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Abstract. The influence of hydrodynamic interactions on lane formation of oppositely charged driven col-
loidal suspensions is investigated using Brownian dynamics computer simulations performed on the Rotne-
Prager level of the mobility tensor. Two cases are considered, namely sedimentation and electrophoresis.
In the latter case the Oseen contribution to the mobility tensor is screened due to the opposite motion
of counterions. The simulation results are compared to that resulting from simple Brownian dynamics
where hydrodynamic interactions are neglected. For sedimentation, we find that hydrodynamic interac-
tions strongly disfavor laning. In the steady state of lanes, a macroscopic phase separation of lanes is
observed. This is in marked contrast to the simple Brownian case where a finite size of lanes was obtained
in the steady state. For strong Coulomb interactions between the colloidal particles a lateral square lattice
of oppositely driven lanes is stable similar to the simple Brownian dynamics. In an electric field, on the
other hand, the behavior is found in qualitative and quantitative accordance with the case of neglected
hydrodynamics.

PACS. 82.70.Dd Colloids – 61.20.Ja Computer simulation of liquid structure – 64.70.D- Solid-liquid
transitions – 05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

The dynamics of colloidal particles dispersed in a fluid sol-
vent is quite different from the ballistic motion of molec-
ular systems which is described by Newton’s law [1–4].
The viscous solvent both damps the motion of a colloidal
particle and leads to kicks of the solvent molecules with
the colloidal particle leading to Brownian motion if the
time-scales of the molecular solvent is much faster than
that of the diffusive motion of the colloidal particles. In
concentrated suspensions, a dragged colloidal particle in-
fluences the motion of other particles via the solvent flow
field. These so-called hydrodynamic interaction is typi-
cally long-ranged. While it can be neglected in colloidal
suspensions of very small volume fractions, it induces sig-
nificant corrections in the equilibrium and nonequilibrium
dynamics of colloidal suspensions [3,5]. The equilibrium
structures and phase boundaries, on the other hand, are
unaffected by hydrodynamic interactions.

In the past years a simple nonequilibrium phase tran-
sition [6–9] has been discussed in a binary mixture of col-
loidal particles which are driven by a constant external
field [10–13]. The drive is different on the two particle

a e-mail: rexm@thphy.uni-duesseldorf.de

species and could arise from gravity and from an external
electric field in the case of charged colloidal suspensions.
Brownian dynamics computer simulations with neglected
hydrodynamic interactions strongly support the scenario
that — as a function of the driving strength — the mix-
tures undergoes a transition from a mixed steady state
with anisotropic correlations towards a steady state where
macroscopic lanes are formed. The transitions has been
found for oppositely driven repulsive mixtures [10–16] in
two and three spatial dimensions and it seems to be a first-
order nonequilibrium transition with a significant hys-
teresis in an order parameter which detects laning [10].
The general scenario occurs also in pedestrian dynam-
ics [17,18] and in granular matter [19,20]. The formation
of columnar and globular structures in bidisperse sedimen-
tation generated solely by hydrodynamic backflow was re-
ported by Batchelor and Janse van Rensburg already in
1986 [21].

Recently, lane formation was observed in real-space
experiments by Leunissen et al. [22]. Equimolar mix-
tures of oppositely charged colloidal particles were pre-
pared which form binary ionic crystals [23,24]. These crys-
tals were exposed to a strong external electric field and
the dynamics of lane formation was watched by confocal
microscopy. Subsequently extensive Brownian dynamics
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simulations were carried out to map the nonequilibrium
phase diagram [25]. These simulations assumed a Yukawa
pair interaction between the particles and neglected hy-
drodynamic interactions completely. A wealth of differ-
ent steady-state structures was detected. In particular
different orderings were found in the plane perpendicu-
lar to the drive including a square, triangular or rhom-
bic crystalline lattice of lanes, a network structure with
a finite structural length and intermediate chain forma-
tion of lanes [25]. A rough estimate of the experimental
parameters used in reference [22] reveals that the laned
state observed experimentally indeed falls into the region
where laning is expected to occur by Brownian-dynamics
computer simulations.

