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Tuning colloidal interactions in subcritical solvents by solvophobicity:

Explicit versus implicit modeling
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The distance-resolved effective interaction between two colloidal particles in a subcritical solvent is
explored both by an explicit and implicit modeling. An implicit solvent approach based on a simple
thermodynamic interface model is tested against grand-canonical Monte Carlo computer simulations
using explicit Lennard-Jones solvent molecules. Close to liquid-gas coexistence, a joint gas bubble
surrounding the colloidal particle pair yields an effective attraction between the colloidal particles,
the strength of which can be vastly tuned by the solvophobicity of the colloids. The implicit model
is in good agreement with our explicit computer simulations, thus enabling an efficient modeling
and evaluation of colloidal interactions and self-assembly in subcritical solvent environments.

© 2009 American Institute of Physics. [DOI: 10.1063/1.3193557]

I. INTRODUCTION

In solution, a colloidal or nanosized particle with a sol-
vophobic surface has a strong tendency to form voids or
cavities around it in order to avoid the high particle-solvent
interfacial free energy. In particular, in a subcritical solvent
close to its bulk liquid-gas transition, a gas bubble can be
formed around the solvophobic solute the size of which is
governed by the degree of solvophobicity and the distance to
the gas-liquid transition.'™ The collective behavior of many
solute particles will be strongly affected by the presence of
covering gas bubbles which can trigger capillary cavitation
between the particles. In fact, the resulting strong effective
attractions will push neighboring particle together resulting
in a single joint gas bubble which contains more than a
single particle.l"‘_6 Recently, this effect has been exploited to
create new morphological structures composed of colloidal
superparticles.7 There are also ideas to use solvophobic
nanoparticle to control drying-mediated hierarchical
self—assembly.8 Last but not least, proteins with extended hy-
drophobic surfaces can be surrounded by a cavity depleted
from water which can also lead to capillary evaporation and
a strong hydrophobic collapse.g"0 The formation of a (water)
vapor bubble in proteins may be the rate-limiting step in the
folding of certain types of proteins.11 Therefore a general
molecular understanding of the effective interactions be-
tween solvophobic particles is desirable. In detail, clear pre-
dictions about how to tune the effective interactions by
changing solvophobicity and the thermodynamic parameters
of the solvent will be helpful to control and steer material
properties.
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There have been a number of computer simulation stud-
ies for solvophobic solutes in which the solvent is treated
explicitly, for example by hard spheres,12 Lennard-Jones (LJ)
particles,é‘”_16 or other models more appropriate for organic
solvents'” and water.'®" Density functional theoryzo’21 and
liquid integral equation studies”?* which include the sol-
vent interparticle interactions have also been employed for
the effective interactions between two  bubbled
nanoparticles.24 On the other hand, more coarse-grained ther-
modynamic approaches which work in terms of surface (or
line) tensions have been proposed.l’zs_28 In these approaches,
the discrete nature of the solvent is neglected, i.e., it is an
implicit modeling where the solvent is treated as a con-
tinuum.

The aim of this paper is to compare the explicit and
implicit modeling for the effective interactions between two
solvophobic colloidal particles in a subcritical solvent in de-
pendence of their degree of solvophobicity. In order to do so
we employ a minimalistic two-dimensional (2D) model of a
discrete LJ solvent which was studied earlier in detail'” and
captures the essential physics. Furthermore, an implicit
model proposed pre:viously27’28 is getting topologically easier
in two dimensions. In fact with an appropriate choice of the
phenomenological input parameters needed for the implicit
solvent models, we find good agreement between the implicit
and explicit modeling for various degrees of solvophobicity.
Both the distance-resolved effective attraction and the loca-
tion of the bubble interface are described well in the implicit
solvent approach. The dependence of the attraction strength
on the solvophobicity also coincides in the two approaches.
For future studies and applications, our findings facilitate a
quick estimate about the trends and rough parameters for
various systems within the implicit approach.

The paper is organized as follows: in Sec. II, the system
is described and both methods (explicit and implicit)
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are briefly outlined. Results are presented and discussed
in Sec. Il revealing good agreement between the im-
plicit and explicit approach. Finally we conclude in Sec. IV.

