�Drt
�

Dr
�̂uþ u0

�̂ut
	�
;

Dr2 ¼ 2l2
n

u2
0 �D2

r þDr

�
D2

r þ u2
0

�
t

þe�Drt
��

D2
r � u2

0

�
cosðu0tÞ � 2Dru0 sinðu0tÞ

�o
þ2
�
Dk þDt

�
t; (20)

with l ¼ bD||F/(Dr
2 + u0

2), û0 ¼ (cosf0, sinf0), ût
0 ¼ (�sinf0,

cosf0), �̂u ¼ ðcos �f; sin �fÞ, and �̂ut ¼ ð�sin �f; cos �fÞ, i.e., Dr

describes an exponentially damped circular trajectory with

a damping constant of the short-time rotational diffusion constant

Dr, which is referred to as a spira mirabilis. In Fig. 3, Dr is plotted

for bFL ¼ 60 and bM ¼ 5, which according to eqn (9) yields an
4514 | Soft Matter, 2009, 5, 4510–4519
intrinsic radius of curvature R0¼ 8L. The long-time motion of the

swimmer in the bulk is diffusive with a diffusion constant

DLh lim
t/N

Dr2

4t
¼
�
bDkF

�2
Dr

2
�
D2

r þ u2
0

�þ 1

2

�
Dk þDt

�
: (21)

The stochastic motion of the swimmer in dish- and ring-like

confinement has been analyzed by means of extensive Brownian

dynamics computer simulations.33 The equations of motion (1)

and (2) were integrated via Ermak’s algorithm,34,33 with a timestep

Ds¼ 10�5sB. The power-law exponent in eqn (8) has been set n¼ 6

in all studies. Typical trajectories for the cases of the ring- and the

dish-like confinements are shown in Fig. 4(a) and (b) for

parameters bFL¼ 60, bM¼ 5, R2¼ 30L, and R1¼ 0 (dish) or R1

¼ 15 (ring), respectively. In these examples, the intrinsic radius R0

¼ 8L is significantly smaller than the confining radii R1 and R2.
A. Petri dish-like confinement

We first consider the situation of a dish-like confinement (R1¼ 0)

with a (outer) confining radius R2, which is larger than the
This journal is ª The Royal Society of Chemistry 2009



Fig. 5 The probability density r(x) of the swimmer in dish-like

confinement of radius R2¼ 30L, with an internal force bFL¼ 60, and for

different torques bM ¼ 2, 5, 10. Inset: The conditional probability rR2(a)

(for the definition see the main text) for the same parameters.
intrinsic radius of the swimmer, i.e., R2 > R0. Furthermore, we

consider the situation in which the swimmer starts moving at the

center at r0¼ 0 with an orientation f0¼ 0. As is illustrated by the

trajectory in Fig. 4(a), the swimmer behaves as in the bulk for

short times: It performs circular motion, which is only disturbed

by the stochastic force f and the torque s, respectively. On times t

T Dr
�1 the motion becomes diffusive, as is also reflected in the

mean-square displacement Dr2 of the swimmer in the bulk, which

displays a crossover from an oscillatory ballistic to a diffusive

regime at t ¼ Dr
�1 [see eqn (20)]. The confining wall is typically

reached by diffusion at a characteristic time t z R2
2/(4DL),

which, in the limit of large forces bFL [ 1, scales as R2
2/(4DL) f

R2
2(Dr

2 + u0
2)/F2. Once the swimmer hits the confining wall, it

might get trapped in the stable sliding mode characterized by w2;s

(see Fig. 2 and Table 1 for the qualitatively same features of the

respective mode in hard-wall confinement), which forces the

particle to move in a clockwise fashion along the confining wall,

against its intrinsic spin (see Fig. 4(a) for a sample trajectory).

Different from the deterministic situation, the swimmer might

leave the stable sliding mode after a while due to the presence of

noise. How often the swimmer leaves the wall depends on the

stability of the sliding mode.

