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Düsseldorf, Germany

Received 11 June 2008 and Received in final form 24 July 2008
Published online: 16 September 2008 – c© EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2008

Abstract. A dynamical density functional theory (DDFT) for translational Brownian dynamics is derived
which includes hydrodynamic interactions. The theory reduces to the simple Brownian DDFT proposed by
Marconi and Tarazona (U. Marini Bettolo Marconi and P. Tarazona, J. Chem. Phys. 110, 8032 (1999); J.
Phys.: Condens. Matter 12, A413 (2000)) when hydrodynamic interactions are neglected. The derivation
is based on Smoluchowski’s equation for the time evolution of the probability density with pairwise hydro-
dynamic interactions. The theory is applied to hard-sphere colloids in an oscillating spherical optical trap
which switches periodically in time from a stable confining to an unstable potential. Rosenfeld’s funda-
mental measure theory for the equilibrium density functional is used and hydrodynamics are incorporated
on the Rotne-Prager level. The results for the time-dependent density profiles are compared to extensive
Brownian dynamics simulations which are performed on the same Rotne-Prager level and excellent agree-
ment is obtained. It is further found that hydrodynamic interactions damp and slow the dynamics of the
confined colloid cluster in comparison to the same situation with neglected hydrodynamic interactions.

PACS. 82.70.Dd Colloids – 61.20.Ja Computer simulation of liquid structure – 64.70.D- Solid-liquid
transitions – 05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

The dynamics of colloidal particles dispersed in a molec-
ular solvent is by far less understood than their static
behavior. The reason is that colloidal dynamics span a
wide range of time scales due to the enormous differ-
ence in size and mass of the colloidal particles and the
host solvent molecules [1]. The obvious approach to this
problem is to reduce the description of the solvent, when
one is interested in the dynamics of the colloidal par-
ticles alone. While in equilibrium all solvent effects can
be mapped on an effective interaction potential between
the colloids [2,3], in nonequilibrium additional solvent
effects need to be taken into account. These are: the
friction of the colloids with the solvent, their Brownian
motion due to random kicks of the solvent molecules,
and solvent-flow–mediated interactions, the so-called hy-
drodynamic interactions. This is either done by solving
Langevin’s equations of motion for the constituent parti-
cles, or —equivalently— by describing the time evolution
of the probability density in configurational space with
the Smoluchowski equation [4,5]. The former description
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takes the Brownian motion of the particles explicitly into
account and builds the basis of Brownian dynamics com-
puter simulations.

Though a full microscopic theory for the time evolution
of the probability density including hydrodynamic inter-
actions through the mobility tensor is in principle given
by the Smoluchowski equation, the many-body nature of
the problem and the long range of the Oseen mobility ten-
sor which is the leading contribution for a colloidal pair
are making the elaboration of reliable approximations dif-
ficult. Explicit approaches have been worked out in the
bulk for short-time and long-time diffusion coefficients [6–
10], and for the viscosity [11]. There are also first inves-
tigations for colloids near walls and on interfaces [12,13]
and for the nonequilibrium structure of colloids [14] but a
general theory for an arbitrary and time-dependent inho-
mogeneous external potential is missing.

A promising approach to describing the dynamics of
colloidal particles is a dynamical density functional the-
ory (DDFT) which generalizes the classical equilibrium
density functional theory (DFT) towards nonequilibrium
situations. The standard equilibrium density functional
approach is a microscopic theory which starts from the
interparticle interactions and bulk fluid correlations as an
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input. It predicts the inhomogeneous density profiles in
an external potential including strongly inhomogeneous
situations like freezing, for reviews see [15–17]. The key
quantity is the excess (“over ideal-gas”) free-energy den-
sity functional, which is in general unknown. However, to
date very accurate approximations for various interpar-
ticle interactions are available. For example, Rosenfeld’s
fundamental measure theory [18,19] has been shown to be
very reliable for hard spheres, and the mean-field approx-
imation is asymptotically correct for soft-core interaction
at high densities [20–22].