In this paper we address the question how hydrody-
namic interactions influence the scenario and the steady-
state diagram of lane formation. Our motivation to do
so is twofold: First, the experiments, of course, contain
hydrodynamic interactions in their full glory, and there-
fore an inclusion of hydrodynamic interactions is needed
for a quantitative comparison. Second, there is a principal
need to understand in which direction hydrodynamics in-
fluence lane formation. In particular it is known [26] that
the leading long-ranged term in the mobility pair tensor is
screened if an electric field is applied since a charged col-
loidal particles is surrounded by counterions of opposite
charge. That makes the hydrodynamic interaction signif-
icantly different from, e.g., sedimentation induced by dif-
ferent buoyant masses of oppositely charged colloids where
the action of gravity on the microions can safely be ne-
glected. In the latter case, the leading part in the mobility
tensor at large interparticle separation is the unscreened
Oseen tensor. It would be interesting to explore how far
the steady state is affected by hydrodynamic interactions
in both cases of sedimentation and electrophoresis.

We use Brownian-dynamics computer simulations and
include hydrodynamic interaction by using mobility ten-
sors on the Rotne-Prager level. Both cases of sedimen-
tation and electrophoresis are studied separately with an
unscreened, respectively, screened version of the mobility
tensor. The steady-state phase diagrams and the drift ve-
locity are simulated. The simulation data are compared
to that obtained by simple Brownian dynamics where hy-
drodynamic interactions are neglected. For sedimentation,
we find that hydrodynamic interactions strongly disfavor
laning. In the steady state of lanes, a macroscopic phase
separation of lanes is observed, i.e. the sickness of the
lanes are of the system size. This is in marked contrast to
the simple Brownian case where a finite size of lanes was
obtained in the steady state. For strong Coulomb interac-
tions between the colloidal particles a lateral square lattice
of oppositely driven lanes is stable similar to the simple
Brownian dynamics. In an electric field, on the other hand,
the behavior is found in qualitative and quantitative ac-
cordance with the case of neglected hydrodynamics. All
lateral structures are reproduced and the topology of the
steady-state phase diagram is unchanged.

The paper is organized as follows: in Section 2, we
describe our model and simulation scheme for sedimen-
tation and electrophoresis. Brownian dynamics simula-

tion results are presented in Section 3. We conclude in
Section 4.

2 The model

We perform Brownian-dynamics simulations to study
an equimolar binary mixture of 2N = 1024 oppositely
charged colloidal particles of diameter σ dissolved in a
solvent fluid of shear viscosity η at temperature T and
volume fraction φ = 2Nπσ3/6l3 exposed to an external
driving field, where l is the dimension of a cubic simu-
lation box having periodic boundary conditions. Hence-
forth, σ serves as the unit of length and kBT , the thermal
energy, as the energy unit of the system. To mimic the ex-
periments by Leunissen et al. [22,27] the particles interact
with an effective screened Coulomb potential (or Yukawa
potential) [28] plus a steric repulsion Vh:

V (rij) = V0
ZiZj

(1 + κσ/2)2
e(−κσ(rij/σ−1))

rij/σ
+ Vh(rij), (1)

with V0 = 50kBT the strength of the interaction poten-
tial and Zi = ±1 the sign of the charge of particle i.
rij = |ri − rj | denotes the distance between particle i
and j, where ri is the coordinate vector. The inverse
screening length κ governs the range of the interaction
and is determined by the salt concentration of the solu-
tion. The steric repulsion between the particles, that pre-
vents the system from collapsing, is approximated by a
repulsive (shifted and truncated) Lennard-Jones potential

Vh(rij)=







ǫ

[

(

σ
rij

)12

−
(

σ
rij

)6

+ 1
4

]

, if rij ≤ 21/6σ,

0, else,
(2)

with ǫ = 4V0/(1 + κσ/2)2. The constant external driving
field that acts in opposite directions on the two different
particle species reads as

F
ext
i = Zifez, (3)

where ez is the unit vector along the z-direction and
f = 150kBT/σ is the strength of the external force. The
external force is supposed to stem from either an elec-
tric field or a gravitational field accompanied with dif-
ferent buoyant masses of the oppositely charged particles.
Though the external force, equation (3), may in both cases
be identical, if the charges and/or buoyant masses are cho-
sen accordingly, the hydrodynamic interactions are not.