In the following, we restrict our consideration to a swimmer of

constant force bFL ¼ 60 and different torques in a dish of radius

R2 ¼ 30L. For a discussion of different forces and radii see

section V. The swimmer’s motion is analysed by considering the

following average quantities:

(i) Contrary to the situation in the bulk, the mean center-of-

mass position of the swimmer in confinement approaches the

center of the confining dish at long times, limt/N�r ¼ 0, because

the angular coordinate of the swimmer’s position q is uniformly

distributed at long times. This is reflected in the mean trajectories

for different confinement radii in Fig. 3. As expected, the smaller

the confining dish, the earlier the mean trajectory departs from

the mean trajectory in the bulk.

(ii) Although the mean position of the swimmer at long times is

at the center, the swimmer is very often–for not too large torque-

to-force ratios–not located in the middle of the dish but at the

wall, which is attributed to the stability of the sliding mode. This

is reflected in the enhanced probability density r(x ( R2) to find

the radial coordinate of the swimmer’s center of mass r(t) close to

the confining wall at R2. The radial probability density is given by

rðxÞ ¼
ð2p

0

darðx;aÞ; (22)

where

rðx;aÞ ¼ lim
t/N

d
�

x� rðtÞÞdða� wðtÞ
	

2px
(23)

where

rðx;aÞ ¼ lim
t/N

�dðx� rðtÞÞdða� wðtÞÞ
2px

(23)

is the joint radial and angular stationary probability density. r(x)

is displayed as a function of x for three different torque-to-force

ratios in Fig. 5. In particular, r is nearly constant throughout the

confining dish except in the vicinity of the wall. For the three
This journal is ª The Royal Society of Chemistry 2009
parameter sets considered in Fig. 5 (all with bFL ¼ 60 and

R2¼ 30L) it is observed that the probability to find the particle at

the wall, r(x ( R2), decreases with increasing torque: Whereas

the torques bM ¼ 2 and bM ¼ 5 lead to an enhanced probability

at the wall as compared to the central region of the dish, the

scenario is inverse in the case of a torque of bM ¼ 10.

The decrease of the probability with increasing ratio M/(LF) is

understood by noticing that the stability of the sliding mode

decreases with a decreasing difference of the steady-state angles

of the stable and the unstable modes at the wall, |w2;s � w2;u|,

which are displayed in Fig. 2 for hard walls. For soft walls with

an exponent n ¼ 6 used in the simulations, the respective values

are smaller but the scenario is qualitatively the same. This

functional dependence was motivated in the case of a planar wall

in ref. 28 [there, it is reflected in the increasing rate of the ‘‘flip-

ping’’ process (a)] and is expected to hold also in the case of

a curved wall. That the particle is situated in its stable sliding

mode for not too large values of M/(LF) is also reflected in the

conditional angular probability density close to the wall,

rR2ðaÞ ¼
ðR2

R2�L

dx x rðx;aÞ; (24)

which is plotted in the inset of Fig. 5. rR2
(a) displays

a pronounced global maximum at the position of the negative

steady-state angle w2;s < 0 in the cases of bM ¼ 2, 5. The second

maximum at w z � w2;s > 0 is attributed to the transient

dynamics of an escape event after leaving the stable mode or after

hitting the wall under an angle, which is inappropriate for getting

trapped in the stable sliding mode. For the larger torque of bM¼
10, the otherwise secondary maximum becomes the global

maximum. Apparently, the deterministically stable mode w2;s(M/

(LF)¼ 0.167) (see Fig. 2) is easily escaped by the swimmer due to

thermal fluctuations.

