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At equilibrium, colloidal particles in a subcritical liquid suspension are surrounded by a drying layer
if the colloid has solvophobic interaction. Using Brownian dynamics computer simulations, we
investigate the nonequilibrium response of this layer to a strong external driving force. We find that
the driven colloidal particle dresses itself with more particles than in the equilibrium drying layer.
The effective interaction between two such dressed particles exhibits a deep drive-induced attraction
due to a stretched joint gas bubble. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2985830�

I. INTRODUCTION

Micro- and nanoparticles, which are exposed to a sur-
rounding medium that is close to a bulk phase transition can
be surrounded by a wetting or drying layer depending on
their interaction with the medium particles. While most of
the equilibrium properties of wetting and drying layers
around nanoparticles are well known by now �see, e.g., Refs.
1 and 2�, their nonequilibrium properties are far from being
understood. In many applications, however, the nonequilib-
rium response of particles driven through a subcritical me-
dium is crucial: In granular matter, for example, the dynami-
cal properties3 and the clustering4 of wet sand are governed
by the motion of the capillary bridges between the particles.
Colloidal particles in a subcritical solvent lead to an interest-
ing aggregation behavior5,6 steered by a collective wetting
layer. In the area of liquid-liquid chromatography,7 a relative
motion is created between the dispersed and the dispersing
media to separate out the dispersed particles. In general,
near-critical solvents gain more and more importance in in-
dustrial separation techniques.8 Last but not the least, nano-
sized proteins with a hydrophobic surface9 are surrounded by
a cavity depleted from water10 and exposed to strong electric
driving fields in electrophoretic measurements.

In a previous study,11 we considered a model system in
two dimensions �2D� to show that two dry spheres in equi-
librium in a subcritical liquid exhibit a long-ranged attractive
effective interaction.12–16 Here we investigate how a strong
external force affects the dry layer around the driven par-
ticles within the simple model system in 2D as in Ref. 11.
The big particle is driven in a liquid suspension of smaller
particles below their liquid-gas coexistence. Our motivation
to do so is threefold: First, the trends obtained from our
model should be transferable in general and applicable to
quite different fields and setups as outlined above. Second,
our model is realized by confined two-dimensional colloidal

suspensions, which can be exposed to controlled driving
fields and can be watched by video microscopy in real
space.17 Third, we want to study the combined effect of drive
and fluctuations; therefore, we adopt a “microscopic,” i.e.,
particle resolved, view of the wetting layers such that fluc-
tuations are contained in our investigations. We use Brown-
ian dynamics �BD� computer simulations to explore the non-
equilibrium response of the drying layer around the colloids
to a strong drive where the drift motion of the driven colloi-
dal particles is so fast that the smaller particles cannot
follow18 the big particle instantaneously. This is complemen-
tary to the widely studied adiabatic approximation where the
motion of the big particles is so slow that the small particles
follow almost instantaneously and an equilibrium picture ap-
plies. As a result, we find a dressing effect in the drying layer
around a single driven particle. In detail, a drying layer is
significantly compressed upon the drive through a bulk liq-
uid. The effective drag force, which opposes the motion of a
driven big particle, exhibits an initial elastic regime, fol-
lowed by a viscosity dominated regime. There is a deep
drive-induced attraction due to a stretched joint gas bubble
surrounding the big particles.

The outline of the paper is as follows. We detail the
model and the simulation techniques in Sec. II. The detailed
results on the small particle distribution around a big particle
are given in Sec. III. We account for the long time distribu-
tion of the small particles around the driven big particle by a
simple hydrodynamic instability theory. The effective inter-
action between two driven big particles is illustrated in Sec.
IV. Then the importance of the hydrodynamic interactions
between the particles in our model has been discussed in Sec.
V before we conclude the paper in Sec. VI.

II. SIMULATION DETAILS

We model the interaction between two small particles at
separation r by a Lennard-Jones �LJ� pair potential, VLJ�r�
=4���� /r�12− �� /r�6� with interaction parameters � and � at
a subcritical temperature �kBT /�=0.45� and chemical poten-
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tial � /kBT�=−3.7� above that of the gas-liquid coexistence as
in Ref. 11. The stable bulk phase of the small particles is
liquid for chemical potential above the coexistence. The big
particles have vanishingly small area fraction. A big particle
surface, having a purely repulsive solvophobic interaction,

Vbs��r�−R� � �=4�bs�d / �r�−R� � �,12 becomes dry by the metastable
gas. We take the big-small interaction energy parameter,
�bs /�=5.0 and the hard-core size of the big particle, d /�
=5.0. The particles are taken in a box of size, L=50� with
the periodic boundary conditions.

