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1 Institute of Theoretical Physics, Georg-August-Universität Göttingen,
Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
2 Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf,
Universitätsstraße 1, D-40225 Düsseldorf, Germany
3 Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7,
D-55099 Mainz, Germany

Received 11 April 2008, in final form 9 June 2008
Published 10 September 2008
Online at stacks.iop.org/JPhysCM/20/404222

Abstract
As a generic model for liquid–vapor-type transitions in random porous media, the
Asakura–Oosawa model for colloid–polymer mixtures is studied in a matrix of quenched
spheres using extensive Monte Carlo (MC) simulations (in d = 3 spatial dimensions). Since
such systems at criticality, as well as in the two-phase region, exhibit a lack of self-averaging,
the analysis of MC data via finite size scaling requires special care. After presenting the
necessary theoretical background and the resulting subtleties of finite size scaling in
random-field Ising-type systems, we present data on the order parameter distribution (and its
moments) as a function of colloid and polymer fugacities for a broad range of system sizes, and
for many (thousands) realizations of the porous medium. Special attention is paid to the
‘connected’ and ‘disconnected’ susceptibilities, and their respective critical behavior. We show
that both susceptibilities diverge at the critical point, and we demonstrate that this is compatible
with the predicted scenario of random-field Ising universality.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Understanding the behavior of fluids that undergo a liquid–
vapor phase transition in the bulk (or, equivalently, of binary
mixtures undergoing bulk phase separation) is still rudimentary
when one considers the confinement of such systems in
mesoporous materials, such as porous glasses or silica
gels [1]. Such amorphous materials form a highly irregular,
interconnected, three-dimensionally percolating network and
liquid–vapor-type transitions of fluids confined between the
walls of such networks are widely observed and of practical
importance [2]. However, the precise nature of the liquid–
vapor critical point of such systems is still only partly
understood [3–14]. While de Gennes [7] has presented
a simple argument that the critical behavior of fluids in
such random media can be mapped onto the random-

field Ising model (RFIM) [15–17], this prediction could be
confirmed neither by experiments [3–6] nor by numerical
calculations (MC simulations [8, 9, 11] or density functional
theories [12–14], respectively).

On the other hand, these studies could not point out
any flaw in this, more than twenty year old, argument
of de Gennes [7] either. In short, the argument of
de Gennes starts from the well-known phenomenon of
capillary condensation [1, 18, 19]. In an infinitely long slit
pore, the liquid–vapor transition is ‘shifted’ relative to the bulk,
due to the attractive forces between the fluid particles and the
walls. The magnitude of the shift depends on the nature of
the fluid and the type of walls. In addition, if ‘drying’ rather
than ‘wetting’ would occur for very thick slits, the opposite
effect of ‘capillary evaporation’ may also take place [1, 18, 19].
In general, the chemical potential μcoex(D) where liquid and
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vapor coexist inside a slit pore differs from the bulk coexistence
chemical potential μcoex(∞), and this difference depends on
the width D of the slit pore. In an irregular interconnected
pore network, the local pore diameter at position �r fluctuates
randomly around some average value. As a result, the local
chemical potential μ(�r), where phase coexistence would occur,
will also exhibit (quenched) fluctuations around some average
value (the fluctuations are quenched because the structure of
the porous network does not change over time). The analogy to
the RFIM is readily seen when the fluid is described as a lattice
gas, since the latter is isomorphic to the Ising ferromagnet. In
terms of the Ising ferromagnet, quenched random fluctuations
in the local chemical potential become isomorphic to quenched
external field variables hi , with hi a random variable acting on
the spin at the i th lattice site (which is precisely the random-
field Ising model). This reasoning is also easily carried over to
binary fluid mixtures [7].

In the present work, we contribute to the clarification
of this problem by presenting extensive MC data for a
particularly simple model, namely the Asakura–Oosawa (AO)
model [20, 21] of colloid–polymer mixtures inside a quenched
random porous medium. The AO model is known to capture
bulk experimental observations very well (by bulk we mean
in the absence of any porous medium), including phase
separation [22, 23] and interfacial properties [24]. Computer
simulations [25–27] have shown that bulk phase separation in
the AO model, which occurs for sufficiently large polymers at
sufficiently high polymer fugacity, belongs to the universality
class of the Ising model [28–31]. In addition, the standard
predictions for capillary condensation in slit pores [18, 19, 32]
have been well confirmed for this model [33–36]. Following
our previous work [37, 38], we now consider the more
complex problem of the AO model inside a random porous
medium. The porous medium is obtained using an ‘easy’
recipe: we simply distribute a set of obstacles (spheres) at
random positions in the simulation box. Once the spheres have
been positioned, they remain ‘fixed’, to mimic the quenched
nature of the medium. Next, the AO model is inserted into
the medium and its phase behavior is studied. In particular,
we will focus on (appropriately constructed) ‘susceptibilities’
of the form [〈·〉2] − [〈·〉]2, with 〈·〉 the conventional Gibbs–
Boltzmann thermal average and [·] an average over many
different realizations of the quenched obstacles. Of course, in
the absence of the porous medium, any such ‘susceptibility’
is trivially zero. However, in its presence, the analogy to
the random-field Ising model implies that such quantities will
actually diverge at the critical point and will do so with a
characteristic critical exponent γ̄ .

The outline of our paper is as follows. In section 2,
we recall in detail the necessary background of finite size
scaling in the Ising and the random-field Ising models, and
we discuss how these techniques may be carried over to fluids
with quenched disorder. Next, in section 3, we define the
AO model, explain how this model may be extended to also
capture quenched disorder, and we describe our simulation
method. The results are presented in section 4 and we end with
a discussion, conclusion and summary in section 5.

2. Finite size scaling in the Ising model, the
random-field Ising model and related models

2.1. Ising model

We first consider the pure Ising model, i.e. without any
random field, and discuss how finite size scaling can be
used to extract the critical properties of this model. To be
specific, we consider a (nearest-neighbor) Ising ferromagnet
on a hypercubic d-dimensional lattice of linear dimension L
and periodic boundary conditions

HIsing = −J
∑

〈i, j〉
si s j − H

∑

i

si , si = ±1, (1)

with J the exchange constant and H an uniform external
magnetic field. Defining the instantaneous magnetization per
spin s as

s = 1

Ld

∑

i

si , (2)

the object of interest is essentially the distribution

PL(s) ≡ PL (s|T, H ), (3)

defined as the probability to observe a magnetization per spin
s, in a system of size L, at temperature T and field strength
H . Basic observables of interest follow from the moments
〈sk〉 ≡ ∫ +∞

−∞ sk PL (s) ds of the distribution, where 〈·〉 is a
conventional Gibbs–Boltzmann thermal average. For instance,
the average magnetization per spin can be written as

m(T, H ) = 〈s〉, (4a)

and for the susceptibility χ we obtain

χ(T, H ) = ∂m

∂ H
= Ld

(〈s2〉 − 〈s〉2
)
, (4b)

where the factor kBT has been absorbed in the definition of
χ , with kB the Boltzmann constant. We emphasize that these
expressions must be used with care when PL (s) is bimodal.
This happens, for example, at low temperature and H = 0,
since then a spontaneous magnetization exists, which may be
positive or negative. Consequently, PL(s) has two peaks, one at
positive and one at negative values. However, blindly applying
equation (4a), one finds that m(T, 0) = 0, irrespective of T ,
which is not really desirable. Since the Ising model has spin
reversal symmetry, we have PL(−s) = PL (+s), and so an
easy fix is to introduce

m ′(T, H ) = 〈|s|〉, (5a)

