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Abstract
The crystalline ground state of macroions confined between two neutral parallel plates in the
presence of their homogeneously spread counterions is calculated by lattice sum minimization
of candidate phases involving up to six layers. For increasing macroion density, a cascade of
solid–solid transitions is found involving various multilayered crystals. The cascade includes
triangular monolayer and buckled bilayer as well as rhombic, squared and triangular phase
structures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Strong correlations in Coulomb systems lead to a variety
of new effects which are absent for neutral particles, see,
e.g., [1, 2] for a review. Among those are nonlinear screening
effects [3–6], charge inversion [7], Coulomb criticality [8, 9],
like-charge attraction for multivalent ions [10–13] as well as
exotic binary crystalline structures unknown for uncharged
systems [14, 15].

By using charged colloidal suspensions [16] or dust
particles in plasmas [17], it is possible to realize strongly
asymmetric mixtures of oppositely charged particles. These
systems consist of mesoscopic highly charged ‘macroions’
and microscopic counterions with a low valence, resulting
in strong charge and size asymmetries. Since the charges
of the macroions are high, strong Coulomb correlations are
typical for macroions. Most of the physics can still be
captured by viewing these systems as strongly asymmetric
and strongly coupled electrolytes. In recent years, it was
possible to confine macroions in sheets between two parallel
plates [18, 19, 16, 20, 21] and to observe the resulting lateral
structure of the particles. The gross features can be understood
in terms of an (effective) one-component system with a
Yukawa pair interaction [22–27]. In fact, the mono and bilayer
ground-state structures which were obtained from a Yukawa
model [28] describe the experimentally found structures [29].
For multilayers beyond the bilayer regime, a rich variety of
stable phases are found in experiments [30–32] as well as in

simulations [33], which are all theoretically confirmed for a
Yukawa system between two neutral walls [34]. This motivates
a study about the influence of the wall–particle interaction on
the phase behavior of multilayered crystalline sheets in slit-like
confinement [35].

In this paper, we consider a model for macroions confined
between two parallel neutral walls1. There is a direct
Coulomb interaction between the point-like particles. The
total system is charge-neutral and the counterions are kept
at high temperature and are homogeneously spread between
the plates, resulting in an attraction acting on the macroions
towards the middle of the plates. The system is realized for
highly charged colloidal particles or dust particles in plasmas.
Some early theoretical and simulational investigations on
clusters of artificial atoms [37–39] and dusty plasmas [40, 17]
as well as one-component plasmas [41–43], including all
the parabolic potentials acting as confinement, reveals the
existence of multilayers. We therefore include the regime
beyond bilayers in our discussion. Lattice sum minimizations
among a broad set of candidate structures are used to
determine the structure which minimizes the potential energy
per particle. For increasing macroion density, we find a cascade
of solid–solid transitions which includes triangular monolayer,
buckled bilayer and squared, rhombic and triangular bi, tri,
tetra, penta and hexalayers2. Comparing the results to those

1 Different from [36] we include here a neutralizing background of
counterions.
2 For colloid–polymer films, see [44].
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Figure 1. A schematic illustration of the model. The ions (e.g.
charged colloids) are represented by filled circles. The counterions
are smeared out between the two hard walls located at z = ±L/2.
This charge distribution generates a quadratic potential V (z) ∼ z2 in
between as shown. The separation between outermost layers (dashed
lines) is denoted by D.

involving a Yukawa interaction [34], we show that the topology
of the phase diagram depends crucially on the particle–wall
interaction. In fact, some complicated tetralayered structures
which were found stable for the confined Yukawa model
are unstable in the present model. The strong correlation
between phase behavior and wall–particle interactions suggests
tailoring new crystalline structures (e.g. with desired filtering
properties [45]) by a suitable surface treatment of the plates.

This paper is organized as follows. The model is
introduced in section 2. After discussing the structure of
different crystalline multilayers, results for the cascade of
solid–solid transitions are presented in section 3. Finally we
conclude in section 4.

