
Dynamics of a Brownian circle swimmer
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Self-propelled particles move along circles rather than along a straight line when their driving force does not
coincide with their propagation direction. Examples include confined bacteria and spermatozoa, catalytically
driven nanorods, active, anisotropic colloidal particles and vibrated granulates. Using a non-Hamiltonian rate
theory and computer simulations, we study the motion of a Brownian “circle swimmer” in a confining channel.
A sliding mode close to the wall leads to a huge acceleration as compared to the bulk motion, which can further
be enhanced by an optimal effective torque-to-force ratio.
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Active particles, which are self-propelled by their own
motor, exhibit a wealth of novel and fascinating nonequilib-
rium effects such as giant density fluctuations �1�, swarming
�2�, and swirling �3�. Examples are found in quite different
areas of physics and include micro-organisms propelled by
flagella in a fluid �4–8�, man-made colloidal swimmers �9�,
catalytically driven nanorods or Janus particles �10,11�, vi-
brated granulates of polar rods �3,12�, and pedestrians �13�.
Typically it is assumed that the swimmers move along their
symmetry axis such that the force and the particle orientation
are in line. This leads to a motion along a straight line just
perturbed by random �e.g., Brownian� fluctuations.

Here we study the case in which the internal force propel-
ling a colloidal particle does not coincide with the particle
orientation. In the absence of Brownian fluctuations, this will
lead to an overdamped motion along a closed circle, there-
fore we refer to this particle as a “circle swimmer.” Even a
slight misalignment of the drive direction will result in circle
swimming, which is thus the generic case of self-propulsion.
Circle swimmers with a pronounced curved trajectory are
realized in nature and can be artificially prepared: In fact, it
has been shown that certain bacteria �6–8,14� and spermato-
zoa �4,5�, when confined to two dimensions, swim in circles.
Moreover, catalytically driven nanorods �10,11� and colloidal
particles �9� can be prepared with a tilted motor, and a vi-
brated polar rod �3� on a planar substrate with an additional
left-right asymmetry will move along circles. Last but not
least, the trajectories of completely blinded and ear-plugged
pedestrians have a significant circular form �15�. Despite
their practical importance, the Brownian dynamics of a circle
swimmer has not yet been addressed by theory and simula-
tion either in the bulk or under confinement �16�.

In this paper, we propose a simple model for Brownian
motion of a circle swimmer in two spatial dimensions arising
from the combined actions of an internal self-propelling
force and a torque. We solve the Langevin equation of a
two-dimensional circle swimmer analytically in the bulk pro-
viding a suitable reference model. The averaged position
falls on a spira mirabilis, and a crossover from an oscillatory
ballistic to a diffusive behavior is found in the mean-squared
displacement. We then identify the modes of propagation of

a circle swimmer in confining channels with repulsive walls
using computer simulations and a non-Hamiltonian rate
theory. In symmetric channels, the long-time self-diffusion
coefficient DL is significantly enhanced, mediated by an ef-
ficient sliding mode of a tilted rod close to a wall. Further-
more, DL is nonmonotonic in the torque. Finally, in asym-
metric channels which are lacking a left-right symmetry
�e.g., due to gravity �17��, the sliding mode of the circle
swimmer yields a ballistic motion along the wall.

Neglecting hydrodynamic interactions, the overdamped
motion of the Brownian circle swimmer in two dimensions
�2D� is governed by the Langevin equations for the rod
center-of-mass position ṙ=�D · �Fû−�V�r ,��+ f� and for
the rod orientation �̇=�Dr�M −��V�r ,��+��, respectively,
where dots denote time derivatives and �−1=kBT is the
thermal energy. The rod’s short time diffusion tensor
D=D��û � û�+D��I− û � û� is given in terms of the short
time longitudinal �D�� and transverse �D�� translational dif-
fusion constants, with û= �cos � , sin ��, I the unit tensor,
and � a dyadic product. Dr is the short time rotational dif-
fusion constant. Fû is a constant effective internal force that
represents the propulsion mechanism responsible for the de-
terministic motion in the rod orientation, and M is a constant
effective internal or external torque yielding the deterministic
circular motion �see the sketch in Fig. 1�. V�r ,�� is an ex-
ternal confining potential. f and � are the zero mean Gaussian
white noise random force and random torque originating
from the solvent, respectively. Their variances are given by
f ��t�f ��t��=2��t− t�� / ��2D��, f��t�f��t��=2��t− t�� / ��2D��,
and ��t���t��=2��t− t�� / ��2Dr�, where f � , f� are the compo-
nents of f parallel and perpendicular to û, respectively. The
bars over the quantities denote a noise average. We remark
that for an active self-propelled particle, F and M are effec-
tive net forces that could be determined in the bulk from the
forward and angular velocities F= �r�̇ � / ��D�� and M
= ��̇ � / ��Dr�, respectively, but are not necessarily directly
connected to the internal propulsion mechanism �18�.