χ ′(T, H ) = Ld
(〈s2〉 − 〈|s|〉2

)
, (5b)

which are to replace m and χ in these cases. The absolute
value has the same effect as using a modified distribution
(PL(s) + PL (−s))/2 with the integration domain restricted
to s > 0. Clearly, such a modification is reasonable when
PL(−s) = PL (+s) somewhat holds. For very asymmetric
distributions, a safer approach is to define m and χ in terms
of peak positions and widths, respectively. This approach was
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Figure 1. Schematic representations of the distribution PL(s) below the critical temperature Tc (a) and above (b). Since the susceptibility for
T �= Tc is finite, the peak widths w vanish with increasing system size ∝ L−d/2, leading to a distribution featuring two δ peaks when T < Tc

and a single δ peak when T > Tc.

successfully applied to the AO model in [27] and will also be
used in this work later on. Of course, in the thermodynamic
limit, all definitions become equivalent, see the discussion
in [39].

As is well known, for d � 2, the Ising model
has a second-order phase transition from the (disordered)
high-temperature paramagnetic phase to the (ordered) low-
temperature ferromagnetic phase, at some critical temperature
Tc. In the vicinity of Tc, we expect power law singularities [28]:

m(T, 0) ∝ (−t)β (order parameter), (6a)

χ(T, 0) ∝ |t|−γ , (6b)

ξ ∝ |t|−ν, (6c)

with t ≡ T/Tc − 1 the reduced distance from the critical point
and ξ the correlation length of the magnetization fluctuations.
In the above, β , γ and ν are critical exponents, which
characterize the universality class.

Of course, the divergence of the correlation length cannot
be captured in a finite simulation box of size L, and so the
above power laws are never observed directly. The state-of-the-
art is to perform several simulations, using a range of system
sizes L, and to extrapolate the simulation data to L → ∞ via
finite size scaling. In its simplest form, finite size scaling is
just the statement that, in a finite system at the critical point,
ξ ∝ L [28]. Eliminating t from equations (6a) and (6c), and
using ξ ∝ L, one immediately derives the L dependence of the
magnetization order parameter at the critical point:

mL ∝ L−β/ν . (7a)

Similarly, for the susceptibility, one obtains

χL ∝ Lγ /ν. (7b)

These equations simply state that, if one performs a simulation
at the critical point over a range of system sizes, the
magnetization should vanish ∝ L−β/ν and the susceptibility
should increase ∝ Lγ /ν .

The above scaling laws are quite general and should hold
near any critical point where the correlation length diverges

as a power law, i.e. conforms to equation (6c). If also the
hyperscaling relation is obeyed

γ + 2β = νd, (8)

with d the spatial dimension, it follows that the entire
distribution PL(s) at H = 0 scales with L as [40]

PL(s)|H=0 = Lβ/ν p̃(L/ξ, sLβ/ν), (9)

with PL(s) the magnetization distribution of equation (3).
Here, p̃(x, x ′) is a universal scaling function, which essentially
depends on the universality class, and the scaling should hold
in the limits ξ → ∞, L → ∞, with L/ξ finite. Using
equation (9), one readily obtains the moments

〈|s|〉 =
∫

|s|PL (s) ds = L−β/ν f̃0(L/ξ), (10a)

〈sk〉 =
∫

sk PL (s) ds = L−kβ/ν f̃k(L/ξ)

(k > 0), (10b)

which also define the scaling functions f̃ . For k = 1, one
recovers the average magnetization of equation (4a) and the
expected scaling law equation (7a) is correctly reproduced.
For the susceptibility, however, these moments imply χ ∝
Ld−2β/ν , consistent with equation (7b) only when hyperscaling
holds. For the Ising model, hyperscaling indeed holds [28], and
so the use of equation (9) is justified here.

Hyperscaling also implies a remarkable property concern-
ing the shape of PL(s) at criticality. To see this, note first that,
below Tc, there exists a spontaneous magnetization. The mag-
netization may be positive (+) or negative (−), and so PL (s)
features two peaks centered around s = ±m, see figure 1(a).
Each of the peaks may be approximated by a Gaussian [40]:

P±
L (s) ≈ Ld/2(2πTχ)−1/2 exp

[−(s ∓ m)2Ld/(2Tχ)
]
,

(11)

leading to a squared peak width w2 ≡ 〈s2〉−〈s〉2 = χT/Ld . In
the thermodynamic limit, the peaks remain at their respective
positions s ± m. At the same time, since the susceptibility
away from Tc is finite, the peaks also become increasingly
narrow, eventually converging to a distribution consisting of
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two δ peaks. The behavior in the disordered region T > Tc

follows analogously. In this case, a spontaneous magnetization
is absent and PL (s) is just a single Gaussian, centered around
s = 0, see figure 1(b). For T > Tc, PL (s) thus converges to
a single δ peak in the thermodynamic limit. Mathematically,
the shape of the distribution in these two limiting cases can be
expressed using the cumulant U1 = 〈s2〉/〈|s|〉2.4 After some
algebra, one finds that

lim
L→∞,T <Tc

U1 = 1 (two δ − peaks), (12a)

lim
L→∞,T >Tc

U1 = π/2 (one δ − peak). (12b)

Precisely at Tc, the behavior of the cumulant is more
subtle [40]. In a finite system at Tc, the magnetization vanishes
∝ L−β/ν , see equation (7a). Hence, PL (s) still exhibits two
peaks, at positions ∝ ±L−β/ν . For the root-mean-square peak
width, we obtain w2 ≡ 〈s2〉 − 〈s〉2 ∝ Lγ /ν−d , where now
equation (7b) was used. Comparing the distance between the
peaks to their widths, we find


 ≡ peak width

peak-to-peak distance
∝ Lω, (13)

with ω = (γ /ν − d)/2 + β/ν. By virtue of hyperscaling one
has ω = 0, implying that the relative peak width 
 does not
vanish in the thermodynamic limit. Consequently, PL(s) at
criticality does not become a superposition of two δ functions
but instead converges to a distribution of two overlapping
peaks. The cumulant U �

1 at Tc differs therefore from the off-
critical values [40]. By using equations (10a) and (10b), U �

1
can be expressed in terms of the scaling functions as U �

1 =
f̃2(L/ξ)/ f̃ 2

0 (L/ξ), which is a universal function of L/ξ , and
tends to a universal finite constant. In simulations, this result
is useful since plots of U1 versus T for various system sizes L
will show a common intersection point, yielding an estimate of
both U �

1 and Tc (cumulant intersection method [40]).