For fixed prescribed positions �R� �� of the big particles,
an equilibrated grand canonical Monte Carlo configuration of
the small particles is picked up.19 The drive is then instanta-
neously applied on the big particles at time t=0. The posi-
tions of the big and small particles are now updated by the
overdamped BD.19 The position of the ith small particle is

shifted by �s�r�i=−�t�r�i
�� j�VLJ��r�i−r� j��+��Vbs��r�i−R� ����+r�i

N.
Similarly, the coordinates of the �th big particle are updated

by �b�R� �=−�t��R� �
�iVbs��r�i−R� ���+�R� �

��Vbb��R� �−R� ���+F� ��
+R� �

N. Here, the direct big-big interaction, Vbb��R� �−R� ���
=4�bb�d / �R� �−R� � � �12, with �bb=�bs. r�i

N is the random force on
a small particle, assumed to be a Gaussian white noise with
mean zero and variance 2Ds�t in each component, where

Ds=kBT /�s. R� �
N is the Gaussian white noise for the big par-

ticle with mean zero and variance 2kBT�t /�b, where �b /�s

=5. Finally, F� � is the drive force on the �th big particle. We
consider the case in which the magnitude of the driving force
is the same for all �. The unit of length is � and that of time
is the diffusion time scale of the small particles, �s=�2 /Ds.
We use �t /�s=10−4 such that �t	�b, �b being the time scale
set by the drive force on the big particles, given by the
�b� /F, with F as the magnitude of the driving force. The
time dependence of any quantity of interest has been tracked
down up to a late time �t
�s� until a big particle covers a
distance equal to half of the box length to avoid artifacts due
to the periodic boundary conditions. For a given t, the quan-
tities of interest have been averaged over 500 different real-
izations of the noise and the initial configurations of the
small particles. In our simulations, we have ignored hydro-
dynamic interactions mediated by the solvent flow. In Sec. V
we discuss several setup where this assumption is justified.

III. SINGLE PARTICLE RESULTS

We first study the case of a single big particle driven
parallel to the x-axis, as shown in inset I of Fig. 1 with a
large reduced drive force �or Peclet number� of f =F� /kBT
=50. � measures polar angle with respect to the x-axis. The
drive force corresponds to �=�. At equilibrium, the big par-
ticle is surrounded by a gas bubble of radius l
d.11 Inset I
shows a configuration of the small particles around the
driven big particle at time t
�s. The snapshot shows aniso-
tropic stretching of the gas bubble surrounding the big par-
ticle: The big particle pushes the small particles off its trail
that leads to the ordering of the small particles transverse to
the drive direction. Further, the wake area ��	0� will tend
to be populated by the small particles. The steady state flux
of the small particles is given by Lv� , where L is the average

density of the liquid of small particles and v� is the velocity of

a small particle. In the overdamped limit, v� =F� s /�s, where F� s

is the force on a small particle. Since �bs
�, the big-small

interaction dominates in F� s, which implies that the leading
contribution to the x-component of the flux has a contribu-
tion, proportional to −f /�b, to the wake area.

The response of the small particles to the drive can be
characterized by its time dependent density profile �s ,� , t�
��s= �r�−R� �t��� around the big particle at R� �t�. Figure 1
shows angle ��� averaged density ̄�s , t� of the small par-
ticles around the big one. Even though ̄�s , t� loses the an-
isotropy induced by the drive, this illustrates an important
effect of the drive. ̄�s , t� at t	�s �dotted line� is similar to
that in the equilibrium.11 For t
�s, the small particles, form-
ing a gas “bubble” surrounding the big particle, could not
follow the big particle. However, at large times, t
�s, ̄�s , t�
�solid line� shows “dressing” of the big particle, namely, the
growth of liquid layers of the small particles around the big
particle. This modifies the interfacial structure nontrivially,
which can be characterized by the quotient �0