At first we consider the free circle swimmer, i.e., we set
V�r ,��=0. In the limit of zero temperature, the rod center of
mass would describe a perfect circle of radius R
= �D�F� / �DrM�, with the circular frequency ���DrM. For
finite temperature, all moments of r and � can be calculated
exactly. The first and second moments of ��t� are simply
given by �̄=�0+�t and ��2= ���t�−�0�2= ��t�2+2Drt,*teeffelen@thphy.uni-duesseldorf.de
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where �0=��t=0�, and where we let � run ad infinitum. The
first two moments of �r�r�t�−r�0� are given by

�r = ��Drû0 + �û0
� − e−Drt�Drū̂ + �ū̂��� ,

�r2 = 2�2��2 − Dr
2 + Dr�Dr

2 + �2�t + e−Drt��Dr
2 − �2�cos��t�

− 2Dr� sin��t��	 + 2�D� + D��t , �1�

with �=�D�F / �Dr
2+�2�, û0= �cos �0 , sin �0�, û0

�

= �−sin �0 ,cos �0�, ū̂= �cos �̄ , sin �̄�, and ū̂�

= �−sin �̄ , cos �̄�, i.e., �r describes a spira mirabilis.
We consider a very thin rod of length L, where Dr /D�

=3 / �2L2�, D�=D� /2. We will denote all times in units of
�B=L2 /D�, lengths in units of L, and energies in units of �−1.
Different regimes are distinguished in terms of the dimen-
sionless quantities Dr /� and �FL. The latter determines
whether the rod’s erratic motion is dominated by the kicks of
the solvent particles or by the self-propulsion. The former is
the ratio of the ballistic over the random turning rate. In Fig.
1, we show �r for different internal torques M and a typical
trajectory of the rod position during two complete turns. In
the second inset of Fig. 1, we display �r2, which shows
deterministic behavior for t�1 /Dr while for large times the
swimmer moves in a random fashion according to �r2	 t.

Next, we introduce a confining, integrated segment-
wall power-law potential in the x direction,
V�x ,��=
0

Ldlv�x��l��+kx with v�x�����L�−1��L /x��n

+ �L / �Lx−x���n	, where Lx is the channel width, n=24 is a
large exponent, and x��l� is the x position of the rod segment
at contour length l �see the right inset of Fig. 2�. In case the
solvent is confined as well, hydrodynamic interactions be-
tween the particle and the wall lead in principle to an
x-dependent diffusion tensor �19�, which is ignored in our
model. An additional gravitational force in the x direction
�17� of strength k will be applied later, but we focus first on
the symmetric case k=0. At zero temperature, for a not too
large ratio M /LF and under appropriate initial conditions

�r0 ,�0�, the tilted swimmer performs a steady-state sliding
motion along either of the two walls with a constant x posi-
tion close to the wall and with a constant angle � determined
by the steady-state conditions ẋ=0 and �̇=0, respectively.
Without loss of generality, we consider the case M 
0,
i.e., the rod rotates counterclockwise, such that it
slides upwards along the left wall �see the sketch in
Fig. 2�. In the limit of hard walls �n→��, the two
solutions to the set of steady-state equations can be
given explicitly as xs/u=L�1−1 /2 cos �s/u� �i.e., the
front rod tip sits on the wall�, and cos2 �s/u
= �1−2�M /LF�2��1−8�M /LF�2� / �2+2�M /LF�2�, cos �s/u
0, where the minus sign corresponds to the stable ��s� and
the plus sign to the unstable ��u� solution. Clearly, for
2�2M /LF
1 there is no solution to the steady-state condi-
tions, but the rod keeps on rotating. For large exponents n,
the asymptotic steady-state velocity in the y direction is
given by vy �D�F sin �s / �1+cos2�s�.