(iii) The stable sliding mode at the confining wall eventually

leads to a negative mean angular velocity at long times, which we

refer to as the lap frequency (referring to the number of laps/

rounds the swimmer’s center of mass undergoes per time)

Uh lim
t/N

_qðtÞ : (25)
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The lap frequency and the angular diffusion constant,

DU ¼ lim
t/N

ðqðtÞ � UtÞ2

2t
; (26)

are plotted as a function of the torque-to-force ratio M/(LF) for

the same constant force bFL ¼ 60 and the same confining radius

R2 ¼ 30L, as already considered before, in Fig. 6. U(M/(LF)) is

compared to the lap frequency obtained in the absence of

thermal noise, which we discuss at first as a reference case. In this

situation–under appropriate initial conditions–the swimmer

orientation adopts the value of the stable sliding mode w2;s for

torque-to-force ratios smaller than the critical value x2(R2). The

latter critical value is given by eqn (16) for hard walls and is

slightly smaller for soft walls, as seen in Fig. 1. According to eqn

(17) the velocity along the channel is an increasing function of the

angle w2;s in the case of hard walls; this behaviour is preserved in

the case of soft walls and reflected in the decreasing absolute

value of U as a function of torque-to-force ratio in Fig. 6. Apart

from the lap frequency we also measured the mean angular

velocity of the swimmer orientation,
Fig. 6 The lap frequency U as a function of M/(LF) in dish- and ring-like

confinements for the same parameters as in Fig. 4. The lap frequencies of

the stochastic swimmer in dish-like (dotted curve, black) and ring-like

(dashed curve, red) confinement are compared to the deterministic situ-

ation (solid curve, black) of a swimmer in dish-like confinement, which is

given by eqn (17).

Fig. 7 The spinning frequency u as a function of M/(LF) for the

same parameters as in Fig. 6. Also plotted is the intrinsic spinning

frequency u0.

4516 | Soft Matter, 2009, 5, 4510–4519
u ¼ lim
t/N

_fðtÞ ; (27)

which is referred to as the mean spinning frequency and plotted

as a function of the torque-to-force ratio in Fig. 7. In the case of

zero noise, the spinning frequency is identical to the lap

frequency for torque-to-force ratios smaller than the critical

value, M/(LF) < x2(R2). Beyond this value, u jumps discontin-

uously to a high, positive value of the intrinsic spinning

frequency u0 given by eqn (10).

The situation at a finite temperature is significantly more

complex: The lap frequency displays a non-monotonous behav-

iour as a function of M/(LF). This behaviour is attributed to

a subtle interplay of the stability of the sliding mode, which yields

a clockwise circular motion, and the favoured, intrinsic counter-

clockwise rotation.

For zero torque the net angular velocity is zero for symmetry

reasons. The presence of the stable sliding modes in the positive and

the negative angular directions is here reflected by the large

amplitude of the angular diffusion constant DU, which is also dis-

played in Fig. 6. With increasing torque-to-force ratio, the sliding

mode in the clockwise direction (the upper (stable) branch in Fig. 2,

displaying cos w2;s) becomes more stable than the sliding mode in

the counter-clockwise direction. Moreover, the latter sliding mode

becomes extinct once the corresponding branch for cosw1;s in Fig. 2

becomes negative. The stability of the mode characterized by w2;s is

therefore responsible for the negative lap frequency U < 0.

Beyond a parameter-dependent torque-to-force ratio, the

absolute value |U| decreases and a different effect comes into

play: Whenever the particle detaches from the wall, it may either

quickly find the stable sliding mode again, or it might move away

from the wall towards the central region of the dish by diffusion.

The latter behaviour is increasingly frequent with increasing ratio

M/(LF). Eventually, the swimmer ‘‘freely’’ circles the center of

the confining dish, which then gives a positive contribution to

the lap frequency U. With increasing torque-to-force ratio the

number of rounds in the counter-clockwise direction around the

center of the dish increases, because the rate of detachment from

the stable sliding mode increases. At an intermediate, parameter-

dependent ratio M/(LF) the lap frequency changes sign and the

counter-clockwise rotational motion become dominant.