The algorithm used to simulate the diffusive Brow-
nian motion of the colloidal particles was proposed by
Ermak and McCammon [29]. Here, the translational dis-
placements of the particles are deemed to occur in time
steps of fixed length ∆t and the update algorithm is given
by [30]

ri(t + ∆t) = ri(t)

+∆t

N
∑

j=1

{

Dij(t)

kBT
· Fj(t) + ∇rj

· Dji(t)

}

+ ∆r
G
i , (4)
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where Dij denotes the diffusion tensor field depending on
the positions of the particles at time t. The random dis-
placements ∆r

G
i are chosen from a joint Gaussian distri-

bution with mean and covariant matrix [30]

〈∆r
G
i 〉G = 0; 〈∆r

G
i ∆r

G
j 〉G = 2Dij∆t, (5)

where 〈. . .〉G denotes the average over the Gaussian noise
distribution. Fi(t), i = 1, . . . , N , comprises the nonhy-
drodynamic forces due to interparticle interactions, de-
termined by the gradient of the interaction potentials in
equations (1) and (2), and the external force F

ext
i , equa-

tion (3), acting onto particle i.
Hydrodynamic interactions are included in the simu-

lation through the mobility tensor µij = Dij/kBT . In a
first approach we neglect hydrodynamic interactions com-
pletely to asses its effect on the system. In that case the
diffusion tensor is given by Stoke’s law in diagonal form

γµij = δij1, (6)

with friction γ = 3πησH, where σH is the hydrodynamic
diameter. In the sedimentation and electrophoresis situa-
tion we approximate the mobility tensor by two-body in-
teractions. In this approximation the divergence in equa-
tion (4) vanishes always [31]. When studying the sedimen-
tation, the buoyant masses of the oppositely charged par-
ticles are supposed to be such that the same force acts on
the two species but in opposite directions. The action of
gravity on the microions can safely be neglected. There-
fore, in sum no net force is acting on the solvent and overall
it remains quiescent. Then, for a pair of spheres of hydro-
dynamic diameter σH the mobility tensor is approximated
by the well-known Rotne-Prager expression [32]

γµ
RP
ij = δij1 + (1 − δij)

[

3σH

8
O(rij) +

σ3
H

16
Q(rij)

]

, (7)

where

O(r) =
1

|r|
(1 + r̂ ⊗ r̂); Q(r) =

1

|r|3
(1 − 3r̂ ⊗ r̂), (8)

with the unit vector r̂ = r/|r|, ⊗ a dyadic product, and δij

Kronecker’s symbol. On this level of approximation we in-
corporate all interactions up to O((σH/r)3). Higher-order
contributions such as many-body, coupling between rota-
tional and translational motions, and lubrication forces
are neglected. The leading term in equation (7) is given
by O(r) which is of the order of 1/|r| for large distances.

However, when regarding the electrophoresis the mo-
bility tensor has to be altered since forces induced by the
surrounding counterions into the solvent are in sum equal
to the force induced by a colloidal particle. Thus, the sol-
vent flow stemming from the drag on the counterions can-
not be neglected as is done in the sedimentation case. It
results in an effective screening of the leading far-distance
term of the hydrodynamic interactions between the col-
loidal particles as Long and Ajdai have shown [26]. Their

mobility tensor µ
LA
ij reads as

γµ
LA
ij =δij1 +

3σH

4
(1 − δij)

×
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e−κrij
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1
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1
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1
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)

3r̂ij ⊗ r̂ij

)

−
1

κ2
Q(rij)

]

. (9)

Here, the leading-order term is Q(rij) which decays as
1/|r3|.