The sliding mode is also present at finite temperature.
However, by thermal fluctuations the rod eventually leaves
the wall and reaches the opposite wall under an appropriate
angle for the respective sliding mode in the opposite y direc-
tion, which we refer to as “flipping.” Consequently, the circle
swimmer moves diffusively according to �r2�2DLt, with
DL the long-time translational diffusion coefficient. This pic-
ture is clearly confirmed by Brownian dynamics computer
simulations, averaged over 1000 independent simulation
runs, as shown in Fig. 2.

For large �FL, large �M, and a channel width of the
order of the circle radius �Lx�R�, the average time the
swimmer spends in its stable mode on either of the walls is
large as compared to the duration of a flip. Thus, the swim-
mer effectively performs a one-dimensional random walk
with a typical step length a�vy /�, where � is the flipping
rate. This random walk leads to a long-time diffusion coef-
ficient of DL�vy

2 /�, which we display as a function of in-
ternal torque M for different wall-wall separations Lx in
Fig. 3.

It is clearly seen from the simulations �Fig. 3�a�� that the

0

1

2

3

4

5

6

7

-3 -2 -1 0 1 2 3 4 5 6

y/
L

x/L

0.2
1
5

25

-1
0
1
2
3
4
5

-4-3-2-1 0 1 2 3 4

y/
L

x/L0.01
0.1

1
10

100
1000

10000

0.1 1 10

∆r
2 /L

2

t/τB

~t

~t

2

M
F

FIG. 1. �Color online� Trajectories of the mean position r̄ of the
self-propelling rod for fixed �FL=10, �M =0.2,1 ,5 ,25 �r0=0,
�0=0�. Left inset: the mean-square displacement �r2 for the same
force and torques, but also for �FL=0, �M =0 �lowermost curve�.
Right inset: a typical trajectory of the rod for �FL=25, �M =10, for
times 0 t�B. Lower right inset: Sketch of the self-propelled
circle swimmer.
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FIG. 2. �Color online� Mean-square displacement �r2 in con-
finement ��FL=60, Lx=8L� without gravity and with zero torque
�black�, without gravity and with finite torque �red�, and with torque
and gravity �blue�. The left inset displays the rod sliding along the
walls. The right inset shows the confining potential without �left�
and with �right� gravity.
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diffusion in the channel is strongly enhanced as compared to
the diffusivity of the free swimmer. In particular, this strong
enhancement is already observed for M =0, as the narrow
walls constantly align the rod in the y direction. However,
the diffusion eventually slows with increasing wall-wall
separation Lx. For intermediate M /LF0.15, diffusion is en-
hanced even further—in the simulations �Fig. 3�a�� by an
order of magnitude—displaying a much smaller dependence
on Lx. This nonmonotonic behavior of DL as a function of M
is due to the stability of the sliding mode.

To understand the nontrivial interplay of F, M, and Lx in
more detail, we identified from the simulations three differ-
ent paths, �a�, �b�, and �c�, dominating the flipping rate �.
They all describe the transition from a stable mode at the left
wall ��s ,xs� to another at the right wall ��s+� ,Lx−xs� due
to fluctuations in the rod orientation �, whereas the transla-
tional motion just follows the internal force F and the con-
fining potential V�r ,�� �20�. These three different paths are
sketched in Fig. 4 and are described as follows: The rod can
slip out of its stable sliding mode by fluctuating in the direc-
tion of the torque �path �a�� or by fluctuating against it �path
�b��. In path �a�, detachment from the �left� wall, which
amounts to overcoming a barrier in the torque/angle from �s
to �u, most likely also leads to finding the stable mode on the
other �right� wall �for Lx�R�. Path �b�, however, is only
successful if the rod orientation is subject to strong and fast
fluctuations, which enable it to make a turn of an angle
�−�+�u−�s� before reaching the other wall. This explains
why for intermediate torques and small Lx, another important
three-stage path �c� is dominating. This path is initiated by a
small fluctuation of the orientation against the direction of
the torque, from �s toward � /2 on the �left� wall. In a sec-
ond stage, the swimmer approaches the other �right� wall at a
small, constant turning velocity �̇, reaching it after only a
short time due to its strong internal force. By the other �right�
wall it is reoriented in an upward direction before, in a third
stage, turning quickly in the direction of the torque such that
it reaches the original �left� wall at an angle �u. The flipping

rate is now given by the path integral �
	
D� exp�−�S�r ,�� /4�, keeping initial and final configura-
tions of � and x appropriately fixed. Here, the Onsager-
Machlup action is given by S�r ,��=
0