While it is by now well understood how to extract
the static equilibrium properties of an inhomogeneous sys-
tem from density functional theory, its extension toward
time-dependent dynamical situations in nonequilibrium is
more challenging. Recently, a DDFT was developed [23–
25] where hydrodynamic interactions are ignored. DDFT
results for the nonequilibrium dynamics of inhomogeneous
Brownian fluids were found to agree very well with simu-
lation data [26–28]. Further important activities in devel-
oping the dynamical extension of DFT lie in the existence
proof of the dynamical functional [29], its applicability
to Newtonian dynamics [30] and to include fluctuations
and noise effects [31]. Still lacking to date is how hydro-
dynamic interactions are to be treated in the DDFT for-
malism. Some attempts have been carried out by includ-
ing hydrodynamic interaction effects in an effective way
in a density-dependent diffusion coefficient [32]. Here, we
present a stringent derivation of a DDFT which takes hy-
drodynamic interactions on a two-particle level into ac-
count without making further approximations than those
underlying the DDFT of Marconi and Tarazona [23,24].

This theory is then applied to the dynamics of hard-
sphere colloids confined in a time-dependent oscillating
spherical cavity. Hydrodynamic interactions are incorpo-
rated on the pairwise Rotne-Prager level and Rosenfeld’s
fundamental measure theory for the hard-sphere equilib-
rium density functional is used. The results are compared
to Brownian dynamics computer simulations, performed
on the same level of approximation for the hydrodynamic
interactions, and excellent agreement is found. When com-
pared to reference calculations where hydrodynamic inter-
actions are neglected, it is found the their inclusion leads
to a significant damping of the oscillations in the steady-
state density profiles of hard spheres in a oscillating trap.
We further compare our results to those obtained when us-
ing a density-dependent diffusion coefficient as proposed
by Royall et al. [32]. This latter approach yields better
agreement than that without hydrodynamic interactions
but not than that with hydrodynamic interactions. A pre-
vious account of some of the results of this paper was
published elsewhere [33].

This paper is laid out as follows. In Section 2, starting
from the Smoluchowski equation, we derive a generalized
dynamical density functional theory which includes hydro-
dynamic interactions. Section 3 is devoted to describing
the system and the associated free-energy functional. In
Section 4 we present the results obtained by DDFT and
Brownian dynamics simulations. Finally, in Section 5 we
draw some conclusions.

2 Equation of motion for the one-body

density

In this section we derive a functional theory that predicts
the time evolution of the one-body density ρ(r, t) includ-
ing hydrodynamic interactions. We start from the equa-
tion for the time evolution of the full probability density
distribution P (rN , t) for N interacting spherical Brown-
ian particles at positions rN = r1, r2, . . . , rN and at time
t, i.e., the Smoluchowski equation (see, e.g., [5])

∂P (rN , t)

∂t
=

N∑
i,j

∇i · Dij(r
N ) ·

[
∇j +

∇jU(rN , t)

kBT

]
P (rN , t). (1)

kBT is the thermal and U(rN , t) the total potential energy
of the system. By using the Smoluchowski equation, the
description of the complex fluid is reduced to one based
solely on the position coordinates of the colloids, rather
than utilizing the full set of phase space coordinates for
the colloid and solvent particles. The solvent-mediated hy-
drodynamic interactions are thereby included through the
configuration-dependent diffusion tensor Dij(r

N ). In our
approach, we approximate the diffusion tensor on a two-

particle level: Dij(r
N ) ≈ D01δij + D

(2)
ij (rN ), which is in

general only justified for small volume fractions of the col-
loidal particles. D0 denotes the diffusion constant of a sin-
gle isolated particle, δij is Kronecker’s delta, and

D
(2)
ij (rN )=D0

⎡
⎣δij

N∑
l �=i

ω11(ri−rl)+(1−δij)ω12(ri−rj)

⎤
⎦ .

(2)
Series expansions of the two tensors ω11 and ω12 are
known to arbitrary order [34]. We further assume pairwise
additivity for the total potential energy of the system, such
that U(rN , t) reads as

U(rN , t) =
N∑

m=1

Vext(rm, t) +
1

2

N∑
m=1

N∑
n�=m

v2(rm, rn), (3)

where Vext(r, t) is the one-body time-dependent external
potential acting on each particle and v2(ri, rj) is the pair
potential. The latter is assumed to be time-independent.
To obtain an equation for the time evolution of the one-
body density, we note that the n-body densities are given
by integrals over the probability density [25]

ρ(n)(rn, t) =
N !