smaxdss̄�s , t

�s� /�0

smaxdss̄�s , t	�s�, where smax
7.5. The quotient of
	2.0 indicates that nearly twice as much as the initial num-
ber of particles gather around the big particle in the long time
limit. The anisotropy in the small particle distribution at the
first peak of the late time ̄�s , t�, max��� has been shown in
inset II of Fig. 1. The max��� plot has multiple peak struc-
ture: in addition to the peaks of the distribution in the for-
ward region �0.9��, there are strong peaks around �=0.5�

and 0.7�, nearly transverse to the drive, and as well, some
population at �=0, the wake region. This anisotropy is in

FIG. 1. ̄�s , t��2 plots as a function of s /� at t	�s �dotted line� and t
�s

�solid line� for an initially equilibrated dry sphere driven at f =50 in a sub-
critical liquid bath. Inset I: A snapshot of the small particles along with a big
particle �concentric circle� at t
�s. The driving force shown by the thick
arrows and the angle � indicated. Inset II: The dependence of max��� on �
for small particles at the first peak of the solid line.
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agreement with the picture suggested by the snapshot of inset
I. Thus the dressing of the big particle by the small ones in
the late time limit is highly anisotropic.

The large time density response of the small particles
can be understood from a simple instability analysis20 of the
density modes. The equation of motion for a density modes
with wavevector q��=qx ,qy� is given by:21 �t�q� , t�
= � − D0 q2 /s�q���q� , t� − exp i�q� ·R� ��Q� q� · �q� −Q� �Ṽbs��q� − Q� ��
��Q� , t�. The first term describes the small particles corre-
lations, s�q� being the liquid structure factor.22 The second
term describes the scattering of the density mode of

wavevector q� into that of wavevector Q� by the solute-solvent

interaction potential. The phase factor exp i�q� ·R� � is due to
the mobile big particle scatterer. The scattering amplitude

Ṽbs��q� −Q� �� have a peak for elastic scattering, �q� �= �Q� �, which
corresponds to rotating the incident q� , keeping its magnitude
fixed. We consequently retain amplitude only at zero
wavevector value V0. In order to eliminate the fast variable

R� , we take further time derivative of the density in the equa-
tion of motion. In the second order differential equations for

the density modes, we approximate X	�f /���s and dX� /dt
	 f /� for very strong drive at large times, t	�s. Retaining
only the linear terms in the density modes, the resulting fre-
quency,

��qx,qy��s = �1/2��− D0q2/s�q�� � ��− Dsq
2/s�q��2

− 16V0q2�qxvd�s�2�1/2.

Since V0
0 for repulsive solute-solvent interactions,
��qx ,qy� can have a maximum positive for nontrivial �qxd

0.1,qyd	2��, indicating an inhomogeneous distribution
of the small particles, transverse to the drive.

The effective drag force opposing the motion of a single

big particle, F� bs�t�= ��� R��iVbs��r�i�t�−R� �t��� , �¯ denoting
average over equilibrated initial configurations of the small

particles. By symmetry, the y-components of the vectors F� bs

and R� �t�, perpendicular to the drive, vanish and, hence,

R� �t�=X�t�e�x. We eliminate t from F� bs�t� and the trajectory of
the big particle X�t�e�x to obtain the effective drag force on a
big particle as a function of distance from the initial equilib-

rium position, F� bs�X�. The x-component of the effective drag
force Fbs�X� at f =50 in a subcritical liquid has been shown
in Fig. 2 �solid line�. A force with a negative sign is taken to
be opposite to the drive. Fbs�X� is a linear restoring force for
small X, showing an elastic regime. The initial elastic regime
originates from the unchanged equilibrium small particle dis-
tribution for short time. In this static background, the energy

of the big particle at R� is given by U�R� �=��dr���r�
−R� ��Vbs��r�−R� ���. Expanding U�R� � in R� , one obtains a linear
restoring force −kX with slope given by k

= 1
2�d�����d2Vuv��� /d�2, where ��� is the equilibrium small

particle density profile around the big particle. For steep re-
pulsion, the integral is dominated by the interfacial profile
and k	20.0 in the reduced units, slightly higher than that in
the simulated data. Figure 2 shows the theoretical estimate
�dashed line� for Fbs�X�. Fbs�X� saturates to Fsat=−40kBT /�

with marked deviation from the linear behavior around X
=X0	2.0, which corresponds to a time �0	�bX0 /Fsat

=�b /kX0. This time is comparable to the diffusive density
relaxation time in the surrounding liquid medium, given by
Smax�s, where Smax �=4.0, typical for a 2D liquid� is the first
peak height of the liquid static structure factor.22 This implies
that the onset of Fsat is primarily governed by the diffusive
motion of the surrounding small particles in the liquid phase.