�dt���t���t��−M
+��V(r�t�� ,��t��)�2 �21,22�, with t�=�Drt the normalized
time. Note that our system is non-Hamiltonian due to the
internal driving force and the translation-rotation coupling.
Hence, the least action path cannot be found as the minimum
energy path in some energy landscape, as vastly studied in
the literature �23,24�. In contrast, we now construct a non-
Hamiltonian rate theory by assuming that—in the limit of
large forces �FL—the flipping rate � is dominated by either
of the three paths �i= �a� , �b� , �c��, identified in the simula-
tion. The respective minimum actions are given by Si�ri ,�i�,
with �i�t�� minimizing the action subject to the constraints
��i�0�=�s ,xi�0�=xs� and ��i���=�s�� ,xi���=Lx−xs�,
where the plus sign corresponds to paths �a� and �c�, and the
minus sign to path �b�. Paths �a� and �b� ��c�� are further
constrained by the condition not to reach �to reach� the initial
wall between the initial and the final stage.

In order to calculate the associated actions for the differ-
ent paths, we divide the trajectories into parts where the front
rod tip sits on the original �left� wall and into parts where the
rod moves at a constant turning velocity �̇i in between the
walls. The former parts can then be expressed as the barrier
heights 4
�s

�md� �M −��V� �24�, with �m=�u for path �a� and
�m=� /2 for paths �b�, �c�, whereas the latter are simply
given by ��t��i−M�2tmax� , tmax� being the normalized time it
takes to swim from one wall to the other �tmax� is chosen to
minimize the action�. The individual rates are roughly given
by �iexp�−�Si /4� /�B, where the kinetic prefactors are
crudely approximated by 1 /�B, and plotted in Fig. 4. Sum-
mation over the individual rates yields the long-time diffu-
sion coefficient DLvy

2�−1, with ���i�i plotted as a func-
tion of M for different Lx in Fig. 3�b�. The rate theory
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FIG. 3. �Color online� Long-time diffusion coefficient DL as a
function of the torque M for the swimmer in the bulk and in con-
finement for �FL=60 and Lx=6,8 ,10L. �a� Computer simulation,
�b� rate theory.
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reproduces clearly the Lx dependence and the nonmonotonic-
ity of DL as a function of M and attributes it to different rates
of the paths �a� and �c�. Moreover, the maximum in DL is
predicted to be weakly dependent on Lx in agreement with
the simulations. However, the actual values of the rate theory
differ from the simulation data due to the crude approxima-
tion made for the kinetic prefactors.

Finally, we study the effect of an additional gravitational
field in the x direction �k
0�, breaking the symmetry of the
channel potential �see the right inset of Fig. 2�. On average,
the swimmer is now situated more on the left than on the
right channel wall, such that the sliding mode becomes bal-
listic �see Fig. 2�.

In conclusion, we have studied the dynamic behavior of a
self-propelled Brownian rod performing circular motion. In
the bulk, the analytical solution reveals long-time diffusive
behavior. In channel confinement, an efficient stable sliding
mode was identified that strongly enhances the long-time
diffusion along the channel as obtained by computer simula-
tion and a non-Hamiltonian rate theory. If the channel is
asymmetric, the sliding mode leads to ballistic long-time mo-
tion.

The sliding motion of circle swimmers can be verified in
experiments with different setups: First, catalytically driven
nanorods �10,11� and self-propelled magnetic colloidal rods
confined to a microchannel �17� will exhibit sliding �25�.

Second, confined bacteria �6–8� and spermatozoa �4,5� move
in two dimensions along circles. In fact, the typical radius of
the observed circular motion is in the range of 10–1000 �m
for spermatozoae �4,5� and of the order of 50 �m for Es-
cherichia coli bacteria �8�. Therefore, the radii are typically
larger but comparable with the particle sizes. When these
particles are exposed to microchannels of similar widths as
the observed radii, as realized for the bacteria �6�, the pre-
dicted huge acceleration behavior should be observed, as has
already been seen in 3D �8�. Third, vibrated polar granular
rods �3� with an additional left-right asymmetry perform
circle motions. When placed into a slit geometry, a sliding
effect may be observed here as well.

Accelerating the dynamics in the channel by tuning the
torque may be exploited as a mechanism to separate a certain
species out of a crowded solution of different active par-
ticles. If a microfluidic channel is connected to a bulk mix-
ture, the species moving quickest along the channel will ar-
rive first at the channel end and can efficiently be removed.
This might be more efficient than traditional separation tech-
niques such as capillary electrophoresis �26�.
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