Il. SYSTEM AND METHODS
A. Two colloids in a subcritical liquid

We consider a model system in 2D space in which two
colloids (solutes) are immersed in a subcritical solvent mod-
eled by isotropic LJ interactions. The interaction between
two solvent particles at separation r is thus given by the LJ
pair potential, Vi ,(r)=4€[(a/r)'?~(a/r)®], where o defines
the length scale in the system. The interaction parameter € is
taken at a subcritical temperature (kzT/€=0.45), where kT
is the thermal energy. The chemical potential is held fix at
!/ kgT==3.7 which is found to be =0.1kzT below that of
the gas-liquid coexistence for the chosen parameters,15 and
the stable bulk phase of the solvent particles being liquid.
The bulk liquid and gas number densities at this state point
have been calculated to be p,=0.720"> and 0.04 o2,
respectively. 15

We consider the infinite dilution limit of the colloids and
therefore focus on the pair interaction between two colloids
which are placed at a fixed mutual distance s. The interaction
between a colloid at I?,:(X,-,Y,») with i=1,2 and a solvent
particle at 7=(x,y) is given by a modified LJ form

o 12 o 6
Vcs(ri):46cs|:<ri_R0> _)\<l"i—R0> :|’ (1)

where r,-=|13,»—r”|, Ry=2.50 is the hard-core radius of the col-
loids, and the dimensionless “solvophobicity parameter” A
tunes the dispersion attraction between the colloids and the
solvent particles. Note that A=0 corresponds to a purely re-
pulsive solvophobic interaction between the colloids and the
solvent for which isolated colloids are observed to be cov-
ered by a thin layer of gas.15 Similarly, A=1 corresponds to
the pure LJ potential, namely, a dominantly solvophilic in-
teraction. Thus one can interpolate from the solvophobic to
solvophilic interactions by gradually increasing A. We further
fix €.,/€=5.0. As we are just interested in the solvent-
mediated interaction the mutual colloidal interaction is sim-
ply modeled as hard core like with a hard-core diameter of
2R,.

B. Grand canonical Monte Carlo simulations

The particles are taken in a cubic simulation box of size
500 with periodic boundary conditions in all the directions.
The solvent particle positions are updated using the grand-
canonical Monte Carlo (GCMC) method.” Typically for a
given \, first 10° runs have been discarded for the equilibra-
tion, after which the production run has been 5% 10° steps
long. The data have been collected every five steps during
the production run. The long averaging has been essential to
capture the interfacial distribution of the solvent particles
between two solute particles due to typically low density of
the solvent particles. More details of the simulations are
given elsewhere."
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After equilibration we calculate the density distribution
p(7) of the solvent around the colloids and the effective
solvent-mediated force between the two colloids at positions
Ry and R, defined by F(s)=(-[V,ZVe(|7~Ri)] R,
where ﬁlzzﬁl—ﬁz, s:|§]2, and the gradient operator is
over the coordinate of the first solute. In order to estimate
the interface location between the solvent and the solutes
from the simulations we take the density profiles p(F) and
define the interface line to be at the equidensity loci, where
p(Fin) =po/2.0. Given the loci {F,}, the interface shape in
our 2D system can thus be conveniently expressed by a one-
dimensional (ID) function y(x), where x is the coordinate
along the symmetry axis along the connection line y=0 be-
tween the colloid centers.

C. Implicit solvent model

We compare our simulation results to an implicit solvent
model or interface model in which the description of the
solvent degrees of freedom is reduced to a continuous
(solute-solvent) interface and three macroscopic parameters,
namely, the pressure P, the line tension 7, and the solvent
density p,. In our 2D system under consideration the inter-
face is a 1D curve in space. The interface model is based on
a variational formalism in which the solvation free energy is
defined as a functional of the interface geometry and then
minimized to give the shape equation for evaluation of the
interface. For this, let us define a subregion A empty of sol-
vent in total 2D space () for which we assign an area exclu-
sion function a(F)=0 for Fe. A and a(Ff)=1 else, and
7=(x,y) is a 2D vector. The absolute area A and interface
length L of A can then be expressed as functionals of a(7)
via Alal=[od*[1-a(¥)] and Lla]l=[qd*r|Va(7)|=fndL.
Thus, A and L define the solvent-accessible area and surface
line, respectively, and the solvent density is p(F)=pya(7),
where p is the bulk value. The solvation free energy G is
proposed to be a functional of the geometry a(7) of the form

