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Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany

(Received 3 September 2007; published 10 March 2008)

We study the conditions under which and how an imposed cluster of fixed colloidal particles at
prescribed positions triggers crystal nucleation from a metastable colloidal fluid. Dynamical density
functional theory of freezing and Brownian dynamics simulations are applied to a two-dimensional
colloidal system with dipolar interactions. The externally imposed nucleation clusters involve colloidal
particles either on a rhombic lattice or along two linear arrays separated by a gap. Crystal growth occurs
after the peaks of the nucleation cluster have first relaxed to a cutout of the stable bulk crystal.
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While important steps towards a quantitative under-
standing of homogeneous crystal nucleation out of the melt
have been made in the past decade (for recent reviews, see
[1,2]), work on the molecular principles of heterogeneous
nucleation is still at its infancy [3–5]. Colloidal suspen-
sions have served as excellent model systems for nuclea-
tion, since the crystallization process is typically much
slower than in their molecular counterparts and the critical
nucleus can be detected in real space [6]. By using external
fields, e.g., optical tweezers, it is possible to fix a cluster of
colloidal particles and watch directly its impact on the rest
of the colloidal suspension. If the crystal phase is slightly
off coexistence and the fluid is stable, it is possible to
generate crystalline layers around such a cluster [7–9].

In this Letter we study crystal growth processes into a
metastable fluid. A cluster of fixed colloidal particles,
which could act as a seed for heterogeneous crystal nu-
cleation is arranged within the metastable melt. Whereas in
homogeneous nucleation such clusters spontaneously form
by means of thermal fluctuations, here they are externally
imposed. We investigate whether they serve as initiators of
crystal growth processes. Our motivation for this study is
twofold: first, by imposing a seed cluster one can steer the
crystallization behavior. Second, offering complex cluster
structures could lead to unexpected dynamical scenarios of
crystal growth.

We approach the problem using classical density func-
tional theory (DFT) of freezing which is a microscopic
approach to crystallization [10,11]. DFT can be extended
to describe dynamics in strongly inhomogeneous
Brownian fluids [12–15]. Here it is put forward as the first
full microscopic approach to the dynamics of crystalliza-
tion. Our DFT results are backed by Brownian dynamics
(BD) computer simulations. In principle, the dynamical
DFT is superior to phase-field crystal theories of nucleation
[16], which operate on more coarse-grained length and
time-scales and need phenomenological mobilities as an
input. Therefore our results provide benchmark data to test
the validity of more approximate theories.

In detail, we study a model for a two-dimensional sus-
pension of superparamagnetic colloids, exposed to an ex-

ternal magnetic field which tunes their parallel dipole
moments [17,18]. By using additional fields, such as opti-
cal tweezers, certain particles can be fixed in the suspen-
sion [19,20]. We first consider a stable fluid phase, realized
for a weak magnetic field. In this fluid suspension, colloi-
dal particles are placed by optical tweezers into prescribed
positions forming a cluster. Then the magnetic field is
suddenly increased rendering the fluid metastable with
respect to the stable hexagonal crystal and the tweezers
are released. Two different kinds of cluster geometries are
considered: In the first setup we study hexagonal clusters
that are cut out of a perfect rhombic lattice while in the
second setup two sets of linear crystalline arrays, separated
by a gap, are examined.

As a result, we observe that the kinetic pathway of the
system is a two-stage dynamical process: first, on a sub-
Brownian time scale, the peak positions of the externally
imposed nucleation cluster relax towards a cutout of the
stable bulk crystal. Then, on a Brownian time scale, there
are two further possibilities: either the relaxed cluster acts
as a nucleation seed for further complete crystal growth or
it dies out completely without stimulating further crystal-
lization. Whether crystal growth occurs or not depends
delicately on the compatibility of the initial cluster geome-
try with that of the stable bulk crystal in terms of strain
energy.