Some further remarks concerning the use of the far-
field mobility tensors µ

RP
ij and µ

LA
ij are in order. Both are

in general justified only for particles separated by several
diameters. Furthermore, in the derivation of µ

LA
ij the off-

diagonal entries relate the force on a pointlike (colloid)
charge, immersed in an infinite undisturbed electrolyte
solution, to the resulting change in the fluid velocity at a
vector distance r. Thereby, the charge density distribution
is described on the Debye-Hückel level that is suited for
weakly charged point ions. The distortion of the spher-
ical electrolyte atmosphere around the colloidal particle
by the electric field is neglected. For high volume frac-
tions and large screening length, where particles are close
to contact and the counterion clouds overlap, the above
mobility tensor is therefore likely to be inaccurate. We ac-
knowledge that both mobilities are crude and questionable
approximations to the true ones and should therefore be
regarded just as a first step in including hydrodynamic in-
teractions properly. However, to some extent the problems
are overcome by the fact that the considered colloidal par-
ticles are coated with a polymer layer. To account for this
polymer coating, that gives rise to the steric repulsion, we
choose σH = 0.9σ throughout this paper. As a result, this
ensures the positive definiteness of both mobility tensors
since configurations with |ri − rj | ≤ σH are of negligible
statistical weight.

More sophisticated simulation techniques for spherical
particles in an unbounded space including lubrication ap-
proximation for particles in close proximity and multipo-
lar expansion methods are available [33–37]. However, in
the electrophoresis where the hydrodynamic interactions
of the counterions become important explicit simulations
of all colloidal particles and their counterions — 110 per
colloidal particle in the experiments by Leunissen et al.

— are still beyond computational means. Therefore, we
adopted the calculations of Long and Ajdari to our sim-
ulations and compare it to the sedimentation problem on
the same level of accuracy, i.e. the Rotne-Prager level. To
our best knowledge this is the first Brownian-dynamics
simulations with the Long and Ajdari mobility term 9.
Though the interaction strength for low salt concentra-
tions and the external force are large against the thermal
energy with a Péclet number of Pe = fσ/kBT = 150, we
perform Brownian-dynamics simulation to prevent parti-
cles from crystallizing within a lane.

Both mobility tensors, equations (7) and (9), are
long-ranged and thus require an Ewald-like summation
in simulations analogous to Coulomb and dipole-dipole
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interactions. Details on the summation and discussions
about appropriate boundary conditions to the system can
be found elsewhere [38–41]. We applied the scheme sug-
gested by Beenakker [41] and adapted it for µ

LA
ij accord-

ingly, i.e., only the dipolar part is used with the simple
modification a3 → −3aκ−2, where a = σH/2. The square
root of the diffusion tensor, needed when calculating the
random displacements in equation (5), are obtained from
a Cholesky decomposition:

D = L · LT, (10)

where L is a lower triangular matrix and L
T is its trans-

pose. A suitable time scale for our system is τB =
γσ2/kBT . The equations of motion including the exter-
nal field are numerically solved using a finite time step
∆t = 2 · 10−5τB in all simulations. Statistics were gath-
ered after an initial relaxation period of 20τB. The start-
ing configuration of all simulations was a homogeneous
mixture.

3 Results

3.1 Order parameter and steady-state phase diagrams

To assess the effect of hydrodynamic interactions on the
lane behavior of oppositely charged colloidal particles we
study a set of volume fractions φ and inverse screening
lengths κ∗ = κσ and map out nonequilibrium steady-
state phase diagrams for all three situations: hydrody-
namic interactions neglected (A), electrophoresis (B), and
sedimentation (C).