2. The model

We consider N classical point-like particles of charge q
(macroions) interacting via the unscreened Coulomb pair
potential

V (r) = q2

εr
, (1)

where r denotes the interparticle distance and ε the (relative)
dielectric constant of the surrounding medium. The system
is confined between two parallel hard walls of area A and
separation L, see figure 1. The global charge neutrality of
the system is ensured by counterions. The latter are taken
into account by a homogeneous neutralizing background that
is smeared out over the whole slit. We mention that we neglect
the discrete nature of the counterions in this approach, as well
as any local ion–counterion coupling.

As a consequence of the Gauss law, the electric field Eb

(stemming from the neutralizing background) is linear in z
inside the slit and constant outside the slit. More specifically,

we have

Eb(z) =

⎧
⎪⎪⎨

⎪⎪⎩

−4π

ε

Nq

A

z

L
for −L/2 � z � +L/2,

−2π

ε

Nq

A

z

|z| else.
(2)

We thereby implicitly neglect image charge effects [46],
meaning that we assume there is no dielectric contrast at the
interfaces (at z = ±L/2). The resulting electrostatic potential
�b, verifying the matching condition at z = ±L/2, then is

�b(z) =

⎧
⎪⎨

⎪⎩

2πηq

εL3
z2 for −L/2 � z � +L/2,

2πηq

εL2
|z| − πηq

2εL
else,

(3)
where the reduced density

η ≡ N

A
L2 (4)

was introduced. Hence, the potential of interaction Vb(r)
between a macroion and the counterion background is merely
given by

Vb(z) = q�b(z). (5)

We are now in a position to write the total potential energy
per particle u as3

u = 1

2N

N∑

i=1

N∑

j=1

V (ri j )+ 1

N

N∑

i=1

Vb(zi ). (6)

In its appropriate rescaled form, u is (within the slit)

u
εL

q2
= 1

2N

N∑

i=1

N∑

j=1

1

r∗
i j

+ 1

N

N∑

i=1

2πηz∗
i

2
, (7)

with r∗
i j ≡ ri j/L and z∗

i = zi/L, showing that at the prescribed
confinement width L the energy of the system depends only
on η. Consequently the phase diagram at zero temperature is
given as a function of η.

At each given density η, we have performed lattice sum
minimizations for a broad set of candidates of crystalline
lattices. In order to handle the long ranged Coulomb potential,
we have used the Lekner summation method [47] for three-
dimensional systems with two-dimensional periodicity [48],
see also [49]. More explicitly, we consider in this work three-
dimensional crystals with two-dimensional periodicity in the
x and y directions whose primitive cell is a parallelepiped
containing n particles. This parallelepiped is spanned by the
three lattice vectors a = a(1, 0, 0), b = aγ (cos θ, sin θ, 0)
and c = D(0, 0, 1), where γ is the aspect ratio (γ = |b|/|a| =
b/a) and θ is the angle between a and b. Furthermore,
the n particles are distributed, not necessarily evenly, on m

3 To remedy the divergence occurring with the first term of (6), a
two-dimensional neutralizing background is introduced in the Lekner (or
equivalently Ewald) sum. This neutralizing background (implicitly present in
the Lekner and/or Ewald sum) has to be distinguished from the one that we use
to model the counterions, which is smeared out over the whole volume of the
slit.
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Figure 2. Stability phase diagram of crystalline mono and bilayers.
The five stable phases 1�, 3�, 2�, 2R and 2� correspond to
Wigner crystals, found in earlier investigations (see text for details).
Note that the monolayer–trilayer transition occurs at η ≈ 1.37.

layers in the z direction such that c = |c| corresponds to the
distance between outermost layers (see also figure 1). Hereby
we restrict ourselves to layered situations with an up–down
inversion symmetry in the averaged occupancy reflecting the
up–down symmetry of the confining slit. Under this sole
restriction, we consider possible candidates with n = 1, . . . , 8
and m = 1, . . . , 6 up to symmetric six-layer structures with a
basis of up to 8 particles. Furthermore, we also examine the
stability of several asymmetric buckling phases, as predicted
in [50]. For given η, the total potential energy per particle is
minimized with respect to the particle coordinates of the basis
and the cell geometry (γ and θ ). The resulting stability phase
diagrams are shown and discussed in the following sections.