(N − n)!

∫
drn+1 . . .

∫
drN P (rN , t). (4)

Thus, by integrating equation (1) with N
∫

dr2 . . .
∫

drN ,
we obtain the following equation for the one-body density:

kBT/D0
∂ρ(r, t)

∂t
= ∇r ·

{
j1 + j2 + j3

}
, (5)
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with the current densities

j1 = kBT∇rρ(r, t) + ρ(r, t)∇rVext(r, t)

+

∫
dr′ ρ(2)(r, r′, t)∇rv2(r, r

′), (6)

j2 =

∫
dr′ ω11(r − r′) ·

{
kBT∇rρ

(2)(r, r′, t)

+∇r [Vext(r, t) + v2(r, r
′)] ρ(2)(r, r′, t)

+

∫
dr′′ ρ(3)(r, r′, r′′, t)∇rv2(r, r

′′)

}
, (7)

and

j3 =

∫
dr′ ω12(r − r′) ·

{
kBT∇r′ρ

(2)(r, r′, t)

+∇r′ [Vext(r
′, t) + v2(r, r

′)]ρ(2)(r, r′, t)

+

∫
dr′′ ρ(3)(r, r′, r′′, t)∇r′v2(r

′, r′′)

}
. (8)

Equations (6–8) depend on both the time-dependent two-
body and three-body densities. Those are obtained, in
principle, by integrating again the Smoluchowski equation
(see Eq. (4)) but yield equations that depend on higher
n-body densities. This is known as the BBGKY-hierarchy.
Thus, an appropriate closure is needed to break the hier-
archy. Here, we use an approximation first proposed by
Marconi and Tarazona [23,24] and cast the current den-
sities into a form involving exclusively the equilibrium
free-energy functional F [ρ]. The basic assumption is to
identify the out-of-equilibrium n-body densities, n ≥ 2,
with those of an equilibrium system whose one-body den-
sity profile is identical. This allows for making use of
the following equilibrium theories: static DFT [35] and
the Yvon-Born-Green (YBG) relations (see, e.g., [36]).
To that end, we regard an out-of-equilibrium system at
time t = t0 with an instantaneous density profile ρ(r, t0),
whose time evolution is given by equation (5). From static
DFT it is known that every equilibrium density profile
ρ0(r) is brought about by a unique external potential
Φext(r). Thus, we can identify the out-of-equilibrium in-
stantaneous density with an equilibrium one of a reference
system exposed to an accordingly chosen unique exter-
nal potential Φext(r, t0) = u(r, t0) + Vext(r, t0), such that
ρ0(r) = ρ(r, t0). This holds for every point in time and
therefore Φext(r, t), the additional potential u(r, t), and
the equilibrium reference density ρt(r) depend parametri-
cally on time t. In the equilibrium reference system, the
following generalized force balance equation holds [35]:

kBT∇ρt(r)

ρt(r)
+ ∇Φext(r, t) = −∇

δFexc[ρ]

δρ

∣∣∣∣
ρ=ρt(r)

, (9)

with the excess free-energy functional Fexc[ρ]. This equa-
tion allows us to determine the gradient of the external
potential Φext(r, t) and thus the gradient of the unknown
additional potential u(r, t) that brings about the reference
density. A simple reorganization (recall that u(r, t) is cho-

sen such that ρt(r) = ρ(r, t) at each point in time) yields

∇u(r, t) = −∇
δF [ρ]

δρ(r, t)
≡ −∇μ(r, t), (10)

with the free-energy density functional

F [ρ] = kBT

∫
dr ρ(r, t)[ln(Λ3ρ(r, t)) − 1]

+Fexc[ρ] +

∫
dr ρ(r, t)Vext(r, t). (11)