A state of lane is thereby identified by a laning order
parameter that is defined through

Φ =
1

2N

〈

2N
∑

i=1

Φi

〉

t

, (11)

where the angular brackets 〈. . .〉t denote a time average.
The local order parameter Φi = (nl − no)

2/(nl + no)
2 is

assigned to every particle i, where the numbers nl and no

are the number of like charged particles and oppositely
charged particles, respectively, whose projections of dis-
tance onto the plane perpendicular to the field are smaller
than a suitable cut-off length scale zc. Φi is equal to 1 if
all particles within this distance criterion are of the same
kind and zero if nl = no, i.e. a homogeneous mixture. We
chose for convenience zc = 3

4σ to detect all lanes starting
from a single queue of particles. In what follows we will
use a threshold: for Φ ≥ 1/2 we call the configuration a
state of lanes while in the opposite case (Φ < 1/2) we call
it a state without lanes.

We observe that lanes form different structures in
the plane perpendicular to the driving direction for dif-
ferent values of κ∗ and φ. We find lanes placed on a
square or triangular lattice, a network-like structure (rem-
iniscent of a bicontinous microemulsion or microphase-
separated system), coexistence regimes of the same, and
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Fig. 1. (Color online) Nonequilibrium steady-state phase di-
agram for a constant driving force of strength f = 150kBT/σ
with hydrodynamic interactions neglected accompanied by a
typical simulation snapshot of the projection of the particle
coordinates onto the plane perpendicular to the driving field
for each different state. The lines between the phases are a
guide for the eye.
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Fig. 2. (Color online) Same as Figure 1 but for electrophoresis
with hydrodynamic interactions taken into account through
µ

LA
ij in equation (9). The phase diagram reveals only minor

differences as compared to the case of neglected hydrodynamic
interactions in Figure 1.

macroscopically separated lanes. The resulting nonequi-
librium steady-state phase diagrams are shown in Fig-
ures 1, 2, and 3. They are accompanied with typical sim-
ulation snapshots of the projection of all particle coordi-
nates onto the xy-plane of the respective situation.

What can be seen at first sight is that the qualita-
tive behavior of situation (A) and (B) in Figures 1 and 2
is almost identical with only subtle differences, while, on
the other hand, the phase behavior changes drastically
for situation (C), Figure 3. In the latter the whole phase
diagram is altered and the diversity of phases found is
reduced compared to the first two cases.
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Fig. 3. (Color online) Same as Figure 1 but for sedimentation
with hydrodynamic interactions taken into account through
µ

RP
ij in equation (7). The phase diagram shows significant

changes as compared to Figure 1 and Figure 2.

3.2 Comparison of simulation results for neglected
hydrodynamic interactions and electrophoresis

In this subsection we briefly describe the two phase di-
agrams in Figures 1 and 2 and their differences, begin-
ning at low volume fractions and ending at high ones, and
then dwell on the third diagram, Figure 3, thereafter in
subsection 3.3. A more ample discussion on how differ-
ent phases are identified and what structural correlations
they exhibit can be found in a previous work of the au-
thors on the same system with hydrodynamic interactions
neglected but for a slightly different driving strength and
larger systems [25]. Here, we find for situation (A) vir-
tually the same results as in the previous work with only
one difference, namely that we do not encounter a rhombic
phase for φ = 0.4 and κ∗ = 1, 2, 3.

For very low volume fraction, φ . 0.01, in both sys-
tems the correlations between the particles are not suf-
ficient to form lanes at all. Thus, the systems are in a
phase of no-lanes. Only for very low salt concentration,
i.e. small κ∗, where the electrostatic coupling between the
colloidal particles is strong, we find a coexistence region
between lanes and no-lanes. Here, the region with no-lanes
consists of voids, where hardly any particle is found. The
structure of the lane region, on the other hand, is different
in the two situations. For situation (A) the corresponding
snapshot in Figure 1 reveals fixed lattice points while the
snapshot in Figure 2 situation (B) shows a network-like
structure. For situation (A), an initial configuration with
lanes placed on a square lattice separated from a com-
pletely depleted region is stable in simulations, as well.
Thus, we assume that in situation (A) the lanes/no-lanes
phase is a transient state toward a complete square lattice
and no-lane phase separation. Hydrodynamic interactions
destroy the coexistence phase for φ = 0.01. It only occurs
in a denser system with φ = 0.1 whereas in situation (A)
this state shows already up at φ = 0.01. Additionally, the
voids are more pronounced in the latter case compared to
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Fig. 4. Partial structure factor S⊥(k) of like-charged particles
perpendicular to the driving field for κ∗ = 10 and φ = 0.1 for
hydrodynamics neglected and electrophoresis. The pre-peak at
k∗