3. Mono and bilayer phase behavior

3.1. Phase diagram

An increase of η within the mono and bilayer regime reveals
the existence of five stable crystalline mono and bilayers:
1� (triangular), 3� (staggered triangular), 2� (square), 2R
(rhombic) and 2� (staggered triangular). The integers indicate
the number of layers. For increasing η, the stability cascade
therefore is

1� → 3� → 2� → 2R → 2�. (8)

Most of these phases, corresponding to Wigner crystals
predicted in earlier theoretical investigations [36, 28], are also
found in experiments on charged colloidal suspensions [51, 52]
as well as in Monte Carlo simulations of confined hard
spheres [53]. The detailed phase diagram is reported in
figure 2.

We emphasize that the 3� phase (staggered in an ABC
manner, see also table 1) intervenes between 1� and 2� rather
than a buckled phase which is present in a situation where the
external potential has a vanishing curvature at the origin.

At small reduced densities η, particles tend to stay
in the potential minimum (cf figure 1) created by the
counterion background. This is precisely the origin of the
stability of monolayered Wigner crystals, which never occurs
in purely unscreened Coulomb systems4. The triangular
monolayer 1� is stable up to η = 1.37. At larger
densities the mutual repulsive interparticle interactions, the
first term in equation (7), dominates the competition between

4 Indeed, we found that a rectangular bilayer with size ratio γ = √
3,

proposed as a stable structure for very small η in [36], is always energetically
beaten by a buckled (2B) bilayered phase. Seen from the top, this structure
corresponds to the triangular lattice.

Figure 3. Order parameter h in the transition regime 1� to 2� via
3�. The monolayer 1� buckles at a critical density ηc ∼ 1.360 901
to a trilayer.

Figure 4. Order parameter h in the transition regime 2� to 2� via
2R. The discontinuity �h at the transition 2R → 2� is also shown
for clarity. The profile of sin θ (with its corresponding structures) is
also shown as an inset. Thereby, the outer particles belong to a given
layer whereas the inner particle belongs to the other one.

the interparticle (macroion–macroion) repulsion and particle–
background (macroion–counterion) attraction.

The structure with triangular base shape 3� appears as the
first stable multilayer (see figure 3) interpolating between 1�
and 2�. The associated order parameter, namely the separation

h ≡ D

2L
(9)

between the mid-plane and the outer macroion layer (see also
figure 1), is continuous at the transition 1� → 3� but
discontinuous across the 3� → 2� transition, see figure 3
and [53].

By further increase of η, one recovers the rhombic phase
2R, which is continuously achievable from the square phase
2� by changing θ , as indicated in the inset of figure 4. The two
geometrical order parameters h and sin θ , see figure 4, indicate

3
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Figure 5. Plot of equation (14) (dashed line) and numerical
calculations for finite h(η) (solid line) based on full lattice sum
minimization near the monolayer–trilayer 1� → 3� transition.

thereby a continuous transition for 2B → 2�. On the other
hand, at larger values of η, the transition 2R → 2� is of first
order as signaled by the jumps of the two geometrical order
parameters h and sin θ , see figure 4. The staggered triangular
phase 2� corresponds to the ultimate stable structure in the
high density regime of bilayers.

3.2. From monolayer to trilayer—an analytic approach

We now would like to address the transition 1� → 3�
analytically. To do so, we apply a Taylor expansion to u(h)
around h = D/2L = 0, see the appendix for details. The
resulting asymptotic expression for small interlayer distances
h reads

u(h)

q2/εL
= B0

√
η + B1η

3/2h2 + B2η
5/2h4 + 4

3
πηh2. (10)

with

B0 = −1.960 516 . . . , B1 = −3.590 668 . . . ,

B2 = 4.968 827 . . . .
(11)

The profile of the reduced half layer–layer distance h(η) is
obtained upon minimizing u with respect to h, i.e. ∂u/∂h = 0,
leading to

h2(η) = − B1
√
η + 4

3π

2B2η3/2
. (12)

It is now a simple matter to obtain the reduced density ηc at
which the monolayer–trilayer transition (1� → 3�) takes
place. The mathematical condition is thereby h(η = ηc) = 0
yielding

√
ηc = − 4π

3B1
⇒ ηc = 1.360 901 . . . , (13)

which is in quantitative agreement with the lattice sum
minimization results from the previous section, see figure 5.