Gla]l=PA[a]+y f dL + py f d*ra(AUP), (2)
9] Q

where 7y is the liquid-vapor line tension, and U(F)
=Ei2=1Vm(F—§,») adds up the LJ interactions between the sol-
utes at 131 and 132 and the solvent at position 7 in a mean-field
way. The last term on the right hand side of Eq. (2) thus
describes the solvophobic or solvophilic interaction energy
of the solutes with the solvent depending on the interface
location and is tuned by the parameter \ introduced before in
Eq. (1). Applying the calculus of differential geometry and
functional derivatives, the minimization 6G[a]/ da(¥)=0
leads to the ordinary differential equation (ODE)

0 =P - y«(7) — poU(F) =: ODE(7), (3)

which is a 2D Laplace equation of classical capillarity30 but
extended by the term coupled to the solvent density to cap-
ture the influence of local solute-solvent dispersion interac-
tions. The quantity «(7) in the second order ODE (3) is the
local curvature. The ODE has no analytical solution in our
case and has to be solved numerically. Once the interface
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line is determined, its shape can be plugged back into the
energy functional (2) to obtain the solvation free energy of
the two solutes. Doing so for different colloidal distances s
we obtain, within an arbitrary energy constant Gy, the effec-
tive interaction energy v.(5)=G([a];s) between the two col-
loids. The force is then Fg(s)=—Vuv.g(s). A similar interface
model based on the same variational formalism was intro-
duced in detail previously for water in three-dimensional
space including curvature corrections and electrostatic
interactions”* and has been applied to the solvation of non-
polar molecular solutes.”!

1. Shape function and numerical evaluation

For the numerical solution of the interface model the
curvature can be conveniently parametrized by functions y(/)
and x(I) which describe the 1D interface curve in space with
the arc length [ as the parameter. The curvature « is then
given by

x/yll _y!x//
(xrz +y72)3/2 ’

K(x,y) = 4)
where the primes indicate the partial derivative with respect
to /. Additionally, the unit normal vector to the interface
reads

= 1 x'
n(x’y): V’!x,2+y,2 _y! * (5)
The ODE (3) is then solved by a forward relaxation scheme
using the “time” parameter f,

(x(t+At)>_ (x(t)) A v JODE .
siean) =\ )" tii(x,y)ODE(x,y), (6)

where the steady-state solution d(x,y)/dr=0 is the solution
of ODE(x,y)=0 we are looking for. Both colloids are held at
a fixed distance s in the numerics as in the simulation. In the
numerical calculations we use a grid of 500 bins and an
integration time step of Ar=0.001. The first and second de-
rivatives are approximated using a symmetric two- and
three-step finite difference equation, respectively. Conver-
gence is usually reached after 10° time steps. The result can
be expressed by a shape function y(x) which describes the
solute-solvent interface line. The interface shape is observed
to be dependent of the initial form of the shape line y(x) at
t=0, which is either chosen to loosely envelope both colloids
or it envelopes either one of them individually. The former
initial boundary line typically leads to the “dry branch” of
the solution (where a gas bubble is found between the sol-
utes) while the second initial boundary line leads to the “wet
branch” (i.e., no bubble), as observed in previous studies on
devvetting.3 ? Both solutions are topologically different as
they correspond to either one single area void of solvent or
two separated areas void of solvent, respectively.

lll. RESULTS AND DISCUSSION
A. Repulsive-only solute-solvent interactions (A=0)

In the first step we compare the interface model to the
GCMC simulations for the repulsive-only solute-solvent in-
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FIG. 1. Effective interaction v (s) between the two colloids vs their mutual
distance s for the repulsive-only solute-solvent interaction case (A\=0). The
implicit solvation results (circles) are compared to the GCMC simulations
(solid line) for line tension parameters Byo=y/(kzT/c)=0.2, 0.6, and 1.0.

teraction case (A=0) which will allow us to extract the line
tension parameter 7 for the system under consideration. The
second input parameter, the density p, is determined directly
by the computer simulations'” to be po=0.720"2 and remains
fixed throughout the following. For the third input parameter,
the pressure P, an upper estimate is possible by using the
fact that our system is subcritical and thermodynamically
close to coexistence. In this case the pressure can be ex-
panded and estimated by P=AuAp, where Ap=p— .y is
the deviation from the chemical potential to the critical value
and Ap=p,—p, is the gas-liquid density difference. From the
analysis of the GCMC system15 we obtain Au=0.1kzT
and Ap=0.68072, and thus get an upper estimate of about
P=0.1kzT0.68072=0.07kzTo~> which we will use in the
following.