0 = k0σ indicates an additional length scale of the structure
in the network-like phase. The inset shows the position k∗

0 of
the pre-peak as a function of the inverse screening length κ∗

for a fixed volume fraction of φ = 0.1.

situation (B). Upon increasing κ∗ ≥ 2 for φ = 0.1 in both
situations we find a network-like structure whose charac-
teristic spacing is increasing with increasing κ∗. For situ-
ation (A) there is also a small coexistence region between
network and square lattice at κ∗ = 2.

To obtain a quantitative measure of the characteristic
spacing in the network structure, we determine a structure
factor perpendicular to the driving field of like-charged
particles. The steady-state partial structure factor has
been calculated by evaluating the expression

S⊥(k) = 1 + ρĥ⊥(k), (12)

with ρ = 6φ/πσ3 the number density and the wave vec-
tor k = |k|, where k = (2π/l)(nx, ny) and nx, ny are

integers. ĥ⊥(k) is the Fourier transform of the total cor-
relation function h⊥(r⊥) = g⊥(r⊥) − 1 with r = (r⊥, z)
and

g⊥(r⊥) =
1

ρN

〈

2N
∑

i,j, i 6=j
(Zi=Zj)

δ(r⊥ − |r⊥ i − r⊥ j |)δ(zi − zj)

〉

t

,

(13)
where δ(x) denotes Dirac’s delta distribution. An exam-
ple of the steady-state partial structure factors for κ∗ = 10
and φ = 0.1 for both situation, (A) and (B), is shown in
Figure 4. One clearly observes a pronounced pre-peak at
the wave number k0 in both cases. A pre-peak in the struc-
ture factor is an indication of an additional “mesoscopic”
length scale, i.e., a length scale which is significantly larger
than a microscopic length scale. This is also typical for bi-
continous networks, such as, e.g., microemulsions [42,43].
In the inset we additionally present the position k0 of the
pre-peak as a function of the inverse screening length. It
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is evident from the picture that the characteristic spac-
ing is indeed growing with increasing κ∗. In the limit of
κ∗ → ∞ the particles’ interaction reduces to the repul-
sive soft core equation (2). For such a system it is antici-
pated that the ultimate steady state is a phase-separated
one [10]. Therefore, we assume that for strongly screened
particles k0 remains constant and corresponds to a char-
acteristic spacing of half of the box length. We find hardly
any difference between situation (A) and (B).

For φ = 0.2 an additional phase for small inverse
screening length shows up in both phase diagrams. Oppo-
sitely driven lanes are placed on a square lattice with an
alternating charge pattern. The formation of this lattice
structure can be qualitatively understood from an effective
interaction between oppositely charged driven lanes which
has a short-ranged repulsive and a long-ranged attractive
interaction. The former stems from the friction between
oppositely driven particles, while the later results form
the Coulomb interaction. The square lattice then reduces
the electrostatic energy of the system because each parti-
cle has only oppositely charged neighbors. For increasing
salt concentrations we encounter a coexistence region be-
tween the square lattice and the network-like phase and
finally end up in a pure network-like phase. The phase dia-
gram is in both situations very similar, only the borders of
the transitions are slightly shifted. In the electrophoresis
case the network-like structure is preferred to the square
lattice.