However, once the area of the mean surrounded circle is signif-

icantly smaller than the area of the dish, circling the center of the

dish is less likely. Instead, the swimmer performs free circular

motion off-center, which does not contribute to the lap

frequency. For large M/(LF), the distorting effect of the

confining wall becomes negligible, which is reflected in an

undisturbed spinning frequency u x u0 (see Fig. 7). Therefore, U

can in this regime be estimated by

Uzu0ðR0=R2Þ2¼
2bDkFL

3R2
2

�
M

FL


�1

; (28)

where we assumed the fraction of time, during which the

swimmer circles the center, to be given by the fraction of the area

encircled by the swimmer over the area of the dish. In particular,

U slowly decays as 1/M. Quantitatively, the estimated velocity is

roughly a factor of �1.2 higher than the velocities obtained from

the simulations for M/(LF) > 0.15 and the internal force and

confining radius considered.
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While U is a decreasing function of M/(LF), the diffusion

constant DU is almost constant throughout the regime of 0.15 (

M/(LF) ( 0.25. This behaviour is attribute to the increasing

rareness of situations, in which the swimmer is situated at the

middle of the dish, whereas the number of rounds performed by the

swimmer, once situated in the middle, is still significantly high. The

diffusion constant can be estimated from a simple two-state model

_q ¼ u0u , (29)

where u is a random variable, which takes the two values u¼ 0 or

u ¼ 1. Whenever the swimmer is in the center, we attribute to it

an angular velocity of _q ¼ u0 (implying u ¼ 1), whereas we

assume the angular velocity to be zero in all other cases. The

stationary probability distribution of the random variable u

within this simplified picture is therefore given by

P(u) ¼ (1 � U/u0)d(u) + (U/u0)d(1 � u) . (30)

This distribution apparently yields the mean velocity q_
�¼ U. In

order to obtain the angular diffusion constant, we make a simple

assumption about the temporal correlations of u: The typical time

the swimmer contributes to a finite lap frequency is given by the time

s0 z R0
2/(4DL), it needs to diffuse the distance R0. We therefore

make the intuitive ansatz for the conditional probability density

P(u|u0) ¼ e�|t�t0 |/s0d(u � u0) + (1 � e�|t�t0 |/s0)P(u) , (31)

where u ¼ u(t), u0 ¼ u(t0). Eqns (30) and (31) yield the correlation

function

uu
0 ¼ ðU=u0Þ

h�
1� U=u0

�
e�jt�t

0 j=s0 þ U=u0

i
: (32)

By integration of eqn (29) we thus obtain the desired diffusion

constant

DU ¼ u0
2s0(U/u0)(1 � U/u0)/2 . (33)

For the parameters under study, bFL ¼ 60, R2 ¼ 30L, this

simple theory predicts a very slow decrease of the diffusivity in

the considered torque-to-force regime in agreement with the

computer simulations (DU(M/(LF) ¼ 0.15) ¼ 0.63 and DU(M/

(LF) ¼ 0.25) ¼ 0.58). However, the theory overestimates the

diffusivity obtained from the simulations by a factor of �12 in

this regime, which is attributed to an overestimated residence

time s0: The simple diffusion time of an effective Brownian

particle with diffusivity DL from the center of a circle with radius

R0 to its boundary should be replaced by the averaged mean first-

passage time35 to reach the boundary, averaged over all equally

distributed initial positions r0 inside the circle, i.e., fulfilling |r0| <

R0. Although we did not calculate this time scale, we expect it to

be significantly smaller than the time scale s0 considered above,

because initial positions close to the boundary contribute

strongly with relatively short first passage times.
Fig. 8 The radial probability density r(x) of the swimmer in ring-like

confinement of radii R1 ¼ 15L, R2 ¼ 30L, with an internal force bFL ¼
60, and for different torques bM ¼ 2, 5, 10.
B. Ring-like confinement

By introducing an inner confining wall with a finite radius R1 > 0,

the swimmer obtains the possibility to slide efficiently along both
This journal is ª The Royal Society of Chemistry 2009
the outer and the inner wall: For a positive torque M > 0, which

we have assumed during the course of this paper, it slides

counter-clockwise along the inner wall, i.e., in positive angular

direction, and clockwise along the outer wall, i.e., in negative

angular direction, as before. (The steady-state sliding modes in

the noise-free case were discussed at length in Section III.)