Λ denotes the thermal de Broglie wavelength. μ(r, t) is the
local nonequilibrium chemical potential. In the nonequi-
librium system, the gradient of the chemical potential is
the thermodynamic driving force. ∇u(r, t) may therefore
be envisaged as the additional external force which is
necessary to balance the thermodynamic driving force in
the equilibrium reference system. In the latter, addition-
ally the YBG-hierarchy holds, whose first two members
read [36]

kBT∇rρt(r) + ρt(r)∇rΦext(r, t)

+

∫
dr′ ρ

(2)
t (r, r′)∇rv2(r, r

′) = 0

⇔

−ρt(r)∇ru(r, t) = kBT∇rρt(r)

+ρt(r)∇rVext(r, t) +

∫
dr′ ρ

(2)
t (r, r′)∇rv2(r, r

′) (12)

and

∇r′ [Φext(r, t) + v2(r, r
′)] ρ

(2)
t (r, r′)

+kBT∇r′ρ
(2)
t (r, r′)+

∫
dr′′ ρ

(3)
t (r, r′, r′′)∇r′v2(r

′, r′′)=0

⇔

−ρ
(2)
t (r, r′)∇r′u(r′, t) =

∇r′ [Vext(r
′, t) + v2(r, r

′)] ρ
(2)
t (r, r′) + kBT∇r′ρ

(2)
t (r, r′)

+

∫
dr′′ ρ

(3)
t (r, r′, r′′)∇r′v2(r

′, r′′). (13)

The two right-hand sides in the second lines of equa-
tions (12) and (13) occur in the dynamical (nonequi-
librium) context, equations (6–8). The basic assump-
tion now, which also underlies the original version of
the DDFT [23–25], is to use these expressions in the
nonequilibrium situation, i.e., we approximate the two-
body and three-body densities by those of the reference
system with the same one-body density: ρ(2)(r, r′, t) ≈

ρ
(2)
t (r, r′) and ρ(3)(r, r′, r′′, t) ≈ ρ

(3)
t (r, r′, r′′). Inserting

equations (10, 12), and (13) into equation (5), we obtain
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our central result

kBT/D0
∂ρ(r, t)

∂t
= ∇r

{
ρ(r, t)∇r

δF [ρ]

δρ(r, t)︸ ︷︷ ︸
j1

+

∫
dr′ ρ(2)(r, r′, t)ω11(r − r′) · ∇r

δF [ρ]

δρ(r, t)︸ ︷︷ ︸
j2

+

∫
dr′ ρ(2)(r, r′, t)ω12(r − r′) · ∇r′

δF [ρ]

δρ(r′, t)︸ ︷︷ ︸
j3

}
. (14)

Note that the first current density j1 in equation (14) is
identical to the one in the original DDFT of Marconi and
Tarazona [23,24] and persists when hydrodynamic interac-
tions are neglected. j2 and j3 can be interpreted as the ad-
ditional current densities due to the solvent-mediated in-
teractions evoked by surrounding particles: j2(r) describes
the contribution of the solvent flow induced at position r

reflected by neighboring particles at position r′. The den-
sity current j3(r) stems from the force acting at position
r′ mediated by the solvent. Both are weighted with the
probability of finding particles at position r and r′.

Finally, we need to close the above relation, which still
depends on the two-body density. Within our approxima-
tion —the n-body densities are assumed to be identical to
the equilibrium one of the reference system— it is given
at every point in time by the exact generalized Ornstein-
Zernike equation [35]:

ρ(2)(r, r′, t) =
(
1 + c(2)(r, r′)

)
ρ(r, t)ρ(r′, t)

+ρ(r′, t)

∫
dr′′

(
(ρ(2)(r, r′′, t)−ρ(r, t)ρ(r′′, t))c(2)(r′′, r′)

)
,

(15)

with the Ornstein-Zernike direct correlation function

c(2)(r, r′) =
δ2Fexc[ρ]

δρ(r, t)δρ(r′, t)
. (16)

This implicit equation for the two-body density of the in-
homogeneous system may be reasonably approximated by
its bulk value [37,38], i.e. ρ(2)(r, r′, t) ≈ ρ(r, t)ρ(r′, t)g(|r−
r′|, ρ̄), where g(|r − r′|, ρ̄) is the pair correlation function
for a homogeneous system at an appropriately averaged
density ρ̄, see footnote1. For a hard-sphere fluid, an ana-
lytic expression for the pair correlation function is avail-
able based on the Percus-Yevick equation [39].