By inserting the expression (13) of ηc in (12) one obtains

h2(η) = − B1

2B2

η − ηc

η2 + η3/2√ηc
. (14)

Noticing that the last denominator in equation (14) can be
approximated (valid in the relevant limit η → η+

c ) by 2η2,
we obtain a square-root singularity:

lim
η→η+

c

h(η) =
√

− B1

4B2η2
c

(η − ηc)
1/2 ∼ (η − ηc)

1/2. (15)

This theoretical prediction (14) is visualized in figure 5.

4. Multilayers

The presence of the neutralizing background allows the
formation of multilayers with m � 3 for large enough densities
η, which is forbidden in the absence of a background5. The
physical origin of the stability of multilayers in the present
system at large η is basically a balance between the mutual
unscreened macroion–macroion repulsion and the attractive
macroion–background interaction.

We shall now analyze in detail the high density regime up
to η ≈ 130. Beyond the bilayer regime, which is limited by
2�, the cascade found here upon increasing η is

· · · 3� → 3R → 3� → 4� → 4R → 4� → 5R

→ 5� → 6R · · · , (16)

where rhombic phases 3R, 4R, 5R and 6R have the stacking
sequence ABA, ABAB, ABABA and ABABAB while the
triangular phases 3�, 4� and 5� occur as ABC, ABCA
and ABCAB, respectively. More structural details are given
in table 1. The corresponding phase diagram is depicted in
figure 6.

The primitive cells of all stable phases found in this work
consist of one particle per layer. Each constitutive layer
possesses the same basis shape (�, � or R). These layers
are shifted to each other, see table 1. Note that (for m > 3)
the layers become equidistant only in the limit η → ∞. A
remarkable finding is the absence of prism phases (at m =
4) that are encountered in hard-sphere systems [30, 33] and
Yukawa systems at finite screening [34].

A further overview of the full phase diagram ranging from
triangular monolayer to rhombic hexalayer structures is shown
in figure 7 where the profile of h(η) is also sketched. Empty
circles indicate transitions of second order, while the full ones
denote transitions of first order. In detail, for three and four
layers, the transitions 3� → 3R and 4� → 4R occur
continuously by continuously changing the angle θ between
the two in-plane basis vectors, in analogy to 2� → 2R

5 There is a simple and clear electrostatic argument to explain the exclusive
stability of bilayers for charges confined between (charged or uncharged) hard
walls without neutralizing volume background. One has to note that two
equally charged walls do not generate any electric field within the slit, and
consequently do not alter the stable structure obtained at any other surface
charge (including neutral walls). Hence, if one considers the special case of
two walls corresponding to two-dimensional neutralizing backgrounds where
the ground state is the 2� bilayer, we deduce from this that the ground-state
structure is always a bilayer.

4
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Figure 6. Stability phase diagram of crystalline multilayers in the presence of a neutralizing background. 3�, 3R, 3�, 4�, 4R, 4�, 5R, 5�
and 6R are the stable phases in the depicted η regime.

Table 1. Structural details and schematic illustration of the stable crystalline multilayers. The layers are labeled as follows. The bottom one
located at z = −D/2 corresponds to the first layer (labeled as i = 1), and the labels of the successive layers are incremented accordingly. For
m > 3, the separation between the two first layers is characterized by δD with 1/(m − 1) � δ < 0.5. The relative separation vector between
two particles of a primitive cell belonging to two layers i and j is given by di j . For six layers, the separation between the first and the third
layers is specified by λD with 2/5 � λ < 0.5. In the top views of 3�, 4�, 5� and 3R, 4R, 5R, 6R each basis shape (triangular or rhombic)
is emphasized with white lines. The rhombic stripes of 3R, 4R, 5R and 6R are shown again in corresponding perspective views, for clarity.
Particles from different layers are identified by different colors.