In order to estimate the line tension parameter y we
solve ODE (3) for the repulsive-only solute-solvent interac-
tion case (A=0) and compare the results to the available
GCMC simulation data for the mutual colloidal interaction
vere(s)."” To estimate the arbitrary energy constant G, we
define the reference state (where v.=0) to be the wet state
of the colloids at infinite distance, i.e., G is given by the
value of the wet energy branch at s — o and is found to be
Gy=34.5kgT. For the comparison to the GCMC results we
subtract G, from the dry energy branch. The GCMC data are
replotted in Fig. 1 together with the numerical solution for
the dry branch of ODE (3) for A=0 and three different values
of y=0.2, 0.6 and 1.0kzT/o (symbols). First of all we ob-
serve that the interface model result is in qualitative agree-
ment with the GCMC data: Both results feature a strong,
monotonic attraction which almost linearly decays from
the contact distance s=50 up to s~ 150. The slope of the
interaction energy from the interface model is dominated by
the value of the line tension . A best fit to the GCMC
interaction slopes in Fig. 1 yields a line tension value of
v=0.6kzT/ o, which we use in Sec. Il B to predict the ac-
tion of increasing solvophobicity (A >0) on the colloidal in-
teraction with our interface model.

Downloaded 09 Nov 2009 to 134.99.64.131. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



044513-4 Dzubiella, Chakrabarti, and Léwen
4 —
3 o
2 —— implicit solvent ]
1 }\':OO z:'-_ _:':: _ _ chggscibllrétiegzlc'feace H
4 _{ T T T s S S

= -

=h -
I -
4t ]
3 ]
2 ]
1 .,_v_'
4 N
3 o
2 ]
L .:__'
ot ]

X/

FIG. 2. Solute-solvent interface shape function y(x) for the two colloids
(solutes) placed at a fixed distance s=9¢ for different values of the solute-
solvent attraction parameter A=0.0, 0.1, 0.2, and 0.3. The interface model
results (solid lines) are in good agreement with the GCMC simulation re-
sults (dashed lines) within their statistical error. The dotted lines show the
contour of the spheres at a radius R=3.9¢ which is the solvent-accessible
sphere radius at a distance s=2.

By inspecting the interface shape y(x) in the attrac-
tive region we find that the strong attraction is accompan-
ied by the formation of a vapor bubble in between the
(solvophobic) colloids. An example is plotted in Fig. 2 for
s=9¢ (and A=0.0) where the simulation and interface model
are directly compared and show excellent conformity. This
supports the validity of the simple interface model and ex-
plains that the strong attraction in the system is dominated by
the urge of the system to minimize unfavorable interface
length; this pushes the colloids together until they touch.
At the critical distance s*= 140, where the attraction van-
ishes, cf. Fig. 1, the bubble is observed to rupture in the
GCMC simulation leading to completely wet colloids. In
quantitative agreement, the interface model also shows a
vanishing attraction at s*. Note, however, that the dry branch
of ODE (3) converges to energies larger than 0 for distances
greater than the critical distance s* = 140 leading to positive
energy values for s>s* in Fig. 1, as observed previously in
dewetting geometries.32 This can be attributed to the meta-
stability of the dry energy branch at large distances s > s* due
to a (nucleation) energy barrier between vapor and wet states
as known for subcritical LJ solvents and water in solvopho-
bic confinement.”*° The numerical evolution of ODE (3)
we perform is apparently not able to overcome this energy
barrier.