We now discuss the qualitative differences of the swimmer at

finite temperature in a ring-like confinement as compared to the

situation in a dish-like confinement. As in the previous subsec-

tion, we therefore measured the radial probability density r(x)

[eqn (22)], the angular velocity U [eqn (25)], the angular diffusion

constant DU [eqn (26)], and the spinning frequency u ¼ _f [eqn

(27)]. The short-time dynamics is not examined, as it is strongly

dependent on the initial conditions. Here, we only consider

a swimmer of constant force bFL ¼ 60 and different torques

in a ring-like confinement of radii R1 ¼ 15L and R2 ¼ 30L. For

a discussion of different forces and radii see section V.

(i) The radial probability density r(x) for a confinement of R1¼
15L and R2¼ 30L is plotted in Fig. 8 for the same force bFL¼ 60

and the same three different torques bM¼ 2, 5, 10 as examined in

the dish-like confinement of the same outer radius R2 ¼ 30L in

Fig. 5. Clearly, the same qualitative features are observed at the

outer wall for the dish and the ring. At the inner wall, however, the

swimmer behaves qualitatively different as compared to the outer

wall: Apparently, the probability of finding the swimmer close the

inner wall, r(x T R1), is a non-monotonic function of the torque.

The probability is large for an intermediate torque, whereas it is

small for small and large torques. The non-monotonicity is

attributed to a lower stability of the respective sliding mode at the

inner wall, which is characterized by the sliding angle w1;s.

Different from the situation at the outer wall, the stable sliding

mode at the inner wall is lost for torque-to-force ratios smaller than

a critical value, which is M/(LF) < (2/3)L/R1 in the case of hard

walls, according to Table 1 and slightly different for soft walls, as

seen in Fig. 2. For the sample parameters of Fig. 8 the lowermost

torque bM¼ 2 corresponds to a ratio below the stability limit, i.e.,

the stable mode is lost. Correspondingly, the probability to find the

particle at the inner wall is substantially smaller than at the outer

wall. For the intermediate torque bM ¼ 5, the asymmetry of the

radial probabilities is substantially weaker, and at the torque bM¼
10, the situation is inverse, i.e., the particle is much more likely
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found at the inner than at the outer wall. In this situation, the

stability at the outer wall might be lost whereas the sliding mode at

the inner wall is still stable, equivalently to the situation in a ring of

hard walls according to eqn (16) and Fig. 2.

(ii) The presence of a stable sliding mode at the inner wall is

also reflected in a larger lap frequency U, which is plotted as

a function of the torque-to-force ratio in Fig. 6 for the same force

bFL¼ 60 and confinement radii R1¼ 15L, R2¼ 30L as examined

in Fig. 8. In the regime of small torque-to-force ratios, M/(LF) (

0.08, where the sliding mode at the outer wall dominates the

swimmer’s motion, the lap frequencies in dish- and ring-like

confinement agree almost perfectly. Once counter-clockwise

motion away from the outer wall becomes more frequent,

however, the scenarios are different in the dish and the ring:

Whereas a positive lap frequency in the dish comes about by free

circular motion of the swimmer around the central point of the

dish, the swimmer in the ring exploits the sliding mode w1;s to

efficiently slide in negative angular direction. This qualitative

difference is reflected in the different spinning frequencies u,

which are plotted as a function of M/(LF) in Fig. 7: The spinning

frequency of the swimmer in the dish is almost equal to u0 for

torque-to-force ratios M/(LF) T 0.12, whereas this is the case for

the swimmer in the ring only for M/(LF) T 0.16.

Although it takes the swimmer longer to undergo one round

around the center of the ring-like confinement than to undergo one

free circle in the dish, the resulting positive lap frequency at an

optimum torque-to-force ratio M/(LF) z 0.12 in the ring is by

a factor of �4 larger than the respective lap frequency in the dish.