IV. EFFECTIVE INTERACTION

We finally study the influence of a strong drive on the
effective force between a pair of big particles. The particles
are initially placed at a separation of 6� along the x-axis,
equilibrated, and then pulled apart �f =50�, as shown in
inset I of Fig. 3. The effective force between the two

big particles at R� 1�t� and R� 2�t� at time t, F� eff�t�

FIG. 2. The x-component of the small particle mediated drag force on a
single big dry particle Fbs�X�� /kBT vs its displacement X /� from the initial
equilibrium position, driven at f =50 in a subcritical liquid bath �solid line�.
The dashed line shows the theoretical estimate for the linear restoring force.

FIG. 3. The x-component of the effective force Feff�X12�� /kBT between a
pair of big particles pulled apart from each other at f =50 as a function of the
separation X12 /� between them in a subcritical liquid �solid line�. The equi-
librium case in a subcritical liquid �dot-dashed line� is shown as well for
comparison. The dotted line shows the direct repulsion between two big
spheres. Inset I: A snapshot at t /�s=4.0 with two big particles pulled out
from each other in a subcritical liquid at f =50. The thick arrows show the
drive direction. Inset II: The �� /X12�2 dependence of Feff�X12�� /kBT for
intermediate X12 /�.
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= �−��� 1�iVbs��r�i�t�−R� 1�t���� ·R� 12�t�, where R� 12�t�=R� 1�t�
−R� 2�t� and the gradient operator is over the coordinates of

the first big particle. Eliminating t from F� eff�t� and R� 12�t�, we

obtain F� eff�R� 12�. This facilitates a direct comparison with the
equilibrium effective force, which is dynamically valid
within the adiabatic approximation.23 The direct short-ranged
repulsive force between two big spheres has also been shown
in Fig. 3 by the dotted line. By symmetry, the effective forces
on both the solute particles are equal but opposite in sign and
the y-component of the effective force vanishes. The
x-component of the effective force Feff�X12� is shown as a
function of X12= ��X2−X1�−d�, after subtracting the single-
particle part Fbs�X�, in Fig. 3 in the reduced units. The non-

equilibrium F� eff�X12� between two big particles driven in a
liquid �solid line� shows a deep minimum Feff�X12��

−18kBT around X12
5.0. This is to be contrasted to the equi-
librium effective force that has a short-ranged attraction �dot-

dashed line�.11 F� eff�X12� has a linear dependence on X12 for
X12	4.0, corresponding to the elastic response of the small
particles. In the diffusion dominated regime, the gas bubble
stretches parallel to the drive �inset I of Fig. 3� in such a way
that the total area of the bubble remains constant, leading to
an effective attractive force between the big particles that
goes as 	−1 /X12

2 in order to reduce the line tension at the

gas-liquid interface. Inset II shows that the F� eff�X12� data are
consistent with this dependence in the intermediate X12 re-
gime. Finally the joint bubble breaks and the attraction al-
most disappears.

V. IMPORTANCE OF HYDRODYNAMIC INTERACTIONS
IN OUR MODEL

In the present model, hydrodynamic interactions be-
tween the particles mediated by the solvent flow are ne-
glected. In particular, one may worry that a strongly driven
big particle generates a hydrodynamic stress acting on the
small particles, which will influence, for instance, the wake
behind the driven particle. Here we discuss the relevance of
such hydrodynamic interactions for various realizations of
the two-dimensional colloidal mixture. Four different pos-
sible setups �a�–�d� are sketched as side views in Fig. 4,
which we discuss one by one. One obvious realization is to