Phase b/a d12 d13 d14 d15 d16 Top view Side/persp. view

3� (0, 1) a+b+c
2 c — — — y

z x y x

z

3R (cos θ, sin θ) a+b+c
2 c — — — y

xz

z

x

y

3� (1/2,
√

3/2) a+b
3 + c

2
2(a+b)

3 + c — — — y

xz

z

y x

4� (0, 1) a+b
2 + cδ c(1 − δ) a+b

2 + c — —
x

y

z

z

xy

4R (cos θ, sin θ) 1
2 (a + b)+ cδ c(1 − δ) 1

2 (a + b)+ c — —
x

y

z

z

x

y

4� (1/2,
√

3/2) a+b
3 + cδ 2(a+b)

3 + c(1 − δ) c — —
x

y

z

z

y x

{
D

δD

5R (cos θ, sin θ) a+b
2 + cδ c

2
a+b

2 + c(1 − δ) c —
x

y

z

z

x

y

5� (1/2,
√

3/2) a+b
3 + cδ 2(a+b)

3 + c
2 c(1 − δ) a+b

3 + c —
x

y

z

z

y x

D
{δD

6R (cos θ, sin θ) a+b
2 + cδ cλ a+b

2 + c(1 − λ) c(1 − δ) a+b
2 + c

x

y

z

z

x

y

D

δD

λD

(cf figure 4), while all other transitions are discontinuous.
Additionally, by the transitions 3R → 3�, 4R → 4� and
5R → 5�, and by the transitions changing the layer number
at η = 1.53 (3� → 2�), η = 10.14 (2� → 3�), η = 30.03
(3� → 4�), η = 66.24 (4� → 5R) and η = 123.11
(5� → 6R) the distance between the outermost layers exhibits
a certain jump �h (indicated by thick arrows in figure 7). In
fact, there is here no continuous transition present between two
unequal layered phases as in the case of hard spheres6.

Furthermore, for high densities, the concrete lattice
evolves to continuous such that effects due to the concreteness

6 In the case of bilayered hard spheres, one can achieve a continuous layer
increase from 2� to four layered hcp-like and hcp(100) phase [31, 32, 34].

are negligible. This means, electrostatically, that each layer of
an m-layered structure is completely compensated by a certain
part of the background as much as 1/m of the whole.

In this paper we have dealt with a system consisting of
particles (macroions) interacting via the unscreened Coulomb
potential and of particles of opposite charge (counterions),
which are homogeneously smeared out over a hard slit of width
L, compensating the charge of the macroions. To determine
the stability diagram of crystalline phases, we have performed
lattice sum calculations of a set of candidates. As possible
candidates we have taken into account phases with up to six
layers (m = 1, . . . , 6) whose primitive cell contains up to
eight particles (n = 1, . . . , 8). Additionally, we considered the

5
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Figure 7. Order parameter h of all stable crystalline phases. Empty
circles denote a continuous transition, whereas the full circles mark a
discontinuous one. The transitions between phases with a different
number of layers (m → m + 1) correspond to a first-order transition
for (m � 2). The underlined values of h = m−1

2m correspond to the
limit η → ∞ at constant m. The vertical dotted line indicates a scale
change in the η axis.

buckling phases from [50], too. We have analyzed a regime up
to η ≈ 130 in our investigations. For small densities, we could
trace the existence of the triangular monolayer 1�. Crossing
a certain critical density ηc the system buckles and evolves to
a trilayered structure. This transition density is also calculated
analytically by applying a Taylor expansion to the lattice sum
for small separations. Furthermore the evolving of the layer
separation from monolayer to trilayer could be characterized as
h(η) ∼ (η− ηc)

1/2, qualitatively. Tuning the density upwards,
we have noticed different stable bilayered structures, the same
as Wigner crystals. Beyond the bilayers, we could also find
stable three, four, five and six layers in square, rhombic and
triangular bases. The final stability sequence for m > 4 is
therefore: m R → m� → (m + 1)R with a remarkable
vanishing of square-based phases, where the sequence for
m = 3 and 4 is m� → m R → m� → (m + 1)�.
While the stability domain of evenly layered phases gets larger
with increasing m, the stability domain of square phases (�)
decreases for m > 2 and disappears finally for m > 5. On the
other hand, the stability domain of rhombic (R) and triangular
(�) phases increases both with growing m > 2.

Apart from that, the transitions involved here are all of
second order except m R → m� and m� → (m + 1)�. The
latter takes place discontinuously due to the order parameter θ
and particle positions (as in the case of n R → n�) as well as
with respect to h (cf figure 7).