For a higher volume fractions of φ = 0.3 a coexis-
tence regime between a triangular lattice and a network-
like structure is found. The lattice points in the trian-
gular phase are rather randomly decorated with different
charges. Here, the short-range repulsion plays the dom-
inant role compared to the electrostatic interaction. It
enforces a triangular lattice due to packing effects al-
though electrostatically it is strongly disfavored because
like-charged particles necessarily occupy lattice points
next to each other. Again, hydrodynamic interactions
slightly shift the phase boundaries towards the network-
like structure.

For the highest volume fraction studied, φ = 0.4, both
phase diagrams show exactly the same behavior. Here,
the short-range repulsions dictates the phase behavior for
nearly all salt concentration but for κ∗ = 1 and enforces
lanes to be placed on a triangular lattice. Only for κ∗ = 1,
where electrostatic interactions are prominent, a square
lattice is preferred. In principle a square lattice is possible
up to the packing of a simple cubic lattice of φ = 0.52.

In summary we observe very similar behavior in both
situations. The observed differences can be qualitatively
explained by the fact that hydrodynamic interactions dis-
favor lanes driven oppositely past each other.

3.3 Sedimentation

Regarding sedimentation, Figure 3, the whole phase di-
agram exhibits only three different phases. For volume
fractions φ ≤ 0.1 we do not find lane formation for all
inverse screening length studied. For increasing volume

fractions and strong electrostatic interactions, κ∗ ≤ 2,
first the square lattice at φ ≈ 0.3, that is also present
in the previous two situations, is recovered and then the
system reenters a region with no-lanes for φ = 0.4. This
behavior nicely illustrates the competition between hydro-
dynamic interactions disfavoring lanes driven oppositely
past each other and the electrostatic interactions favoring
a square lattice. Only for the small regime around φ ≈ 0.3
the electrostatics succeeds the hydrodynamic interactions
and enforces a square lattice. For all other volume frac-
tions laning is destroyed. However, for stronger salt con-
centrations, where the Coulombic coupling is reduced, we
discover a situation that is not present in the previous sit-
uations (A) and (B), namely a region in which only two
big completely separated lanes. We call this state phase
separated. In that case the long-ranged hydrodynamic in-
teractions prescribe the structure and the short-ranged
Yukawa interaction plays its role only at the rough inter-
face of the two phases. From our simulations we conclude
the lanes are separated by half of the box length.

3.4 Drift velocity

Now, we study the influence of hydrodynamic interaction
on the drift velocity along the field direction that is defined
as follows:

v2 := lim
t→∞

〈

[(ri(t) − ri(0)) · ez]
2
〉

t2
. (14)

This entity measures the mean-square displacement of
each particle in the nonequilibrium steady-state. A study
on the effect of hydrodynamics on the drift velocity of like-
charged colloidal particles was carried out by Watzlawek
and Nägele [44]. We study two cases, first we fix the vol-
ume fraction at φ = 0.3 and vary the inverse screening
length and afterward vice versa for κ∗ = 1.

In Figure 5 we display v∗ = v/v0, where v0 = 150σ/τB

is the drift velocity of an infinitely diluted system, for a
fixed volume fraction φ = 0.3 as a function of the in-
verse screening length κ∗ for all three situations. For all
cases the drift velocity increases with decreasing Coulomb
coupling because oppositely charged colloids attract each
other while driven in opposite direction and lanes mutu-
ally retard each other. For very strongly screened parti-
cles where this friction is less important all three curves
reveal approximately the same value of v ≈ 0.87. Accord-
ingly, this value is close to the drift velocity v0 an iso-
lated particle subjected to the same driving force. While
in (A) and (B) v grows gradually, in the sedimentation
curve we encounter a jump in the drift velocity between
κ∗ = 3 and κ∗ = 4. This coincides with the transition
from the no-lane regime to the phase separated regime,
see the phase diagram Figure 3. On the other hand for
κ∗ ≤ 2, where we find a square lattice, the drift veloc-
ity is similar to κ∗ = 3. From that we conclude that the
phase-separated state of lanes supports particle transport,
while lanes placed on a square lattice enforced by strong
Coulombic interactions slow down particle transportation.
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Fig. 5. Average dimensionless drift velocity v∗ = v/v0 in
drive direction as a function of the inverse screening length κ∗

at φ = 0.3 for Brownian-dynamics simulations with hydrody-
namic interactions neglected, taken into account through µ

LA
ij ,

and µ
RP
ij .