confine all big and small colloidal particles to a two-
dimensional plane by an appropriate external field and keep
the solvent unbounded both above and below the plane
�setup �a��. Let us estimate the hydrodynamic interactions
between the driven big particle and the small particles in the
end of the wake assuming a typical central distance of �
�10� for the latter. In setup �a� the hydrodynamic interac-
tions are dominated by the long-ranged Oseen tensor,24

which decays as the inverse distance such that their relative
importance as compared to the simple Brownian term is
given by 3DH /4�, where DH is the hydrodynamic diameter
of the big particle. If one equates the hydrodynamic diameter
with the interaction diameter, DH=D, then this ratio is 0.4,
showing that hydrodynamic interactions are not negligible.
However, there are two circumstances where the hydrody-
namic interactions can be neglected. First, if the big particles
are charged and driven by an electric field, the Oseen tensor
is exponentially screened and the leading contribution is of
the order of 3DH /4�3�2,25,26 where � is the inverse Debye–
Hückel screening length. Typically, the reduction in 1 /�2�2

is of two orders of magnitude at a typical salt concentration
in the solvent such that the hydrodynamic interactions are
irrelevant. Second, the hydrodynamic interactions can be ne-
glected if the hydrodynamic diameter is much smaller than
the interaction diameter as is the case for highly charged
suspensions, if the interaction is accounted for via the
Derjaguin–Landau–Verwey–Overbeek description and the
suspensions is close to the secondary minimum.27

The second realization �setup �b��, which is frequently
used in experiments,28 is a suspension that is almost com-
pletely squeezed between two parallel confining walls. The
no-slip boundary conditions at the two walls lead to reduced
hydrodynamic interactions and their relative importance is
now given by28,29 DH

2 /�2, which is of the order of 0.25 when
DH=D. The third realization �c� of a semi-infinite solvent
above a wall can again be easily realized in experiments.30

Here, the importance of hydrodynamic interactions is further
reduced to DH

3 /4�3,30 which is about 3% when DH=D such
that hydrodynamic interactions can safely be neglected for
this setup. Finally, one may consider colloidal particles on a
substrate embedded in a liquid film of thickness h �Ref. 17�
�setup �d��. Then the hydrodynamic interactions are of the
range of h and can safely be neglected when h	D.31

FIG. 4. Sketch of four different setups �a�, �b�, �c�, and �d� for a two-dimensional colloidal mixture in various solvent geometries �side view�. One big particle
of diameter D and a small particle of diameter � at a distance � are shown.
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To summarize, apart from the case of an unbounded sol-
vent and neutral big particles, hydrodynamic interactions are
strongly reduced for a confined solvent, which is the typical
experimental realization justifying the model considered in
this paper.

VI. CONCLUSION

In conclusion, we show that if big particles are driven so
strongly that the small particles cannot follow the instanta-
neous positions of the big particles, the small particle de-
grees of freedom decouple from those of the big ones, lead-
ing to qualitatively new effects compared to the equilibrium
situations.32 A dry big particle, driven in a subcritical liquid
of small particles, becomes anisotropically dressed up with
the small particles. The medium of the small particles shows
an initial elastic response, followed by a long time diffusion
regime, which is reflected in the drag force on a big particle
moving through the small particles. The effective force be-
tween two driven dry particles in a subcritical liquid shows a
deep minimum around the cross over of the two mechanisms
of the medium response. Our observations can be verified by
optical tweezer experiments on colloidal dispersions.17 The
occurrence of the deep minimum in the effective force be-
tween the dry spheres suggests applications in separation
processes in macromolecular dispersions.

The importance of hydrodynamic interactions has been
discussed for various solvent geometries relevant to our
model system. Although for a variety of typical experimental
setups, hydrodynamic interactions can be ignored, they be-
come relevant for an unbounded solvent and neutral driven
big particles. Then, the wake area of the driven large particle
will be repopulated with more small particles at larger time.
However, this should not at least qualitatively affect the cross
over between the elastic and viscous regimes, arising out of
the time scale separation of the motions of the two kinds of
particles. Only the cross-over point may be shifted by the
more efficient repopulation of the wake area. Clearly, this
situation deserves more future studies using more sophisti-
cated simulation schemes, such as the BD simulations with
the Rotne–Prager mobility tensor33 and stochastic rotation
dynamics,34 recently applied for colloids driven in a gravita-
tional field.
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