2.2. Random-field Ising model: finite size scaling

The analysis of MC simulation [39, 41] data for systems
belonging to the universality class of the random-field Ising
model (RFIM) [17] has certain subtleties [42, 43] when one
tries to apply finite size scaling methods [28, 40]. The
source of the problem is that the standard hyperscaling
relation [28] between critical exponents, which is required by
equation (9) [40], does not hold for the RFIM [17, 44–47].
Since the presence of the random field breaks the spin reversal
symmetry, it is necessary to consider also the ‘disconnected’
susceptibility χdis [45], in addition to the standard ‘connected’
susceptibility χ .

The RFIM Hamiltonian is

HRFIM = −J
∑

〈i, j〉
si s j − H

∑

i

si −
∑

i

hi si ,

si = ±1, (14a)

with J and H defined as before. In addition, at each lattice site
i , there acts a quenched random field hi , which we take to be

4 Of course, the cumulant is to be calculated for the full distribution. In
particular, for T < Tc, one should write PL (s) = (P−

L + P+
L )/2.

completely uncorrelated between neighboring sites, and with
an average of zero:

hi = ±h, [hi ] = 0. (14b)

The amplitude h of the random field should be small but finite
(h/J  1), but we are not concerned with the crossover
to the pure Ising model here, and hence disregard the limit
h → 0. Basic observables are again the average magnetization
per spin m, the connected susceptibility χ and the disconnected
susceptibility χdis:

m(T, H ) = [〈s〉], (15a)

χ(T, H ) = Ld[〈s2〉 − 〈s〉2], (15b)

χdis(T, H ) = Ld[〈s〉2]. (15c)

For the same reason as before, we also introduce

m ′(T, H ) = [〈|s|〉], χ ′(T, H ) = Ld [〈s2〉 − 〈|s|〉2].
(16)

For the RFIM model, one has to perform the standard Gibbs–
Boltzmann thermal average 〈·〉 for one realization of the
random field, followed by an average over M different random-
field configurations [·], whereby M should be large. Note
that χdis is simply the fluctuation of the average magnetization
〈s〉 between different realizations of the random field. Due
to random variations in these fields, 〈s〉 will sometimes be
negative and sometimes be positive. In the limit M → ∞,
one has [〈s〉] = 0, of course, but the fluctuation [〈s〉2] − [〈s〉]2

will generally not be zero, which is essentially what χdis

corresponds to. We shall also be interested in the distributions

PL ,i (s) ≡ PL ,i (s|T, Hi), (i = 1, . . . , M), (17)

defined as the probability to observe a magnetization per spin
s, in a system of size L, at temperature T and external field Hi ,
for the i th random-field realization. Note that we allow Hi to
vary between different random-field realizations. Ideally, one
would like to have M → ∞, but since resources are limited,
simulations always deal with finite M .

Assuming that the RFIM, for small enough h, has a
second-order phase transition at Tc, we expect power law
singularities for m, χ and ξ as before, but with different
critical exponents characteristic of the RFIM universality
class [17, 45]. In addition, a power law is expected for the
disconnected susceptibility

χdis ∝ |t|−γ̄ , (18)

with a new critical exponent γ̄ [17, 45]. It has been proved
rigorously that the RFIM in d = 3 dimensions, at low
enough temperature, indeed exhibits a non-zero spontaneous
magnetization [16]. It has not, however, been proved that
the second-order transition assumed above actually exists (also
weak first-order transitions [48] or spin glass type phases [49]
have been suggested). Recent MC simulations, however, favor
a second-order transition, albeit that the critical exponents are
still not known very accurately [50, 51].

4



J. Phys.: Condens. Matter 20 (2008) 404222 R L C Vink et al

While for the pure Ising model we have the standard
hyperscaling relation between critical exponents [28], for the
RFIM, rather a different relation has been proposed [44]

γ + 2β = ν(d − θ). (19)

Here, θ is an exponent which measures the deviation from
the standard hyperscaling relation; when it is zero, standard
hyperscaling is again recovered. Using the further result that
θ = γ /ν [45], it follows that (γ + β)/ν = d/2.

We now discuss finite size scaling in the RFIM, following
Eichhorn and Binder [42, 43]. Note first that the ‘derivation’ of
equations (7a) and (7b) still holds. Hence, m and χ scale with
L as before, albeit with different exponents. Similarly, for the
scaling of the disconnected susceptibility at Tc, we expect that

χL ,dis ∝ L γ̄ /ν . (20)

If we assume that each distribution PL ,i (s) scales conforming
to equation (9), it follows that 〈|s|〉i and 〈sk〉i scale according to
equations (10a) and (10b), respectively (the subscript denotes
that the thermal average was taken in the i th random-field
realization). Of course, the scaling functions f̃ may depend
on the particular random-field realization, but the leading L
dependence will be the same each time. Since by definition
[〈X〉] ≡ (1/M)

∑M
i=1〈X〉i , it follows trivially that the L

dependence implied by equations (10a) and (10b) appears in
the quenched average also. We thus obtain

[〈|s|〉2] = ĉ0L−2β/ν, [〈s〉2] = ĉ1 L−2β/ν,

[〈s2〉] = ĉ2 L−2β/ν,
(21)

with redefined scaling functions ĉ, which can be expressed in
terms of the functions f̃ , of course, but for our subsequent
discussion the precise form does not matter. Using the
definitions of χ , χ ′ and χdis the above equation implies

χ = (
ĉ2 − ĉ1

)
Ld−2β/ν , χ ′ = (

ĉ2 − ĉ0
)

Ld−2β/ν ,

χdis = ĉ1 Ld−2β/ν .
(22)

On the other hand, finite size scaling also demands that χ ∝
χ ′ ∝ Lγ /ν and χL ,dis ∝ L γ̄ /ν . The solution of the paradox is
to require that

γ̄ + 2β = νd, (23)

which correctly sets the scaling of χdis, and also that ĉ0 = ĉ2

and ĉ1 = ĉ2. Note that equation (23) is just the standard
hyperscaling relation, but with γ replaced by γ̄ . Hence,
even though normal hyperscaling in the RFIM does not hold,
equation (9) still gives a consistent description of finite size
scaling, but one must accept that the connected susceptibility
is not described by it, since the leading terms in χ and χ ′
cancel. To also describe the scaling of χ and χ ′, one needs
to include the leading correction to scaling. This correction
can be derived by assuming that PL ,i (s) at and below Tc is
a superposition of two Gaussians. Expressing the peak at
positive magnetization as P+

L ,i(s) ∝ exp(−(s − mi )
2/(2w2

i )),
it follows that 〈s〉i = mi and 〈s2〉i = m2

i + w2
i . Performing the

quenched average, we now obtain a non-zero expression for the

connected susceptibility χ = (Ld/M)
∑M

i=1 w2
i . This term,

consequently, is the sought-for correction; finite size scaling
then implies that w2

i ∝ Lγ /ν−d at criticality.
Since ĉ0 = ĉ2, it also follows that the cumulant

at criticality U �
1 ≡ [〈s2〉]/[〈|s|〉2] in the RFIM tends

to unity [42, 43]. The shape of the quenched-averaged
distribution at Tc is therefore similar to that below Tc:
both distributions are characterized by U1 = 1 in the
thermodynamic limit. Hence, also at Tc, we have a distribution
featuring two δ peaks5. This is profoundly different from
systems where hyperscaling holds, since here U �

1 tends to
a non-trivial value different from the off-critical values (as
explained in section 2.1). For the RFIM, plots of U1 versus
T , for various system sizes L → ∞, no longer intersect.
In practice, however, the system sizes feasible in simulations
are still quite small, and so one is plagued by ‘crossover’
effects [52] (in this case from Ising to RFIM universality).
This means that an intersection point can typically still be
identified, but it occurs at a value much closer to U �

1 = 1
of the RFIM [37, 43, 50]6. The fact that the quenched-
averaged distribution in the RFIM remains sharp at criticality,
in contrast to overlapping, is also obvious from equation (23).
Considering again the ratio 
 between peak width and peak-
to-peak distance, i.e. conforming to equation (13), one finds
that ω = (γ − γ̄ )/(2ν). Using the result of Schwartz that
γ̄ = 2γ [45], it immediately follows that ω < 0. In other
words, for the RFIM at its critical point, the relative peak width

 vanishes, leading to a distribution featuring two δ peaks.

2.3. Random-field Ising model: sample-to-sample fluctuations

The result of Schwartz [45], namely that γ̄ = 2γ , can be made
plausible when we consider one particular realization of the
random field. In a volume Ld , roughly half the lattice sites
‘feel’ a negative random field (and the other half a positive
random field, obviously) but with Poissonian fluctuations.
Hence, there will typically be an excess Zeeman energy of
order ±hLd/2, which has the same physical effect as if a
uniform external field of strength

Hc ∼ ±hL−d/2, (24)

acted on the spins in this volume (recall that h is the
strength of the random field). But then we expect a non-zero
magnetization 〈s〉 = Hcχ ∼ χhL−d/2 in this sample, with
χ the connected susceptibility. Using near Tc the standard
finite size scaling relations for 〈s〉 and χ , we obtain L−β/ν ∝
Lγ /ν−d/2 or β/ν = d/2 − γ /ν. Combining with equation (23)
one finds that γ̄ = 2γ .

It is of some interest to explore the consequences
of equation (24) further and study the behavior of the
magnetization for different realizations of the random field.
If Hc > 0 and T > Tc, we have for H = 0 a positive
magnetization of order 〈s〉 ∼ χhL−d/2 as argued above (recall
that H is the strength of the uniform external field). The field

5 Of course, whereas for T = Tc the peak positions scale ∝ L−β/ν , they
saturate at finite values ±m when T < Tc.
6 Note in particular figure 7 of [50] for the RFIM.
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Figure 2. (a) 〈s〉 versus H at T > Tc, for one realization of the random field where Hc happens to be positive. At H = 0, we have a finite
magnetization of order χhL−d/2 (point A). The field at which 〈s〉 changes sign, and where χ ∝ ∂〈s〉/∂ H attains its maximum, occurs at
H = −Hc (point B). Note that the slope at B approaches the zero-field connected susceptibility χ |H=0 in the limit L → ∞. (b) [〈s〉] versus
H at T < Tc. The dashed curve shows the behavior in the thermodynamic limit; the solid curve in a finite system of size L . Note that the
rounding is of order L−d/2. This means that the slope ∂[〈s〉]/∂ H |H=0 in finite systems grows ∝ Ld/2 and that the region where [〈s〉] deviates
significantly from L → ∞ behavior shrinks ∝ L−d/2.

(b)
(a)

RFIM
pure Ising model

Figure 3. 〈s〉 versus H at T < Tc for the pure Ising model (a) and the RFIM (b). The dashed curves show the behavior in the thermodynamic
limit; solid curves for finite systems (see details in the text). Note that scenario (b) holds only in spatial dimension d > 2.

at which the susceptibility χ ∝ ∂〈s〉/∂ H is maximized is
therefore not H = 0, but rather H = −Hc, where the net
effect of the random field is canceled. This is sketched in
figure 2(a), where 〈s〉 versus H is plotted7. Taking the limit
L → ∞, it follows that the slope of the curve at points A
and B becomes the same, since, on the small scale of Hc,
the curve may be approximated by a straight line. Note that
the slope approaches the zero-field susceptibility χ , and also
that the slope is independent of Hc. Plotting 〈s〉 versus H
for different realizations of the random field, one thus obtains
a set of parallel straight lines. In other words, χ is rather
insensitive to the particular random-field configuration, which
just expresses the fact that the system is self-averaging for
T > Tc, as expected [53, 54]. This result is important since,
in systems lacking spin reversal symmetry, the natural path in
the (T, H ) plane to follow is no longer the line H = 0, but
rather the path along which χ assumes its maximum for each
realization of the random field.

The situation is qualitatively different for T < Tc,
of course, since we now expect a first-order transition and,
consequently, two-phase coexistence. In the pure Ising model,
coexistence between two states (with positive and negative
spontaneous magnetization ±m) occurs at H = 0, irrespective
of the system size L. In the thermodynamic limit, 〈s〉 increases

7 Of course, the graph of [〈s〉] versus H is antisymmetric about the origin,
since in the quenched average both signs of Hc appear equally often.

monotonically with H and jumps from −m to +m at H = 0;
see the dotted curve in figure 3(a). In a finite system,
the transition is rounded and a true jump does not appear.
Instead, 〈s〉 passes smoothly through the origin, but with slope
∂〈s〉/∂ H ∝ Ld [55, 56], consistent with the formation of
a jump in the thermodynamic limit; see the full curve in
figure 3(a). Consequently, phase coexistence in the pure Ising
model may always be studied using H = 0. Provided T is
sufficiently below Tc, double-peaked distributions PL(s) are
readily observed, i.e. conform to figure 1(a), from which the
coexistence properties follow.

For the RFIM below Tc and finite system size L, the
behavior is more subtle, since the random field breaks the
spin reversal symmetry. We still expect a (rounded) first-order
transition, but centered around the shifted field H = −Hc,
see figure 3(b). In the thermodynamic limit, Hc → 0, and
so the magnetization jumps, as before, at H = 0 (dotted
curve). In a finite system 〈s〉 increases smoothly with H (solid
curve), passing through zero at H = −Hc (point A), with
slope ∂〈s〉/∂ H ∝ Ld . Since Hc ∝ hL−d/2 asymptotically
exceeds the rounding, it follows that, in a finite system at
H = 0, phase coexistence is unlikely. At H = 0, one either
observes the phase with positive magnetization (as one would
in figure 3(b)) or, if the random field happens to resemble
Hc < 0, a negative magnetization. Only very rarely, when
the inflection point A happens to coincide with H = 0, will
both phases be observed simultaneously. Hence, at H = 0, the
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distribution PL ,i (s) will mostly feature just one peak, located
at positive or negative values. In the quenched average, one
recovers [〈s〉] = 0, of course, but the fluctuation [〈s〉2]−[〈s〉]2