For the parameter set under study this pronounced difference is due

to the fact, that the free swimmer in the dish might either not circle

the center of the dish, if 2R0 < R2, or it might diffuse towards the

outer wall where it can get trapped in the sliding mode of the outer

wall, whereas in the ring, the swimmer is eventually attached to the

inner wall for a long time undergoing persistent clockwise rotational

motion. As expected, the long-time diffusion constant DU displays

a peak at M/(LF) z 0.1, where U is almost zero. However, the peak

is not very high as compared to the diffusivity at zero torque.

Beyond its peak position, the lap frequency U decreases much

faster with increasing torque-to-force ratio as in the dish, simply

due to the fact that the particle cannot freely circle the center of the

confinement in the latter situation. The finite, positive lap

frequency for torque-to-force ratios larger than the stability limit

xi(Ri), i¼ 1, 2, is reminiscent of the asymmetry in the stability of the

two sliding modes, characterized by w1;s and w2;s, respectively. The

angular diffusivity DU also decreases much faster with increasing

torque-to-force ratio than in the dish. Clearly, the possibility to

freely circle the center of the confinement is lacking in the ring due

to the presence of the inner wall. Therefore, diffusion in the ring is

governed by free diffusion of the circle-swimming particle in

between the two walls and by the distortions of the free motion due

to occasional encounters with the walls. In fact, it turns out, that

these encounters lead to a decrease of the long-time diffusivity with

increasing torque-to-force ratio that is remarkably faster than the

decrease of the bulk diffusivity DL of eqn (21).
V. Conclusions

In conclusion, within a simple model of Brownian dynamics

combined with internal and external forces, we have studied the
4518 | Soft Matter, 2009, 5, 4510–4519
dynamics of a circle swimmer in confining Petri dish- and ring-

like circular geometries. Though the circle swimmer has its

prescribed intrinsic orientational motion, a cylindrical confine-

ment can invert the orientational sense of the motion. We have

shown this by an analytical discussion of the noise-free steady-

state motion and by extensive Brownian dynamics computer

simulations, which include noise. The dynamics do change

qualitatively for increasing torque-to-force ratio: the orienta-

tional sense is only inverted if this ratio is small enough.

In the following few paragraphs, we shortly comment on

different parameter values from those used up to now, i.e., where

bFL s 60, R1 s 0, 15L, and R2 s 30L, respectively: For smaller

internal forces, at a constant torque-to-force ratio, the stability of

the sliding modes decreases. Furthermore, the trajectories of the

swimmer in the bulk or in the central region of the dish lose their

pronounced circular structure. Both effects are expected to lead to

a decrease of the absolute value of the angular velocity |U|.

Whether the negative peak of U at small values of M/(LF), seen in

Fig. 6, persists, remains an open question and might also depend

on the confinement radii R1 and R2. In the case of the dish, the non-

monotonicity of U was attributed to a subtle competition of the

stability of the sliding mode and the probability to surround the

center of the dish in the detached situation of free circular motion.

The former stability is ruled by an energy scale to surmount an

action barrier of detaching from the wall (see the discussion for

a planar wall in ref. 28), whereas the latter probability is ruled by

the ratio of the length scales R0 and R2. Therefore, a loss of the

rotational inversion cannot be ruled out for smaller internal forces.

In rings of two confining radii R1 and R2 the situation is

significantly more complex than in dishes due to the presence of

the new length scale R1. We expect, that the inversion from

clockwise to counter-clockwise motion at small torque-to-force

ratios is robust to large changes in bFL, R1, and R2, respectively,

as long as the asymmetry in the stabilities of the two stable sliding

modes at both walls is significant. However, the qualitative and

quantitative changes of the lap frequency with changing

parameters have to be studied in detail and are deferred to

a future work.

For larger forces we expect the non-monotonicity of U to

become more pronounced: Whereas the stability of the sliding

mode increases exponentially with the action barrier, which in

turn is a linear function of the force for large forces, the proba-

bility to circle the center of a dish is only weakly sensitive to the

force, once the trajectories of the freely moving swimmer are

distinctively circular.