B. Influence of solvophobicity

To study the influence of enhanced solvophilicity (di-
minished solvophobicity) we fix the distance between the
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FIG. 3. Effective interaction force Fx(s) between the two colloids (solutes)
placed at a distance s=90 vs the solvophobicity parameter N. The strong
attraction for A=0 decreases for increasing N and vanishes at a critical value
of N=0.4. The prediction of the interface model (circles) is in good agree-
ment with the GCMC simulation results (squares).

colloids at s=9¢ for the sake of clarity (without loss of gen-
erality) and increase the attraction parameter \ in interaction
(1). Physically that means that the colloids attract the solvent
more and more, and the observed vapor bubble between the
colloids is expected to shrink. Inspecting Fig. 2, where we
plot the interface shape y(x) for A=0.1, 0.2, and 0.3, this is
exactly what is happening. Clearly visible, the interface part
in the symmetry center [y(x=80c)] decreases significantly
from =3.20 for A=0 to =0.8¢ for A=0.3. The prediction of
the interface model and the GCMC simulations are still in
good agreement within the simulation statistics. Note also
that the interface further away from the bubble [y(x=<3) or
y(x=13)] wraps the colloids tighter with increasing N\ in
both explicit and implicit approaches. Increasing the solute-
solvent attraction further leads to a complete wetting of the
colloids for A =0.4 in both GCMC and interface model (not
shown). Interestingly, as opposed to the =0 case for larger
distances s> s*, the numerical evaluation captures the tran-
sition from the dry to wet state, perhaps due to a vanishing
energy barrier along the physical (or numerical) pathway.
The change in solute-solvent interaction and concomi-
tant interface shape has a strong influence on the colloid-
colloid interaction. This is demonstrated for the effective in-
teraction force F.q(s) in Fig. 3 for a fixed solute distance
s=90 and increasing N values. The strong attraction of
Fe(s=90) =—1.4kzT/ o observed for A=0 decreases for in-
creasing \ and vanishes at a critical value of A =0.4, which
corresponds well to the complete wetting of the solutes by
solvent [y(x=_80)=0]. The prediction of the interface model
is in quantitative agreement with the GCMC simulation re-
sults within the statistical error. Physically, the colloids pre-
fer to be wet (as they are attracted to the solvent) for
A=0.4 and want to stay in solution. Their mutual attraction
vanishes as correctly explained by the interface model. In the
GCMC simulation even repulsion between the colloids is
visible for A=0.6. This can be attributed to crowding of
solvent particles between the two colloids pushing them
apart.6’15 This correlation effect due to the coarse structure of
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the solvent cannot be captured by the interface model which
is based on simple interface thermodynamics and mean-field
energetics.

IV. CONCLUSION

In conclusion, an implicit solvent approach has been
tested against explicit solvent computer simulations for the
interaction between two solvophobic colloids in a subcritical
solvent and good agreement was found. The strong effective
attraction found between the colloids, but which is very sen-
sitive to their degree of solvophobicity, can be attributed to
bubble formation around the solvophobic particles. This ex-
emplifies the interesting and important new physics induced
by the nearby location in phase space of a drying transition.
The effective solute-solvent interface locations from the
GCMC calculation can be accurately predicted by the im-
plicit model and an intimate connection between interface
shape, local solute-solvent dispersion interactions, and the
mutual colloid interaction is found. Our findings enables one
to employ the computationally much more efficient implicit
solvent model for situations where a direct explicit computer
simulation is not straightforward, e.g., for polarizable mo-
lecular solvents, highly polydisperse, or size-asymmetric
systems, or for solutes with many degrees of freedom or
complex geometries such as proteins,36 where strong collec-
tive effects become important.

Future studies should address the three-dimensional
case. Also the inclusion of a curvature correction to the sur-
face tension may be important for sufficiently high interface
curvature but may be nonanalytic in curvature below a cer-
tain length scale due to the drying effect.”’ Another issue
concerns the inclusion of electrostatic interactions between
solute and solvent which may be possible on a mean-field
(Poisson—Boltzmann) level.?® Moreover, the “inverse” ther-
modynamic situation of a bridging wetting layer around a
solvophilic solute' can similarly be treated by explicit and
implicit modeling and we expect a similar performance of
the implicit model here. It would be additionally challenging
to generalize the implicit model to nonequilibrium situations
where the solute particles are sheared and dragged away by
external fields.'®*7
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