is not zero, since this, apart from a factor Ld , is precisely
the disconnected susceptibility, see equation (15c). Clearly,
to study phase coexistence in simulations, it does not make
sense to use H = 0, since one would rarely see a double-
peaked distribution. Instead, it is more meaningful to obtain
these properties at the inflection point A, where χ ∝ ∂〈s〉/∂ H
attains its maximum. To be precise: one should apply an
external field H = −Hc ‘tailored’ for each random-field
realization. In the limit L → ∞, one has Hc → 0 and
coexistence properties obtained at the inflection point will
agree with those obtained at H = 0. The advantage of the
former method being that double-peaked distributions PL ,i (s)
will now already appear in much smaller systems. Of course,
for these double-peaked distributions, 〈s〉i will be close to zero
each time, and so it follows that a different definition for the
disconnected susceptibility should be used, presumably of the
form χ ′

dis = Ld [〈|s|〉2].
Considering now the behavior of [〈s〉] versus H below Tc,

we expect the scenario of figure 2(b). In the thermodynamic
limit, a jump in [〈s〉] at H = 0 is anticipated. In finite systems,
the jump is rounded, but on a more severe scale L−d/2, as
pointed out by Kierlik et al [14]. Note that graphs of [〈s〉]
versus H for finite L intersect the origin since, in the quenched
average, both signs of Hc are equally likely.

Unfortunately, these arguments cannot be easily extended
to T = Tc. As discussed in detail by Wiseman and
Domany [53, 54], systems with quenched random disorder at
criticality exhibit lack of self-averaging. For small enough
fields H , it still holds that 〈s〉 versus H for one realization
of the random field is a straight line, with slope ∝ Lγ /ν . The
same holds for [〈s〉] versus H , where the slope is also ∝ Lγ /ν ,
but the prefactors differ. The ratio of these prefactors is a
quantity characterizing the lack of self-averaging, in the sense
of Wiseman and Domany [53, 54].

2.4. Obtaining the quenched average using a
sample-dependent Hi

For the Ising model, one knows beforehand that the inflection
point of 〈s〉 versus H (or [〈s〉] versus H in the case of the
RFIM), occurs on the symmetry line H = 0. Hence, varying
T at fixed H = 0, one cannot miss the critical point. In less
symmetric models, the field H at the inflection point is not
known beforehand. In these cases, it is clearly more convenient
to follow the path H = −Hc(T ) in the (T, H ) plane of
each random-field realization. That is, for each realization
of the random field i , one numerically locates the field Hi

where ∂〈s〉i/∂ H in that sample is maximized. Properties of
interest are then collected at Hi and the process is repeated
over many different random-field samples. Extrapolating the
data to L → ∞ is demanding in practice, but does not present
any principal objections. Only the prefactors of the finite size
scaling laws at criticality

〈s〉 ∝ L−β/ν, 〈s2〉 − 〈s〉2 ∝ Lγ /ν−d ,

〈s〉2 ∝ L γ̄ /ν−d ,
(25)

will differ from those of the standard quenched average [·]
obtained at fixed H . Here, the overbar denotes averaging at the
sample-dependent Hi . Since many typical fluids (including the
AO model) are asymmetric, collecting the quenched average as
X simply becomes a necessity in these cases.

2.5. Extension to fluids

We now consider a liquid–vapor transition of a fluid confined
to a quenched porous medium. We use the grand canonical
(GC) ensemble, i.e. volume Ld , temperature T and chemical
potential μ are fixed, but the number of particles N in the
system fluctuates. Our analysis is based on the (normalized)
distribution

PL ,i(N) ≡ PL ,i (N |T, μi ), (i = 1, . . . , M), (26)

defined as the probability to observe a system containing N
particles, in the i th realization of the porous medium. Note the
dependence on L and T , and also that we allow the chemical
potential μi to vary between different realizations of the porous
medium. For given L and T , PL ,i (N) is sampled from N = 0
to Nmax, using a biased sampling scheme [57]. This process is
repeated for M different realizations of the porous medium.
The sampling scheme is constructed to visit the full range
0 � N � Nmax, irrespective of the imposed chemical potential.
Hence, we set μi = 0 in the simulations and use histogram
reweighting [58] to extrapolate to different values afterward.

Assuming that the liquid–vapor transition in a porous
medium belongs to the universality class of the RFIM,
we expect, in the thermodynamic limit, a critical point at
temperature Tc and chemical potential μcr. Below Tc, we
anticipate bimodal distributions PL ,i (N), but only if μi is
chosen reasonably. In finite systems, we actually expect the
bimodal form to persist considerably above Tc also since,
for the RFIM, PL ,i (N) remains sharp at criticality. In this
work, μi is tuned for each realization of the porous medium
such that ∂〈N〉i /∂μi for that realization is maximized, with
〈N〉i = ∑∞

N=0 N PL ,i (N)8. Loosely identifying 〈N〉i ↔ 〈s〉,
μi ↔ H , our choice may be regarded as the analog of the
inflection point A in figure 3(b) for the magnetic case.

Figure 4 shows a schematic of PL ,i (N) in bimodal form.
The left peak represents the vapor, the right peak the liquid,
with the average 〈N〉i of the full distribution located in between
(arrow A). Figure 4 also shows that Nmax should be chosen
well beyond the liquid peak (arrow B). If we shift PL ,i(N)

by its average, we approximately recover the Ising symmetry
PL(s) = PL(−s) of the magnetization distribution. Taking
the quenched average, this requires a shift over [〈N〉] =
(1/M)

∑M
i=1〈N〉i . Therefore

(N − [〈N〉]) /Ld, (27)

in a fluid with quenched disorder, is the analog of s in a
magnetic system, where the factor Ld is needed because s is

8 Note that other choices are conceivable also, such as the ‘equal-area-
rule’ [56, 59] or the generalized k-locus defined in [60]; all become identical
in the limit L → ∞, of course.
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Vapour 
phase

liquid 
phase

order parameter

A B

Figure 4. Schematic representation of the expected bimodal form of
PL,i (N) obtained in a single realization of the porous medium at and
below Tc. The average of the full distribution 〈N〉i separates the
vapor from the liquid peak. The distance between the peaks, defined
as the average number of particles in the liquid phase 〈N〉liq,i minus
the average 〈N〉vap,i of the vapor, gives an estimate of the order
parameter. The moments of the vapor and liquid peak yield the
connected and disconnected susceptibilities, see details in the text.

the magnetization per spin. Replacing s in the definitions of χ

and χdis by equation (27), one obtains

χ = [〈N2〉 − 〈N〉2]/Ld , (28)

χdis = ([〈N〉2] − [〈N〉]2
)
/Ld , (29)

as the analogs of the connected and disconnected susceptibility
in a fluid with quenched disorder. As stated before, χ and χdis

are analyzed for the vapor and liquid phase separately, using
〈N〉i as a ‘cutoff’ separating the peaks in PL ,i (N). In this way,
we obtain for the vapor phase

〈Nk 〉vap,i = 2
〈N〉i∑

N=0

Nk PL ,i (N), (30)

where the factor of 2 is a consequence of the normalization
of PL ,i (N). The moments 〈Nk 〉liq,i of the liquid are obtained
similarly, with the summation from N = 〈N〉i to Nmax. The
connected and disconnected susceptibilities of the vapor phase
can now be written as

χvap
con = [〈N2〉vap] − [〈N〉2

vap]
Ld

,

χ
vap
dis = [〈N〉2

vap] − [〈N〉vap]2

Ld
,

(31)

with the quenched average [·] conveniently expressed in terms
of equation (30) as [〈Nk 〉l

vap] = (1/M)
∑M

i=1〈Nk 〉l
vap,i . Similar

expressions hold for χ
liq
con and χ

liq
dis also. Note that, since the

chemical potential μi is ‘fine-tuned’ for each realization of the
porous medium, the quenched average obtained above actually
corresponds to X of equation (25), but this should be obvious
from our discussion. For completeness, we remark that the
quenched-averaged distance between the peaks in figure 4 may
be used as the order parameter m = [〈N〉liq] − [〈N〉vap],
although in this work the emphasis is on the susceptibilities.