In the case of a dish, we therefore expect the negative peak of U

at small torque-to-force ratios to broaden and asymptotically

reach the deterministic velocity curve U x U2;s of eqn (17), which

is a linear function of F (the curve is plotted for bFL¼ 60 in Fig. 6

as well). The positive part of U is expected to continue to obey eqn

(28), which predicts a linear increase with u0. Summarizing, the

force-normalized velocity profile U/F as a function of the torque-

to-force ratio is expected to asymptotically approach a universal,

F-independent function which is given by

U

F
x

U2;s

F
þQ

�
M=ðLFÞ � x2ðR2Þ

��R0

R2


2
u0

F
; (34)

where Q[x] is the Heaviside step function.
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Whereas the peak of the positive lap frequency is expected to

vanish in the case of a dish, the situation is qualitatively different in

the case of a ring. Here, a third regime is expected to persist in

between the regimes of the stable sliding mode at the outer wall and

free circular motion inbetween the walls: For intermediate torque-

to-force ratios, sliding along the inner wall is more stable than

along the outer wall. Therefore, the positive peak of U is expected

to increase up to the value of U x U1;s. Beyond M/(LF) ¼ x1(R1),

the swimmer rotates freely and the lap frequency decays rapidly

towards zero. Not only the lap frequency but also the diffusivity

DU is expected to sharpen with an increasing internal force. In

particular, we expect to observe a strong enhancement of the

diffusivity in a broad range of torque-to-force ratios, according to

a recent study of a simple one-dimensional model system of an

overdamped particle with a tilted, bistable potential for the particle

velocity, discussed by Lindner and Nicola.36 According to ref. 36,

the diffusivity could be used to quantify the, in this work only

qualitatively discussed, asymmetry in the stability of the two

sliding modes at the inner and the outer wall, respectively.

Finally, more generally, we remark that our model is a good

realization for various ‘‘active’’ soft matter systems. The first are

‘‘living’’ objects like bacteria4–9,23,24 and spermatozoa10–12 when

exposed to an external substrate together with a further lateral

confinement.5,25 Second, inert colloidal particle and nanorods

can be made active by a catalytic reaction at their surface.14–16

These particles can be confined in microchannels of arbitrary

geometry.26 Even beyond soft matter, there are further possible

realizations in vibrated polar granular rods19 or for pedestrian

dynamics in circular confinement.21

For comparison with experiments, we give here an estimate of

the relevant dimensionless force and torque, which correspond to

the motion of flagella-driven Escherichia coli bacteria close to

a planar surface, as studied by Lauga et al.6 in the case of no

further confining boundaries. They found the bacteria (more

precisely, a straight-swimming mutant) to swim at velocities of the

order of v z 20 mm s�1 along circular trajectories of typical radii of

R0 z 20 mm. The rod-like bacteria under study can be regarded as

spherocylinders of typical dimensions z 2.5� 1.5 mm. Neglecting

the boundary effects on the dynamic viscosity of water h (see the

discussion of hydrodynamic effects, above), the velocity v and

radius R0 correspond to a typical effective force and torque of bFL

z 200 and bM z 3.9 in our model, respectively. These latter

values are of the same order of magnitude as the values used in our

computer simulation study (bFL¼ 60, bM¼ 5). In particular, the

corresponding force is even larger than the one used in our study,

which, according to the above reasoning, should lead to a more

stable sliding mode and therefore to a larger lap frequency, if the

bacteria were embedded in a confining dish or ring. Dishes or rings

of radii in the range of 100 mm could be realized by lithography as

demonstrated in the same work of Lauga et al.6

In the spirit of increasing complexity, it would be interesting to

study more complicated geometries of confinement as, e.g.,

ratchets25 or various shapes of ‘‘fishing net’’ to catch self-

propelled particles. Finally we would like to explore the collective

behaviour of many circle swimmers both in bulk and confine-

ment where new clustering and aggregation effects are expec-

ted.37–40 A complete understanding of the individual and

collective nonequilibrium dynamics of active particles is highly

desirable to construct mixing and sorting devices.
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