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Abstract – The phase diagram of binary mixtures of particles interacting via a pair potential
of parallel dipoles is computed at zero temperature as a function of composition and the ratio
of their magnetic susceptibilities. Using lattice sums, a rich variety of different stable crystalline
structures is identified including AmBn structures. (A (B) particles correspond to large (small)
dipolar moments.) Their elementary cells consist of triangular, square, rectangular or rhombic
lattices of the A particles with a basis comprising various structures of A and B particles. For
small (dipolar) asymmetry there are intermediate AB2 and A2B crystals besides the pure A and
B triangular crystals. These structures are detectable in experiments on granular and colloidal
matter.
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While the freezing transition and the correspond-
ing crystal lattice in one-component systems is well
understood by now [1,2], binary mixtures of two differ-
ent particle species exhibits a much richer possibility of
different solid phases. For example, while a one-component
hard-sphere system freezes into the close-packed face-
centered-cubic lattice [3], binary hard-sphere mixtures
exhibit a huge variety of close-packed structures depend-
ing on their diameter ratio. These structures include
ABn superlattices, where A are the large and B the
small spheres, with n= 1, 2, 5, 6, 13. These structures
were found in theoretical calculations [4], computer simu-
lations [5,6] and in real-space experiments on sterically
stabilized colloidal suspensions [7,8]. Much less is known
for soft repulsive interparticle interactions; most recent
studies on crystallization include attractions and consider
Lennard-Jones mixtures [9,10] or oppositely charged
colloidal particles [11–13].
In this letter we explore the phase diagram of a binary

mixture interacting via a soft repulsive pair potential
proportional to the inverse cube of the particle sepa-
ration. Using lattice sums, we obtain the zero-temperature
phase diagram as a function of composition and asymme-
try, i.e. the ratio of the corresponding prefactors in the
particle-particle interaction. Our motivation to do so is
threefold:

i) First there is an urgent need to understand the effect
of softness in general and in particular in two spatial
dimensions. The case of hard interactions in two spatial
dimensions, namely binary hard disks, has been obtained
by Likos and Henley [14] for a large range of diameter
ratios. A complex phase behavior is encountered and it is
unknown how the phase behavior is affected and controlled
by soft interactions.
ii) The model of dipolar particles considered in this

letter is realized in quite different fields of physics.
Dipolar colloidal particles can be realized by imposing a
magnetic field [15]. In particular, our model is realized
by micron-sized superparamagnetic colloidal particles
which are confined to a planar water-air interface and
exposed to an external magnetic field parallel to the
surface normal [15–19]. The magnetic field induces a
magnetic dipole moment on the particles whose magni-
tude is governed by the magnetic susceptibility. Hence
their interaction potential scales like that between two
parallel dipoles with the inverse cube of the particle
distance. Binary mixtures of colloidal particles with diffe-
rent susceptibilities have been studied for colloidal
dynamics [20], fluid clustering [21,22], and the glass
transition [23]. A complementary way to obtain dipolar
colloidal particles is a fast alternating electric field
which generates effective dipole moments in the colloidal
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particles [24]. This set-up has been applied for two-
dimensional binary mixtures in ref. [25]. In granular
matter, the model has been realized by mixing millimeter-
sized steel and brass spheres [26] which are placed on
a horizontal plate and exposed to a vertical magnetic
field such that the repulsive dipole-dipole interaction
is the leading term. Stable triangular AB2 crystalline
lattice were found [26]. Layers of dusty plasmas involve
particles whose interactions can be dominated by
that of dipoles [27–29]. Other situations where two-
dimensional mixtures of parallel dipoles are relevant
concern amphiphiles (confined to a monomolecular film
at an air-water interface [30]), binary monolayers [31–33],
ferrofluid monolayers [34] exposed to a perpendicular
magnetic field, or thin films of molecular mixtures (e.g.
of boron nitride and hydrocarbon molecules) with a large
permanent dipole moment [35]. Hence, in principle, our
results can be directly compared to various experiments
of (classical) dipolar particles with quite different size in
quite different set-ups.
iii) It is important to understand the different crystalline

sub-structures in detail, since a control of the colloidal
composite lattices may lead to new optical band-gap
materials (so-called photonic crystals) [36] to molecular-
sieves [37] and to micro- and nano-filters with desired
porosity [38]. Nano-sieves and filters can be constructed
on a colloidal monolayer confined at interfaces [38]. Their
porosity is directly coupled to their crystalline structure.
For these applications, it is mandatory to understand
the different stable lattice types which occur in binary
mixtures.
As a result, we find a variety of different stable

composite lattices. They include AmBn structures with,
for instance, n= 1, 2, 4, 6 for m= 1. Their elementary
cells consist of (equilateral) triangular, square, rectan-
gular and rhombic lattices of the A particles. These are
highly decorated by a basis involving either B particles
alone or both B and A particles. The topology of the
resulting phase diagram differs qualitatively from that
of hard-disk mixtures [14]. For small (dipolar) asym-
metries, for instance, we find intermediate AB2 and
A2B structures besides the pure triangular A and B
lattices which are absent for hard disks. Our calculations
admit more candidate phases than considered in earlier
investigations [39] where two-dimensional quasicrystals
were shown to be metastable. We further comment that
we expect that colloidal glasses in binary mixtures of
magnetic colloids [23] are metastable as well but need
an enormous time to phase separate into their stable
crystalline counterparts.
The model systems used in our study are binary

mixtures of dipolar particles made up of two species
denoted as A and B. Each component A and B is charac-
terized by its dipole moment mA and mB , respectively.
The particles are confined to a two-dimensional plane and
the dipole moments are fixed in the direction perpendic-
ular to the plane. Thereby the dipole-dipole interaction

is repulsive. Introducing the ratio m=mB/mA of dipole
strengths mA and mB , the pair interaction potentials
between two A dipoles, a A- and B-dipole, and two
B-dipoles at distance r are