A further interesting feature is that curves for (A) and (B)
intersect between κ∗ = 1 and κ∗ = 2 and that the screened
hydrodynamic interaction enhance the drift velocity for
larger inverse screening length. The same is true for the
unscreened hydrodynamic interactions in the sedimenta-
tion for κ∗ ≥ 6. When studying the drift velocity for a
fixed inverse screening length but for varying volume frac-
tions in Figure 6 we find again an intersection point of the
curves for situations (A) and (B). Here, the drift velocity
in the electrophoresis reaches an approximately constant
value of v∗ ≈ 112 for φ = 0.1–0.4, whereas it gradually
decreases when hydrodynamic interactions are neglected.
For the sedimentation the drift velocity decreases mono-
tonically. In contrast to the case of varying salt concen-
tration we do not encounter a jump in the sedimentation
drift velocity when entering the square lattice at φ = 0.3
and re-entering the no-lane regime at φ = 0.4.

4 Conclusions

In conclusion the influence of hydrodynamic interactions
on lane formation of opposite charged colloids driven by an
electric field or by gravity was investigated by Brownian-
dynamics computer simulations. Hydrodynamic interac-
tions were included on the Rotne-Prager level. For an elec-
tric field, the leading Oseen term is screened due to the
presence of counterions. The latter fact has led to more
similar steady-state phase diagrams for an electric field as
a driving source than that in the simple case of neglected
hydrodynamic interactions. Various steady state were ob-
tained as a function of the colloidal density and the range
of the interaction. They can qualitatively be understood
in terms of a competition of the mutual Coulomb attrac-
tion and friction of sliding lanes. At high densities the

0.01 0.1 0.2 0.3 0.4
φ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

v*

no HI
electrophoresis
sedimentation

Fig. 6. Average dimensionless drift velocity v∗ = v/v0 in drive
direction as a function of the volume fractions φ at κ∗ = 1
for Brownian-dynamics simulations with hydrodynamic inter-
actions neglected, taken into account through µ

LA
ij , and µ

RP
ij .

lateral structure is crystalline, the crystal is either trian-
gular as dictated by packing at high densities and high
screening or square-like at low-screening which minimizes
the Coulomb attractive energy. On the other hand, in sed-
imentation where the two colloidal species have the same
buoyant mass up to a relative sign, friction of sliding lanes
is strongly enhanced leading to macroscopic separation of
lanes.

The steady-state phase diagram can in principle be
verified in real-space experiments of charged suspensions
which are driven in an electric field or sedimenting [22].
It would be interesting to construct a microscopic theory
for the lane transitions which includes the lateral crys-
talline structure. The instability analysis within a dynam-
ical density functional theory as applied to the case of
equal charges in two spatial dimensions [12,45] should in
principle be generalizable to the case of oppositely charged
particles.

Finally more sophisticated simulations schemes are
needed in order to go beyond the Rotne-Prager level of
approximation used in this paper. Among the various
promising approaches are the stochastic rotation dynam-
ics code [46,47], a lattice Boltzmann theory including hy-
drodynamics [48–52] and counterion flow or the recently
developed fluid particle dynamics methods [53–55].

We thank M. Leunissen, A. van Blaaderen, R. Yamamoto, A.
Louis, and J. Padding for helpful remarks and the DFG (SFB
TR6, project section D1) and the Graduiertenförderung of the
Heinrich-Heine-Universität Düsseldorf for financial support.
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021402 (2002).

11. R.R. Netz, Europhys. Lett. 63, 616 (2003).
12. J. Chakrabarti, J. Dzubiella, H. Löwen, Europhys. Lett.
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