Of course, it needs to be verified in simulations if the
expected bimodal form of PL ,i (N) really occurs in practice. In

our previous work, this turned out to be the case [37]. However,
GC simulations of the Lennard-Jones fluid with quenched
disorder have revealed distributions with three peaks also [9];
the possibility of two fluid phase transitions occurring has also
been suggested [10], although this probably does not survive
in the quenched average [11].

3. Model and simulation method

3.1. AO model

We now proceed to test the concepts of the previous section
in a colloid–polymer mixture with quenched disorder. Our
primary aim is to measure the connected and disconnected
susceptibilities, and to show that both diverge at criticality. To
describe the mixture, we use the AO model [20, 21]. In this
model, colloids (species c) and polymers (species p) are treated
as spheres with respective diameters σc and σp. Hard-sphere
interactions are assumed between colloid–colloid and colloid–
polymer pairs, while the polymer–polymer interaction is taken
to be ideal. In this work, σc is the unit of length, the colloid-to-
polymer size ratio q ≡ σp/σc = 1, and the spatial dimension
will be d = 3. The behavior of this model for q = 1 without
quenched disorder has been studied before [36], and bulk phase
separation, whereby the mixture ‘splits’ into a colloid-rich
(polymer-poor) and colloid-poor (polymer-rich) domain, was
readily observed. If one ‘identifies’ the colloid-rich phase with
a liquid, and the colloid-poor phase with a vapor, the phase
separation can be treated in much the same way as a liquid–
vapor transition. In the GC ensemble, one then introduces
the colloid chemical potential μ and, following convention,
the polymer ‘chemical potential’ ηr

p
9. Phase separation occurs

at the coexistence colloid chemical potential μ = μcoex, for
values of ηr

p exceeding the critical value ηr
p,cr (ηr

p is therefore
the analog of inverse temperature; for q = 1, ηr

p,cr ≈ 0.861
has been reported [36]). The discussion and definitions of
section 2.5 thus trivially ‘carry over’ to the AO model if one
identifies N ↔ number of colloids, μ ↔ colloid chemical
potential and T ↔ 1/ηr

p.

3.2. AO model with quenched disorder

To study the AO model with quenched disorder, we introduce
a third species Q of immobile (quenched) particles. These
particles are also spheres, with diameter σQ = σc, and they
are distributed in the simulation box at the start of each
simulation (the simulation box, incidentally, is a cube of
volume V = Ld with periodic boundary conditions). The
quenched particles, NQ of them in total, are located at random
positions, irrespective of overlap. Consequently, the structure
of the quenched system is just that of an ideal gas. The
average packing fraction of the quenched system is fixed at
ηQ = πσ 3

Q NQ/(6V ) = 0.05 but, consistent with our GC
approach, we allow for Poissonian fluctuations around the
average. From a computational point of view, the quenched

9 Strictly speaking, ηr
p is defined as the polymer reservoir packing

fraction [22]. For the present case of ideal polymers ηr
p = πσ 3

p e(μp/kB T )/6�3,
with μp the polymer chemical potential, and � the thermal wavelength.
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system is trivial to generate: one simply draws NQ from a
Poisson distribution and generates a corresponding number of
positions in the simulation box. Next, a GC simulation of the
AO model is performed in the simulation box containing the
quenched system, whereby the colloid and polymer positions
are continuously updated, but not the positions of the quenched
particles, of course. The colloids and polymers interact with
the quenched particles in a simple way: colloids may not
overlap with quenched particles, while the polymers may
overlap freely with them. Of course, computational efficiency
is the main motivation for using such simple interactions,
although one could envision similar interactions in experiments
also, using polymer quenched disorder. In any case, the
simple approach adopted here is appealing, as previous work
indicates [13, 37, 38]. An estimate ηr

p,cr ≈ 1.192 has also
already been reported [37] for the exact same parameters as
considered here.

3.3. Implementation details

We now discuss some implementation details. For the i th
realization of the quenched system, grand canonical MC is
used to measure PL ,i (N) of equation (26), with N the number
of colloids. The distribution is obtained using the (already
mentioned) biased sampling scheme [57], in conjunction with a
cluster move [25, 61]. The cluster move is needed to alleviate
the otherwise (too) slow equilibration of the AO model. Of
course, simulations of a single-component fluid do not require
the cluster move. We consider system sizes L = 7–12. For
each system size, PL ,i (N) is typically measured for M ∼
2000 (!) realizations of quenched disorder, at several values
of ηr

p in the vicinity of ηr
p,cr. Large values of M are needed to

obtain χdis accurately.
In GC simulations, particles are continuously inserted and

deleted from the simulation box, and so one can define a time τ

after which a given population of particles has been completely
‘updated’ by new ones. The duration of a GC simulation may
therefore be expressed in units of τ . In the biased sampling
scheme [57], simulation time can be conveniently allocated,
since the scheme constructs PL ,i(N) step-by-step via so-called
windows. In the first window, N varies between 0 and 1, in the
next window between 1 and 2, and so forth, up to Nmax (the
number of polymers Np fluctuates freely in each window, of
course). Hence, we allocate a fixed amount of simulation time,
typically 5τ , to each window. It then takes roughly 12 min
to obtain PL ,i (N) for L = 7 and about 1 h for L = 12.
Of course, these benchmarks depend on ηr

p, as well as on
the precise computer architecture, but they suffice to give an
overall impression of how much computer time was used.

A final remark concerns the implementation of histogram
extrapolation [58]. As stated earlier, all simulations are
performed at colloid chemical potential μi = 0, and
P(N |μi = μ′) ∝ P(N |μi = 0) exp(μ′ N) is used to
extrapolate to different values. Obviously, a similar expression
holds for the polymers also, which one could use to extrapolate
in ηr

p. In fact, an important ingredient of this work is precisely
the latter extrapolation, and our analysis would become
extremely cumbersome without it. However, this requires that

we store the full two-dimensional histogram PL ,i (N, Np), with
N the number of colloids and Np the number of polymers.
Since we typically consider 2000 realizations of quenched
disorder, storage requirements become enormous. Fortunately,
storage can be reduced tremendously when one realizes
that, for a fixed number of colloids N , the corresponding
distribution in Np is to a good approximation a single Gaussian
peak. For N = 0 this is obvious, since then we have a pure
polymer system, but it holds well for N > 0 also. Hence,
to facilitate extrapolations in ηr

p, we only need to store the
average and variance in Np for each window (which costs
only very little storage, at no cost in CPU time either). We
have verified this approach and checked that results obtained
at one value of ηr

p indeed extrapolate to those obtained at a
different value (not too far away, of course). Note also that
the histogram extrapolation method itself can be optimized
since, for a Gaussian distribution, integrations over Np can
be performed exactly beforehand; the resulting expressions
become functions of the average and variance, which can be
hard-coded.