5. Conclusions

To summarize: for slit-confined ions in a smeared background,
we have determined the ground-state crystalline lattice as a
function of the ion density up to the six-layer regime. A
complex cascade with buckled, squared and triangular bi,
tri, tetra, penta and hexalayers was found. The results are
verifiable in systems with classical ions in a background

including charged colloids, dusty plasmas and classical ions
in a trap. One important conclusion is that the details
of multilayered structures depend crucially on the particle–
background interaction. More future work is needed to include
wall charges, wall–particle attractions and effects of finite
temperature [54]. A detailed understanding of the stable
crystalline structure as originating from the wall properties is
desirable to construct filter devices [45] or optical bandgap
crystals [55].
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Appendix

The total interaction energy per unit cell of a crystalline
unscreened Coulomb system can be written as

UC = U s
C + U c

C, (A.1)

where the unit cell consists of n particles of charge q located
at ri . The self-energy U s

C in equation (A.1) stems from the
interaction between a particle of the unit cell and its own
periodically repeated images. The term U s

C in equation (A.1) is
due to the interaction between a particle of the unit cell and all
other remaining n − 1 particles of the cell including their own
images. The convergence involved in these sums is guaranteed
by the inclusion of a surface neutralizing background for each
layer. Following the route of Bródka and Grzybowski (see
equations (16a), (16b) and (17) of [48]), U s

C and U c
C are given

below. Therefore U s
C is

U s
C = 1

|ax |n
q2

ε

{

4

( ∞∑

m,k=1

cos

(

2πk
bx

ax
m

)

K0

(

2πk

∣
∣
∣
∣
by

ax

∣
∣
∣
∣m

))

+ γe − ln

(

4π

∣
∣
∣
∣
ax

by

∣
∣
∣
∣

)}

, (A.2)

with γe = 0.577 215 665 denoting the Euler–Mascheroni
constant, K0(x) the modified Bessel function of the second
kind [56] and ax , bx and by the corresponding x and y
components of the lattice vectors a and b. Using the
components xi j = xi − x j , yi j = yi − y j and zi j = zi − z j of
the relative separation vector ri j between cell particles i and j ,
U c

C can be written as

U c
C = 1

|ax |
n∑

i=1

n∑

j=1
j>i

q2

ε

×
{

4
∞∑

m,k=1

[

cos

(

2πk
xi j + bxm

ax

)

× K0

(

2πk

[
(yi j + bym)2 + z2

i j

a2
x

]1/2)

+ cos

(

2πk
xi j − bx m

ax

)
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× K0

(

2πk

[
(yi j − bym)2 + z2

i j

a2
x

]1/2)]

+ 4
∞∑

k=1

cos

(

2πk
xi j

ax

)

K0

(

2πk

[
y2

i j + z2
i j

a2
x

]1/2)

− ln

[

cosh

(

2π

∣
∣
∣
∣
zi j

by

∣
∣
∣
∣

)

− cos

(

2π
yi j

by

)]

− ln 2

}

(A.3)

for (yi j, zi j ) 
= (0, 0) and

U c
C = 1

|ax |
n∑

i=1

n∑

j=1
j>i

q2

ε

×
{

4
∞∑

m=1

∞∑

k=1

[

cos

(

2πk
xi j + bxm

ax

)

K0

(

2πk

∣
∣
∣
∣
bym

ax

∣
∣
∣
∣

)

+ cos

(

2πk
xi j − bx m

ax

)

K0

(

2πk

∣
∣
∣
∣
bym

ax

∣
∣
∣
∣

)]

− 2ψ

(∣
∣
∣
∣
xi j

ax

∣
∣
∣
∣

)

− π cot

(

π

∣
∣
∣
∣
xi j

ax

∣
∣
∣
∣

)

− 2 ln

(

4π

∣
∣
∣
∣
ax

by

∣
∣
∣
∣

)}

(A.4)

for (yi j, zi j ) = (0, 0), where ψ(x) is the digamma
function [56].

Being interested in the transition from mono to trilayers,
we take as input the structure characteristics of the triangular
phase 1� into the lattice sums (A.2)–(A.4): θ = π/3, bx/ax =
0.5, by/ax = √

3/2, γ = 1, x12/ax = 0.5 = x23/ax,=
y12/by = 1/3 = y23/by , x13/ax = 1, y13/by = 2/3,

ρ = N/A = 3
ax by

= 2
√

3
ax

2 and therefore ax
2 = 2

√
3

ρ
= 2

√
3L2

η
.