Our system is characterized by the pairwise interaction
potential u�r� � u0=r

3, where u0 is the interaction
strength. For the specific realization of two-dimensional
paramagnetic colloids of susceptibility � exposed to a
perpendicular magnetic field B, we have u0 � ��B�2=2.
The thermodynamics and structure depend only on one di-
mensionless coupling parameter � � u0�

3=2=kBT, where
� is the average one-particle density and kBT is the thermal
energy.

It has been shown [12–14] that the static, classical DFT
can be given an extension to dynamics to describe over-
damped, time-dependent, out-of-equilibrium systems in
terms of a deterministic, time-dependent, and ensemble
averaged one-particle density ��r; t�. The time evolution
of ��r; t� is then governed by the continuity equation
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Here, D=kBT is the mobility coefficient originating from
the solvent, ignoring hydrodynamic interactions.

The equilibrium phase diagram of the system under
study has been obtained using classical DFT [21], which
provides the intrinsic Helmholtz free energy functional
F���r��, a unique functional of the static one-particle
density ��r� of the system. The functional F���r�� is
minimized by the equilibrium one-particle density, where
it takes the value of the system’s intrinsic Helmholtz free
energy. The density functional is typically split into the
ideal gas, an excess, and an external part, F���r�� �
Fid���r�� � Fex���r�� � Fext���r��. The ideal part is
Fid���r�� � kBT

R
dr��r�fln���r��2� � 1g, with � de-

noting the thermal de Broglie wavelength. Fid is of com-
pletely entropic nature and leads to a simple diffusion
term in Eq. (1). The excess part Fex, originating from
the correlations between the particles, is in this paper
approximated by the ansatz of Ramakrishnan and
Yussouff to the DFT [22]. It is expanded up to second
order in terms of density difference �� � ��r� � � around
a reference fluid, where the fluid density � is chosen as the
average density of the inhomogeneous system: Fex���r�� ’
Fex����

1
2kBT

RR
drdr0���r����r0�c�2�0 �r� r0;��. Here

Fex��� and c�2�0 �r;�� are the excess free energy and the
direct correlation function of the reference fluid of density
�, respectively. Finally, the external part is simply given by
Fext���r�� �

R
dr��r�V�r�, where V�r� is the total external

potential.
For both setups under study, the clusters of tagged

particles are first, i.e., for times t < 0, held fixed in a
thermodynamically stable, equilibrated fluid of density �
at a coupling constant of �< � 10, which is well below the
freezing transition at � ’ 35:7 [23], obtained within the
theory. For the equilibration of the fluid, Eq. (1) is numeri-
cally solved fixing the tagged particles by deep parabolic
external potentials at the tagged particle positions—in an
experiment this could be achieved by using optical tweez-
ers [19]. At time t � 0 we turn the external pinning poten-
tial off and, at the same time, instantaneously quench the
system to a coupling constant �> � 62:5, which is well
above the freezing transition and we observe the time
evolution of the density field for times �t=�B� & 10, where
�B � ��D�

�1 is the Brownian time scale. Equation (1) is
numerically solved applying a finite difference method.
The dimensions Lx 	 Ly � nxa	 ny�

���
3
p
=2�a of the rect-

angular periodic box considered are chosen integer multi-
ples nx, ny of the lattice spacing a � �2=

���
3
p
�1=2��1=2 of the

perfectly ordered hexagonal crystal.
The first setup under study comprises a rhombic nuclea-

tion seed of 19 tagged particles, arranged in a hexagon, as
sketched in Fig. 1. The nucleus is characterized by the
strain parameters A, the area of a unit cell which in the

perfectly ordered hexagonal crystal equals A � 1=�, and
�, the angle spanned by two of the nucleus axes. The size
of the periodic rectangular box is 16a	 16�

���
3
p
=2�a. In

Fig. 2 snapshots of the time-evolving density field are
shown exemplarily for two clusters cut out from two com-
pressed hexagonal crystals with parameters (A� � 0:7,
cos� � 0:5) and (A� � 0:6, cos� � 0:5), respectively,
at times t=�B � 0, 0.001, 0.1, 1.0. While the former, less
strongly compressed cluster grows into the equilibrium
crystalline state, the latter collapses back into an under-
cooled, metastable fluid within t=�B & 0:1. The growth

t<0: equilibrium liquid
t>0: undercooled liquid

φ

A

FIG. 1 (color online). Sketch of the imposed, rhombic nuclea-
tion cluster of 19 particles surrounded by a gray fluid. The angle
� between the spanning basis vectors and the area of a unit cell
A are also shown.

FIG. 2 (color online). Snapshots of the central region of the
dimensionless density field ��r; t�=� of two colloidal clusters
with strain parameters A� � 0:7, cos� � 0:5 (left panel) and
A� � 0:6, cos� � 0:5 (right panel) at times t=�B � 0, 0.001,
0.1, 1.0 (from top to bottom; t=�B � 1:0 only for A� � 0:7)
[30]. Note that the images display only the system’s central
region of dimensions Lx=2	 Ly=2.
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dynamics of the stable nucleus is a two-stage process: In
the first stage—on a sub-Brownian time scale t & 0:002—
the positions of the seed’s density peaks move to a cutout
of the thermodynamically stable bulk crystal. In the second
stage—on the Brownian time scale—the system crystal-
lizes out of the relaxed cluster.

Figure 3 displays the ‘‘island’’ of growth in the (A,
cos�)-parameter space, i.e., the set of parameters, for
which the nucleus grows for t > 0. It is found that the
island is nearly symmetric in cos�, relative to the equilib-
rium value of cos� � 0:5 while it is asymmetric in unit
cell area A about the ideal value of A � 1=�. This asym-
metry is qualitatively validated by BD simulations [24,25].

Within the second setup we study the time evolution of a
nucleation seed of two equal linear arrays along the y
direction, each comprising three infinite rows of hexago-
nally crystalline particles, which are separated by a gap, as
can be seen from the density map for t � 0 in Fig. 4. These
arrays, corresponding to an equilibrium crystal generated
via a suitable external potential, are displaced relative to
each other in y direction by half a lattice spacing �y �
a=2. In between the two crystalline arrays there is an empty
stripe of width �x �

���
3
p
a, corresponding to one missing

row of crystalline particles. In contrast to the first setup, the
second setup corresponds to a configuration with a huge
local, nonaffine strain relative to a perfect cutout of a bulk
crystal due to the gap.

In order to keep the gap free of particles during the
equilibration of the surrounding fluid for times t < 0 we
employ an additional strong external potential in the region
of the gap. The dimensions of the periodic box within
which Eq. (1) is solved numerically are now given by Lx 	
Ly � 64�

���
3
p
=2�a	 a. Snapshots of the central region of

the density field ��r; t� are shown in Fig. 4 for times
t=�B � 0, 0.01, 0.1, 0.63, 1.0 after the quench.

Again, a two-stage dynamical scenario is observed: On a
sub-Brownian time-scale of about 0:02�B, the positions of
the peaks drift to those of a perfect cutout of the stable bulk

crystal. This leads to a rapid filling of the gap. Then
crystallization occurs on a Brownian time-scale. In Fig. 5
we plot the distances xi�t� of the three crystalline density
peaks and the distance of the crystal front xf�t�with respect
to the center of the gap as a function of time. The latter is
taken as the inflection point of the envelope function of the
y-averaged density field. The theoretical curves are com-
pared to BD simulation data of the same setup [25] ob-
tained by averaging over the particle positions of
24 000 independent simulation runs. The two-stage picture
is clearly confirmed.
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FIG. 3 (color online). Stability island of the imposed nuclea-
tion cluster of 19 particles according to Fig. 1. The shaded region
separates the growth from the no-growth situation. The (blue)
stars display the according boundaries for fixed cos� � 0:5
obtained from BD computer simulation. The hexagon symbols
indicate the way the seeds are deformed in the different regions
of the parameter space. The (red) dots indicate the configurations
for the snapshots in Fig. 2.