4. Results

4.1. Sample-to-sample fluctuations

The analysis of section 2.5 requires that the distributions
PL ,i (N) are somewhat bimodal, i.e. that they resemble the
schematic shape of figure 4. In order to verify this, we
show, in figure 5, PL ,i (N) for a number of realizations of
quenched disorder at a value of ηr

p significantly below the
critical value ηr

p,cr ≈ 1.192. Clearly, the bimodal shape is
already present in most distributions, even for this low value
of ηr

p. Of course, by making ηr
p even lower, the bimodal shape

will eventually vanish for all realizations of quenched disorder,
since we then enter the one-phase region where PL ,i (N) is
just a single peak, conforming to figure 1(b). In any case,
figure 5 does confirm our expectation that, for random-field
Ising universality, bimodal distributions persist well above Tc

(recall that ηr
p is the analog of inverse temperature). Figure 5

also reveals that not all the distributions are bimodal, see, for
example, the distribution in the upper left corner. In these
cases, splitting the distribution in half at the average is not
meaningful anymore, although numerically this can still be
applied. Since, for the thousands of distributions generated in
our simulations, inspecting each one visually by hand is not
feasible, the (occasional) single-peaked distribution is treated
in the same way as the bimodal ones. Of course, single-
peaked distributions become increasingly rare upon increasing
ηr

p, as figure 6 clearly indicates, where the same realizations
of quenched disorder were used as in figure 5. Note that, in
figure 6, all distributions now feature two peaks.

Another feature that emerges from these figures is that the
vapor peak is much sharper than the liquid peak. This appears
to be a non-universal feature that depends on the interaction
between fluid and quenched particles. In our previous work,
we have studied a different type of quenched disorder, whereby
also the polymers were not allowed to overlap with the
quenched species [37, 38]. In this case, a reversed trend was
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Figure 5. Distributions PL,i (N) for 18 different realizations of quenched disorder using ηr
p = 1.05 and L = 10. The horizontal axes in each

of the plots show the colloid packing fraction ηc ≡ πσ 3
c N/(6V ) from ηc = 0 → 0.2 (left to right); the unit on the vertical axes is arbitrary.

Figure 6. Same as figure 5 but for ηr
p = 1.15 and L = 10; the colloid packing fraction on the horizontal axes is from ηc = 0 → 0.25.

observed, namely a sharp liquid peak ‘coexisting’ with a much
broader vapor.

Having shown that our assumption of bimodal distribution
shape is a reasonable one, we need to determine the number of
quenched disorder realizations M typically required to obtain
χ

liq
con and χ

liq
dis accurately. To this end we show, in figure 7, the

variation of these quantities as a function of M , for two system
sizes L, and several values of ηr

p (as indicated in the label of
each subplot). The trends revealed in figure 7 are typical for
other state points also. Clearly, from this figure, we conclude
that M should be of the order of 1000 at least. Larger values
are better still, but then we meet the limit of our computational
resources.

4.2. Connected susceptibility

We now consider the connected susceptibility, first of the liquid
phase. Shown in figure 8(a) is χ

liq
con versus ηr

p, for several

system sizes. Note the presence of the peak. Consistent with
finite size scaling, the peak height increases with L; the latter
could now be fitted to equation (7b) to obtain γ /ν. However, a
more stringent test is to plot

t L1/ν versus χ
liq
L ,conL−γ /ν , (32)

with t = ηr
p/η

r
p,cr − 1 the relative distance from the critical

point. Although not derived in this work, finite size scaling
implies that data from different system sizes, when scaled
conforming to equation (32), collapse onto a single master
curve, provided the correct values of ηr

p,cr, ν and γ are
used10. In figure 8(b) the resulting scaling plot is shown,
where ηr

p,cr = 1.194, ν = 1.1 and γ /ν = 1.87 were used.
The quality of the collapse is clearly very good. However,
we noticed that good collapses were obtained for different

10 The derivation is straightforward, see, for example, [41].
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Figure 7. ‘Moving average’ of the susceptibilities χ liq
con (left frames) and χ

liq
dis (right frames) of the liquid phase, for L = 7 and 11, using several

values of ηr
p as indicated in the labels. Plotted are the susceptibilities (vertical axes) versus the number of quenched disorder realizations M

(horizontal axes).

Figure 8. (a) Connected susceptibility of the liquid phase versus ηr
p

for several system sizes L . Note the increase of peak height with L ,
and also the shift in the peak positions. (b) Finite size scaling plot,
where ηr

p,cr = 1.194, ν = 1.1 and γ /ν = 1.87 were used (see details
in the text).

values also, typically ν = 1.0–1.2 and ηr
p,cr = 1.19–1.22,

which gives an indication of the uncertainty. The problem
is that both ν and ηr

p,cr follow from the L dependence of
the peak positions. Over the range of available system
sizes, the shift in the peak positions is rather small and
hence large uncertainties in ν and ηr

p,cr are unavoidable. In
contrast, γ /ν can be obtained more reliably, since the latter
is set by the peak height versus L, which yields a more
pronounced numerical signature. Similar conclusions are

Figure 9. Same as figure 8 but for the connected susceptibility of the
vapor. In the scaling plot of (b), ηr

p,cr = 1.194, ν = 1.1 and
γ /ν = 1.87 were used.

reached for the connected susceptibility of the vapor, see
figure 9.

4.3. Disconnected susceptibility

We now come to the main result of this work, namely the
behavior of the disconnected susceptibility. If fluids with
quenched disorder belong to the universality class of the RFIM,
the analog of χdis defined in section 2.5 should diverge with
critical exponent γ̄ . Since γ̄ = 2γ [45], the divergence should
be very pronounced, much more pronounced than that of the
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Figure 10. The main result of this paper: (a) disconnected
susceptibility of the liquid phase versus ηr

p for several system sizes L
and (b) the corresponding finite size scaling plot, where
ηr

p,cr = 1.194, ν = 1.1 and γ̄ /ν = 3.82 were used (see details
in the text).

connected susceptibility, in fact. In figure 10(a), we show χ
liq
dis

of the liquid phase versus ηr
p for several system sizes. The

formation of a peak is clearly visible. Note also the rapid
growth of the peak height: increasing the system size from
L = 7 → 12, the disconnected susceptibility increases by a
factor of more than six, compared to a factor of about three for
the connected susceptibility. The corresponding scaling plot is
shown in figure 10(b), which now involves γ̄ , of course. Using
ηr

p,cr = 1.194, ν = 1.1 and γ̄ /ν = 3.82, the data collapse
convincingly, confirming the power law divergence of χdis. For
the same reason as before, the scaling plot is rather insensitive
to ηr

p,cr and ν, and so the uncertainty in these quantities is
similar as before, but the ratio γ̄ /ν should again prove reliable.
In figure 11(a) we plot the disconnected susceptibility of the
vapor phase versus ηr

p, but only for L � 10. For reasons
we do not yet fully understand, the statistical uncertainty in
χ

vap
dis is very large. While the growth of a peak with system

size is still confirmed, the data clearly do not lend themselves
for measuring critical exponents, and so a scaling plot is not
attempted here. One reason for the large statistical uncertainty
in χ

vap
dis is the smaller number of particles in the vapor phase

(compared to the liquid).