Here we consider for 1� a multicell (n = 3) consisting of three
primitive cells, containing each 1 particle. Thus, for a given η,
the energy function UC depends now only on z12 = hL = z23.
Taking this feature into account, the self-energy and the cross-
energy finally are

U s
C = 1

|ax |3
q2

ε

{

4
∞∑

m,k=1

cos (πkm) K0(πkm
√

3)

+ γe − ln(
8π√

3
)

}

(A.5)

and

U c
C(h) = 1

|ax |
3∑

i=1

3∑

j=1
j>i

q2

ε

×
{

4
∞∑

m,k=1

[

cos

(

2πk
xi j + bxm

ax

)

× K0

(

2πk
[
λ+

i j
2 + β2

i j h
2
]1/2

)

+ cos

(

2πk
xi j − bxm

ax

)

K0

(

2πk
[
λ−

i j
2 + β2

i j h
2
]1/2

)]

+ 4
∞∑

k=1

cos

(

2πk
xi j

ax

)

K0

⎛

⎝2πk

[
y2

i j

a2
x

+ β2
i j h

2

]1/2
⎞

⎠

− ln

[

cosh(2π |φi j |h)− cos

(

2π
yi j

by

)]

− ln 2

}

,

(A.6)

where λ±
12 = √

(y12 ± bym)2/a2
x = √

3/4(1/3 ± m) = λ±
23,

λ±
13 = √

(y13 ± bym)2/a2
x = √

3/4(2/3 ± m), β12 = L/ax =
β23, β13 = 2L/ax , φ12 =

√

2η/3
√

3 = φ23 and φ13 =
2
√

2η/3
√

3. Before expanding the energy function at h = 0,
we first define

f (h)± = K0

(

2πk
[
λ±2 + β2h2

]1/2
)

, (A.7)

where the first four derivatives of f (h) at h = 0 are given as
follows:

f (0)± = K0
(
2πkλ±) , (A.8)

f ′(0)± = 0, (A.9)

f ′′(0)± = −K1
(
2πkλ±) 2πkβ2

λ± , (A.10)

f ′′′(0)± = 0, (A.11)

f ′′′′(0)± = [
K0

(
2πkλ±) 2πkλ± + 2K1

(
2πkλ±)] 3β42πk

λ±3 .

(A.12)

Here, K1(x) is a modified Bessel function of the second
kind [56], too. Using a Taylor series and (A.8)–(A.12), we
now expand UC(h) from (A.1) at h = 0 and achieve the final
form of the energy:

εu(h)

q2√ρ = −1.960 516 − 3.590 668ηh2 + 4.968 827η2h4

︸ ︷︷ ︸
UC (h)ε

3q2√
ρ

+ 4
3πh2√η. (A.13)

The last term stems from (5), due to interactions with
the background, respectively. The coefficient −1.960 516
corresponds to the static energy per particle of the triangular
lattice, which was already calculated in [57].
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[22] Löwen H and Kramposthuber G 1993 Europhys. Lett. 23 673
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86 28002
[35] Grandner S and Klapp S H L 2008 J. Chem. Phys. 129 244703

[36] Goldoni G and Peeters F M 1995 Phys. Rev. B 53 4591
[37] Apolinario S W S, Partoens B and Peeters F M 2007 New J.

Phys. 9 283
[38] Cornelissens Y G, Partoens B and Peeters F M 2000 Physica E

8 314
[39] Drocco J A, Reichhardt C J O, Reichhardt C and Janko B 2003

Phys. Rev. E 68 060401
[40] Totsuji H, Kishimoto T and Totsuji C 1997 Phys. Rev. Lett.

78 3113
[41] Rahman A and Schiffer J P 1986 Phys. Rev. Lett. 57 1133
[42] Totsuji H and Barrat J-L 1988 Phys. Rev. Lett. 60 2484
[43] Schiffer J P 1988 Phys. Rev. Lett. 61 1843
[44] Ren C I and Ma Y Q 2006 J. Am. Chem. Soc. 128 2733
[45] Yan F and Goedel W A 2004 Chem. Mater. 16 1622
[46] Messina R 2002 J. Chem. Phys. 117 11062
[47] Lekner J 1991 Physica A 176 485
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