To summarize, we derived a closed system of two equa-
tions that involve exclusively the equilibrium free-energy
functional F [ρ] to obtain the time evolution of the one-
body density, including hydrodynamic interactions on the
two-body level. Besides the approximation used for the
equilibrium pair correlations, the only assumption in the

1 We expect that in the stationary case the solution is the
equilibrium solution even after this approximation, but we do
not have a rigorous proof for this.

derivation was that the out-of-equilibrium two-body and
three-body densities are identical to those of an equilib-
rium system with the same instantaneous density. This as-
sumption seems reasonable, since we consider overdamped
Brownian dynamics, for which the momentum degrees
of freedom relax instantaneously. This approximation is
identical to assuming that the time evolution of the den-
sity would stop instantaneously if one actually switched on
the additional potential u(r, t), since then the density of
the out-of-equilibrium system would be instantaneously
identical to the equilibrium one and “only” the n-body
densities, n ≥ 2, would have to relax to their equilib-
rium values. This central assumption, sometimes referred
to as adiabatic approximation, was first suggested by Mar-
coni and Tarazona [24]. To date, a number of studies have
demonstrated the accuracy of this approximation in a va-
riety of different systems, see e.g. [20,25,27,28,32,40].

A final remark is that higher n-body hydrodynamic in-
teractions can be treated analogously but lead to expres-
sions that involve higher-equilibrium n-body densities of
the reference system (compare Eq. (14)) and that a gener-
alization of the theory to hard-sphere mixtures is straight
forward.

3 Application to the dynamics of colloids in

oscillating traps

We use the method presented above to predict the time
evolution of the one-body density with hydrodynamic in-
teractions by equation (14) for a cluster of N = 100
monodisperse spherical particles of diameter σ, whose in-
teraction is hard, i.e.,

v2(rij) =

{
∞ if rij ≤ σ,

0 else,
(17)

with rij = |ri − rj |. Henceforth, σ serves as the unit of
length, the appropriate time scale is τB = σ2/D0, and the
energy unit is kBT . The particles are trapped in a fixed
spherical confining cavity which switches from a stable to
an unstable shape periodically in time, see Figure 1. The
explicitly time-dependent total external potential reads

Vext(r, t) = V1

(
r

R1

)4

+ V2 cos(2πt/τ)

(
r

R2

)2

, (18)

with r = |r|. R1 = 4σ and R2 = σ are two length scales
and V1 = 10kBT and V2 = kBT are the strengths of the
two parts of the potential. This potential consists of a
fixed cavity and a part which oscillates in time from a
stable to an unstable cavity with a period τ = 0.5τB. We
assume that the effects of hydrodynamic interactions are
most prominent for a period in this regime because in the
limit of small τ particles barely move [27] and in the other
limit for large τ the effect of hydrodynamic interactions
should disappear (quasi-static process conduct). We have
carried out additional simulations which show that differ-
ent shapes of the external potential lead to the same quali-
tative behavior. A sketch of the setup is shown in Figure 1.
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τ

stable

σ

unstable
( ,t)V rext

Fig. 1. (Color online) Sketch of the confined system. The ex-
ternal potential models an optical trap Vext(r, t) which changes
its central shape from stable to unstable within a time period τ .
The trap confines N colloidal hard spheres of diameter σ shown
as black circles. Additionally, typical 3d simulation snapshots
are shown. The left-hand side shows an initial stable config-
uration for t = 0 and the right-hand side shows an unstable
situation at t = 2.75τB for case (N).

Due to the spherical symmetry, the density profile ρ(r, t)
depends on only one effective coordinate, namely the ab-
solute value of the coordinate vector r = |r|. The confining
potential only acts on the colloidal particles while it is pen-
etrable for the solvent molecules. Therefore, the solvent is
treated as an unbounded fluid.