4.4. Scaling of the cumulant

In figure 12(a), we show the cumulant as a function of ηr
p for

several system sizes. Recall that the cumulant is defined as
U1 ≡ [〈s2〉]/[〈|s|〉2], with s = (N − [〈N〉])/Ld , which can be
calculated straightforwardly from the distributions PL ,i (N)11.
As expected, the cumulants from different system sizes do not
intersect at criticality, but instead reveal a scatter of intersection
points, close to U �

1 = 1 of the RFIM. This behavior conforms

11 In our previous work [37], we used U1 ≡ [〈s2〉]/[〈|s|〉]2, but the reader
can verify following section 2.2 that both definitions become equivalent for
L → ∞.

Figure 11. (a) Disconnected susceptibility of the vapor phase versus
ηr

p and (b) the quenched-averaged chemical potential versus ηr
p

(for several system sizes L).

Figure 12. Plots of U1 versus ηr
p, using several system sizes L , for

the AO model with quenched disorder (a) and without (b). The
horizontal line in (b) marks U �

1 ≈ 1.239 of the Ising model in three
dimensions.

to our discussion of section 2.2 and confirms that PL ,i(N)

remains sharp at the critical point, featuring two well-separated
peaks, since hyperscaling is now violated.

For comparison, figure 12(b) shows the cumulant of
the AO model in the pure system, i.e. without quenched
disorder. In this case, hyperscaling is not violated and a
sharp intersection point is indeed revealed, occurring at a
value U �

1 different from the off-critical values 1 and π/2,
respectively. For Ising systems in d = 3 dimensions, we
expect that U �

1 ≈ 1.239 [62], marked by the horizontal line
in figure 12(b), and our data indeed intersect close to this
value (some deviation is clearly apparent, but to account for
this would require a field-mixing analysis [26, 63]). From
the intersection point, we also conclude ηr

p,cr ≈ 0.876 for
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Figure 13. (a) Variance [μ2] − [μ]2 versus ηr
p for system sizes

L = 7 → 12 (from top to bottom). (b) Same as above, but with the
variance scaled by Ld .

the pure system, which compares well to the estimate reported
in [36].

4.5. Chemical potential

Finally, we consider the average and variance of the chemical
potentials at which our data were obtained. Recall that, for
each realization i of quenched disorder, we use a ‘fine-tuned’
chemical potential μi , chosen at the maximum of ∂〈N〉i /∂μi

for that realization. Hence, it is interesting to consider the
quenched-averaged chemical potential [μ] and its variance
[μ2] − [μ]2, with [μk] = (1/M)

∑M
i=1 μk

i . Shown in
figure 11(b) is [μ] versus ηr

p for several system sizes. The data
do not reveal any strong L dependence, which is similar to that
observed in fluids without quenched disorder. Of more interest
is the variance, which should vanish for L → ∞. Shown in
figure 13(a) is [μ2] − [μ]2 versus ηr

p and the decrease of this
quantity with increasing L is clearly visible. Kierlik et al have
shown that, below Tc in the two-phase region, the variance of
the chemical potential vanishes ∝ L−d [14]. Plotting therefore
Ld([μ2] − [μ]2) versus ηr

p, see figure 13(b), we observe that
this prediction holds quite well for our data also.

5. Discussion and summary

We have explained finite size scaling in the random-field
Ising model and shown how this technique may be applied
to a fluid with quenched disorder. We have also defined the
analog of the disconnected susceptibility χdis for the latter.
If fluids with quenched disorder belong to the universality
class of the random-field Ising model, as conjectured by
de Gennes [7], χdis should diverge at criticality, and so our
definition facilitates further tests of this conjecture. To perform
one such test has been the topic of the present work, using
the Asakura–Oosawa model of a colloid–polymer mixture
confined to a random porous medium. Our data are indeed
compatible with a divergence of χdis. Moreover, for the liquid

phase, we even recover γ̄ ≈ 2γ , in quantitative agreement
with the prediction of Schwartz for the random-field Ising
model [45]. Our estimate of the correlation length exponent
ν ≈ 1.0 − 1.2, although not very precise, is also consistent
with reported random-field Ising estimates [50, 51]. Hence, the
present results confirm our earlier study [37], where evidence
of random-field Ising universality in fluids with quenched
disorder was also presented, but based on the shape of PL ,i(N)

at criticality. We also remind the reader of the large number
of porous medium realizations used in our analysis. As the
‘moving averages’ of figure 7 indicate, such numbers become
a necessity, if χ and χdis are to be obtained with any meaningful
accuracy.

Finally, we turn to a discussion of possible applications
of our work to experiments. The prototype experimental
realization of a fluid with quenched disorder is an atomic
fluid injected into silica aerogel. This realization has the
disadvantage that the coupling between the porous medium and
the fluid is weak [3, 4], as manifested by the small shift of the
critical temperature (compared to the system without quenched
disorder). Moreover, the characteristic length over which the
aerogel structure appears random is very large, compared to
the size of the fluid molecules. In this respect, colloidal fluids
may offer an attractive alternative. Note that investigations
of critical phenomena in colloid–polymer mixtures without
quenched disorder [64, 65] are already experimentally feasible:
critical interface and density fluctuations can be visualized
directly [66, 67] using confocal microscopy [68]. In principle,
such confocal experiments could be extended to include
quenched disorder also. The generation and synthesizing of
quenched colloidal porous media has received considerable
attention [69–71]. One could envision an experiment whereby
a colloid–polymer mixture is injected into a rigid colloidal gel.
Such gels could be formed using small nanoparticles which can
grow into randomly branched networks at volume fractions of
only a few percent [71]. The size of these nanoparticles can
be much smaller than the typical colloid or polymer diameter,
and so one can easily reach the regime where the critical
correlations of the colloid–polymer mixture average over the
random structure of the gel. Another feasible realization would
be to use a polymer blend containing nanoparticles of suitable
size, such that the diffusion of these particles in the blend is
small. The structure formed by the nanoparticles will then
appear to be frozen (quenched) on the timescales needed for
the critical correlations of the polymer blend to equilibrate.
The latter could then be measured using, for example, light
scattering12. In any case, we hope that the simulational efforts
of the present work will stimulate experimental efforts also, in
order to completely settle this long-standing problem.
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