FIG. 4 (color online). Snapshots of the central region of the
dimensionless density field ��r; t�=� of a linear nucleus of 2
times three infinite rows of hexagonally crystalline particles,
separated by a gap, at times t=�B � 0, 0.01, 0.1, 0.63, 1.0 (from
top to bottom) [30]. Note that the images display twice the
system’s central region of dimensions Lx=4	 2Ly for better
visibility.

0

2

4

6

8

 10

 0.001  0.01  0.1 1

ρ-1
/2

x(
t)

t/τB

xf(t/τB)
x1(t/τB)
x2(t/τB)
x3(t/τB)

FIG. 5 (color online). Time evolution of the distance of the
linear array’s three density peaks xi�t� and of the crystal front
xf�t� with respect to the center of the gap as a function of time.
Dynamical density functional theory results (lines) are compared
against Brownian dynamics simulation data (symbols; the
dashed line connecting the crosses is a guide to the eye). The
arrows indicate the typical time scales on which the relaxation of
the xi is occurring and on which the crystal growth sets in,
respectively.
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In conclusion, we have investigated by dynamical den-
sity functional theory whether and how an externally im-
posed cluster of fixed particles acts as a nucleation seed for
crystal growth if the particles are released and the system is
quenched instantaneously from a stable to a metastable
bulk fluid. If the imposed cluster is not too much strained
relative to a cutout of the stable bulk crystal, it induces
global crystallization. The kinetic pathway of the imposed
cluster exhibits a two-stage scenario: the cluster structure
first relaxes towards an appropriate cutout of the bulk
crystal before further growth. This two-stage process is
unexpected since it is reversed in larger clusters which
contain quite a large portion of the stable bulk crystal. In
the latter case crystal growth starts at the edges but the
inner elastic distortion anneals on a much larger time scale.
For higher undercoolings, i.e., larger �>, the size of the
stability island (Fig. 3) increases.

Our predictions can be verified by real-space experi-
ments on two-dimensional superparamagnetic colloidal
particles confined to the air-water interface in an external
magnetic field [17,18]. Qualitatively similar scenarios are
expected for different repulsive interactions and in three
spatial dimensions, which are relevant for nucleation and
growth experiments in sterically and charge stabilized
suspensions [8,26–28]. In three dimensions, one may
even induce the growth of metastable crystals and quasi-
crystals imposed by suitable nucleation seeds [29].
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[23] H. Löwen, C. N. Likos, L. Assoud, R. Blaak, and S. van
Teeffelen, Philos. Mag. Lett. 87, 847 (2007).

[24] In the Brownian dynamics simulations, the following
cluster criterion for crystal growth was chosen. A particle
is defined to be crystalline if it has six nearest neighbors
according to the Voronoi construction. Neighboring par-
ticles i and j are assigned to the same crystalline cluster if
jRe��i

6�j

6 �j=j�

i
6�j


6 j & 0:32, where �i
6 is particle i’s

complex bond order parameter. Crystal growth is defined
if the average number of crystalline particles belonging to
the cluster which contains the seed’s innermost particle at
t=�B � 0:1, Nc, exceeds Nmin � 23. For the strain pa-
rameters cos� � 0:5, �A � 0:2, 0.4, 0.6, 0.8, 1, 1.2, 1.4,
1.6 we performed 10.000 independent runs each and
measured Nc as a function of A. By linear interpolation
the boundaries of the stability island for cos� � 0:5 were
determined Amin ’ 0:26, Amax ’ 1:5.

[25] Since freezing in the simulation sets in at � ’ 12 [18] we
quench the simulated system from �< � 5 to �> � 20.
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