The pair correlation g(|r − r′|, ρ̄) is calculated at
each time step at the average density of the system

ρ̄(t) = 1/Rmax(t)
∫ Rmax(t)

0
drρ(r, t), where Rmax is defined

by Vext(r = Rmax(t)) = 10kBT .
A crucial input to the DDFT is an accurate equilib-

rium excess free-energy functional. For a hard-sphere liq-
uid, Rosenfeld’s FMT [18] provides a very reliable ap-
proximation scheme for Fexc[ρ]. FMT is a generalized
form of weighted-density approximations for fluids de-
signed to model hard objects. The weighted densities are
thereby obtained by convolutions with weight functions,
where a spatial convolution is given by g(r) ∗ h(r) =∫

dx g(x)h(r − x). The weight functions reflect the ge-
ometrical properties of the constituent particles. For hard
spheres they are given by

w3(r) = Θ(R − r), w2(r) = δ(R − r), (19)

wv2(r) = w2(r)r/r, wm2(r) = w2(r)[rr/r2−1/3], (20)

and the linearly dependent weights

w1(r) =
w2(r)

4πR
, wv1(r) =

wv2(r)

4πR
, w0(r) =

w1(r)

R
,

(21)

with the Dirac distribution δ(x), and the radius R = σ/2
of the spheres. rr denotes a dyadic product and 1 the 3×3
identity matrix. Convolution with the density ρ(r) yields
the weighted densities

nν(r) = ρ(r) ∗ wν(r), ν = 3, 2, 1, 0, v2, v1,m2. (22)

The excess free-energy functional is obtained by integrat-
ing over a free-energy density

βFexc[ρ] =

∫
dr Φ({nν}), (23)

where the reduced free-energy density Φ is a function of
the weighted densities nν and reads

Φ = −n0 ln(1 − n3) +
(n1n2 − nv1 · nv2)

(1 − n3)

+
n3

2/3 − n2n
2
v2 + 3(nv2nm2nv2 − 3 det nm2)/2

8π(1 − n3)2
. (24)

The contributions involving nm2 are small and will be ne-
glected henceforth. They were given here for completeness.

Since static DFT is derived for the grand-canonical en-
semble, the question arises whether it is appropriate for
a spherical cavity with a fixed number of particles. The
densities obtained by static DFT correspond to a system
with a chemical potential chosen such that the average
number of particles 〈N〉 is equal to the number of par-
ticles within the cavity. This density profile is not neces-
sarily the same as for the canonical ensemble. This issue
was addressed by González and co-workers [41,42]. They
showed that for a sufficient number of particles, N > 40
say, the grand-canonical results are in very good agree-
ment with the canonical ones. Therefore we conclude that
the difference between different ensembles is negligible for
our setup.

The last inputs to our theory are the tensors ω11(r −
r′) and ω12(r − r′) that account for the hydrodynamic
interactions between a pair of spheres. We approximate
ω12(r−r′) by the well-known Rotne-Prager expression [43]

ω12(r) =
3

8

(σH

r

)
[1 + r̂r̂] +

1

16

(σH

r

)3

[1 − 3r̂r̂]

+O

[(σH

r

)7
]

, (25)

and neglect ω11(r−r′), whose leading term is O((σH/r)4).
On this level of approximation, we incorporate cor-
rectly all solvent-mediated interactions up to order
O((σH/r)3) [44]. In our studies, we have chosen a hydro-
dynamic diameter of σH = 3σ/4, see footnote2.

2 For the validity of the far-field expressions for the hydro-
dynamic interactions used in this paper, it is important that
particle stay sufficiently away from each other. Hence we have
chosen the interaction hard-core diameter σ to be larger than
the hydrodynamic diameter σH. If these were equal, lubrica-
tion forces close to contact would involve more complicated
near-field hydrodynamic tensors.
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Fig. 2. (Color online) DDFT (solid curves) and BD (noisy curves) results for the time-dependent density profile ρ(r, t) for
the initial relaxation. In panel (a) hydrodynamic interactions are taken into account, in (b) they are neglected, in (c) and (d)
they are included via the density-dependent diffusion coefficients in equation (27) and equation (28), respectively. The profiles
correspond to the following time sequence: t0 = 0.0τB, t1 = 0.1τB, t2 = 0.15τB, t3 = 0.2τB, and t4 = 0.25τB.

The partial integro-differential equation governing the
time evolution of ρ(r, t), equation (14), is solved numer-
ically employing a finite-difference approximation with a
fixed time step of 10−5τB.

The DDFT results are tested against Brownian dy-
namics simulations [45,46] performed on the same level of
accuracy for the diffusion tensor, in which the hard inter-
action is approximated by a slightly softened one

v2(r)

kBT
=

⎧⎨
⎩

[(
σ
r

)48
−

(
σ
r

)24
+ 1

4

]
if r ≤ 21/24σ,

0 else.
(26)

In all simulations we chose a time step 10−4τB. In order
to obtain the time-dependent density ρ(r, t) we perform a
large number Nrun = 104 of independent runs with differ-
ent initial configurations sampled from a situation with a
static external potential, i.e., equation (18) at t = 0. Ad-
ditionally, the densities are compared to those obtained
by standard DDFT, where hydrodynamic interactions are
ignored.

Finally we also compare our results to those obtained
by conventional DDFT when hydrodynamic interactions
are taken into account via a density-dependent diffusion
coefficient [32]. This procedure makes use of an analytic
expression for the reduction of the sedimentation velocity
of hard spheres as a function of the hydrodynamic vol-
ume fraction φHI = πρ/6σ3

HI calculated by Hayakawa and
Ichiki [47]. Their resulting equation consists of a far-field
and a near-field lubrication term and reads

D(φHI)/D0 = (1− φHI)
3/[1 + 2φHI + 1.492φHI(1− φHI)

3].
(27)

When the near-field term is neglected it reduces to

D(φHI)/D0 = (1 − φHI)
3/[1 + 2φHI]. (28)

As proposed in [32], we generalize to strongly inhomoge-
neous situations by using the local packing fraction φ̄(r, t)
calculated by convolving the bare density profile, ρ(r, t),
with a weight function characteristic of the particle vol-
ume, namely φ̄(r, t) = n3(r, t)(σHI/σ)3, where n3 is given
in equation (22).

4 Results

We now present the results obtained by DDFT and Brow-
nian dynamics simulation for the setups introduced in the
preceding section. The four different situations will be
labeled henceforth as follows: the case of hydrodynamic
interactions included via equation (14) (H), the case of
hydrodynamic interactions ignored (N), and the cases of
the two density-dependent diffusion coefficients with near-
field hydrodynamic interactions (D1) and without near-
field hydrodynamic interactions (D2), respectively. First
of all, the associated profiles for ρ(r, t) for the initial half-
period in which the cavity is unstable are shown in Fig-
ure 2. The initial density profile is the equilibrium one for
Vext(r, t = 0) in all four situations (H), (N), (D1), and
(D2) which exhibits three correlation peaks in the density
profile due to layering. Simulation data for simple Brow-
nian dynamics and with included hydrodynamic interac-
tions are also shown in Figure 2 (a) and (b), respectively,
for the initial relaxation. One first important conclusion
is that the theory describes the simulation data very well.
If hydrodynamic interactions are more crudely taken into
account via the (D1) or (D2) approach, the theory devi-
ated considerably from the simulation data with hydrody-
namic interactions (see Fig. 2). Qualitative features are,
however, kept. As a second observation, we remark that
hydrodynamic interactions damp the dynamics consider-
ably and slow down the relaxation to the steady state. The
steady-state itself is shown in Figure 3. The same qualita-
tive conclusion as for Figure 2 hold regarding the quality
of the theoretical approaches (H), (N), (D1), (D2) and the
influence of hydrodynamic interactions in general.

A peculiar result is the dynamics of the central den-
sity ρ(r = 0, t). Hydrodynamic interactions tend to push
this quantity up upon expansion which is an unusual effect
that is kept only within the (H) approach but is lost in (N),
(D1), and (D2). This effect is even more pronounced in the
initial relaxation, see Figure 2. We think that this behav-
ior is due to particle fluctuations near the cavity center. If
more particles are in one half of the cavity these are drag-
ging nearby particle over the center and this gives rise to
the increase of the central density as the cavity expands.

Figure 4 underlines the oscillating behavior into the
steady state by showing the density at a fixed distance
r = 2.86σ from the cavity center, i.e. the position of the
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Fig. 3. (Color online) Steady-state DDFT (solid curves) and BD (noisy curves) results for the time-dependent density profile
ρ(r, t). Both half-periods for all situations are shown; hydrodynamic interactions taken into account via equation (14) (H), via
a density-dependent diffusion constant with (D1) and without (D2) near-field hydrodynamic interaction, and hydrodynamic
interaction ignored (N). The profiles correspond to the following time sequence: t0 = 2.5τB, t1 = 2.6τB, t2 = 2.7τB, t3 = 2.75τB,
t4 = 2.85τB, t5 = 2.9τB, and t6 = 3.0τB.
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Fig. 4. (Color online) Top: oscillations at the position of the
third peak in the initial density profile, i.e. for r = 2.86σ, of the
system versus time. DDFT results with hydrodynamic inter-
actions taken into account (H), being neglected (N), and taken
into account via a density-dependent diffusion coefficient with
(D1) and without (D2) near-field hydrodynamic interactions.
Bottom: second moment of the density profile, m2(t), versus

time t. DDFT (solid curves) and BD (noisy curves) with label-
ing as before.

third peak in the initial density profile. The damping is
most pronounced for the approach (H).

We finally consider the second moment of the density,
m2(t), defined through

m2(t) =

∫
dr r2ρ(r, t). (29)

This quantity is a measure of the spread of ρ(r, t) around
the center of the external field. Its time evolution is also

depicted in Figure 4. Obviously, the time evolution of
m2(t) for (H) and (N) is different and it also supports
our earlier finding that the dynamics of the system with
hydrodynamic interactions are considerably slowed com-
pared to (N). System (N) is already in its steady state
within the first period and correspondingly the second
moment is virtually the same for the next periods. Sys-
tem (H) on the other hand, needs two periods to be in the
steady state. Furthermore, Figure 4 reveals that the stable
and the unstable half-period are asymmetric and not each
other’s “time reverse”. Finally hydrodynamic interactions
lead to a stronger phase shift with respect to the driving
external potential.

5 Conclusions

In this paper, we have presented a dynamical density
functional theory with hydrodynamic interactions incor-
porated on a two-particle level. As an application of the
theory, we have studied a hard-sphere system in an opti-
cal trap which switches periodically from a stable to an
unstable confining potential. The theory has been supple-
mented by an accurate equilibrium free-energy functional,
namely Rosenfeld’s FMT functional. We have found good
agreement for the dynamical development of the density
profile. By comparing the results to those obtained from
conventional DDFT, where hydrodynamic interactions are
ignored, we find significant differences. In particular, the
time evolution is considerably slowed and oscillations in
the steady-state density profile in the trap center are
damped by hydrodynamic interactions.

The presented formalism provides a theory that can
be applied to arbitrary time-dependent external potentials
and systems, provided the applied external forces are mod-
erate and an accurate equilibrium free-energy functional
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is known. It would be interesting to study, e.g., sedimenta-
tion or the onset of laser-induced freezing of colloids [48].
Also pure relaxational dynamics in a fixed (i.e. time-
independent) external potential can be treated within the
present approach and it would be interesting to study the
influence of hydrodynamic interactions on the dynamics
of freezing and vitrification in confinement, i.e. for hard
spheres in hard spherical cavities [49]. It would be fur-
ther challenging to generalize the present formalism to
many-body interparticle interactions and many-body hy-
drodynamic interactions, to toroidal traps [50], and to
anisotropic particles with orientational degrees of freedom.
For the latter case the DDFT was derived from the Smolu-
chowski equation at least for the case of neglected hydro-
dynamic interactions [51].

Finally, Archer [30] has demonstrated how mode cou-
pling theory, which is capable of predicting glass transi-
tion, can be brought in relation to DDFT for atomic liq-
uids. It is tempting to use the above formalism to derive
a mode coupling theory including hydrodynamic interac-
tions since it is anticipated that hydrodynamic interac-
tions play an important role in the dynamics near the
hard-sphere glass transition [52].

We thank G. Nägele, M. Rauscher, A. Archer, C.F. Lee and
C.P. Royall for helpful discussions. This work is supported by
the DFG within SFB TR6 (project D3).
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