VAA(r)= V0ϕ(r), VAB(r) = V0mϕ(r),

VBB(r) = V0m
2ϕ(r), (1)

respectively. The dimensionless function ϕ(r) is equal
�3/r3, where � stands for a unit length. The amplitude
V0 sets the energy scale.
Our task is to find the stable crystalline structures

adopted by the system at zero temperature. We consider
a parallelogram as a primitive cell which contains nA
A-particles and nB B-particles. This cell can be described
geometrically by the two lattice vectors a= a(1, 0)
and b= aγ(cos θ, sin θ), where θ is the angle between a
and b and γ is the aspect ratio (γ = |b|/|a|). The position
of a particle i (of species A) and that of a particle j (of
species B) in the parallelogram is specified by the vectors
rAi = (x

A
i , y

A
i ) and r

B
j = (x

B
j , y

B
j ), respectively. The total

internal energy (per primitive cell) U has the form

U =
1

2

∑

J=A,B

nJ∑

i,j=1

∑′

R

VJJ
(∣∣rJi − rJj +R

∣∣)

+

nA∑

i=1

nB∑

j=1

∑

R

VAB(
∣∣rAi − rBj +R

∣∣), (2)

where R= ka+ lb with k and l being integers. The sums
over R in eq. (2) run over all lattice cells where the
prime indicates that for R= 0 the terms with i= j are
to be omitted. In order to handle efficiently the long-
range nature of the dipole-dipole interaction, we employed
a Lekner-summation [40,41].
We choose to work at prescribed pressure p and zero

temperature (T = 0). Hence, the corresponding thermo-
dynamic potential is the Gibbs free energy G. Addi-
tionally, we consider interacting dipoles at composition
X := nB/(nA+nB), so that the (intensive) Gibbs free
energy g per particle reads: g= g(p,m,X) =G/(nA+nB).
At T = 0, g is related to the internal energy per particle
u=U/(nA+nB) through g= u+ p/ρ, where the pressure
p is given by p= ρ2(∂u/∂ρ), and ρ= (nA+nB)/|a×b|
is the total particle density. The Gibbs free energy per
particle g has been minimized with respect to γ, θ and the
position of particles of species A and B within the primi-
tive cell. To reduce the complexity of the energy landscape,
we have limited the number of variables and considered the
following candidates for our binary mixtures: A4B, A3B,
A2B, A4B2, A3B2, AB, A2B2, A2B3, AB2, A2B4, AB3,
AB4 and AB6. For the AB6 case we considered a triangu-
lar lattice formed by the A particles.
The final phase diagram in the (m,X)-plane has been

obtained by using the common tangent construction. The
dipole-strength ratio m can vary between zero and unity.
A low value ofm (i.e., close to zero) corresponds to a large
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Fig. 1: (Colour on-line) The stable binary crystal structures and their primitive cells. The red/dark (green/light) discs correspond
to A (B) particles.
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Fig. 2: (Colour on-line) The phase diagram in the (m,X)-plane of dipolar asymmetry and composition at T = 0. The gray box
denotes an unknown region. The symbol # (∗) denote continuous (discontinuous) transitions.

Table 1: The stable phases with their Bravais lattice and their
basis.

Phase Bravais lattice [basis]

T(A) Triangular for A [one A particle]
T(B) Triangular for B [one B particle]
S(AB) Square for A and B together

[one A and one B particles]
S(A)Bn Square for A

[one A and n B particles]
Re(A)AmBn Rectangular for A

[(m+1) A and n B particles]
Rh(A)AmBn Rhombic for A

[(m+1) A and n B particles]
P(A)AB4 Parallelogram for A

[two A and four B particles]
T(AB2) Triangular for A and B together

[one A and two B particles]
T(A2B) Triangular for A and B together

[two A and one B particles]
T(A)Bn Triangular for A

[one A and n B particles]

dipole-strength asymmetry, whereas a high one (i.e., close
to unity) indicates a weak dipole-strength asymmetry.
Our calculations show that all the mixtures, except AB3
and A4B2, are stable. Their corresponding crystalline

lattices are depicted in fig. 1 and the nomenclature is
explained in table 1. For the one component case (X = 0
(pure A) and X = 1 (pure B), see fig. 2), we found an
equilateral triangular lattice T(A) and T(B), respectively,
as expected (see fig. 1).
The most relevant and striking findings certainly

concern the phase behavior at weak dipole-strength
asymmetry (0.5�m< 1), see fig. 2. Thereby, the only
stable mixture AB2 over such a large range of m corre-
sponds to the (“globally” triangular) phase T(AB2) (see
fig. 1 and fig. 2). This is in strong contrast to what occurs
with hard-disk potentials [14], where no mixture sets in
at low size asymmetry. At sufficiently low dipole-strength
asymmetry (m> 0.88), see fig. 2, the mixture A2B,
that also corresponds to a globally triangular crystalline
structure (namely T(A2B), see fig. 1), is equally stable.
The stability in the limit m→ 1 of those globally trian-
gular structures are fully consistent with the fact that
one-component dipolar systems are triangular.
In the regime of strong dipole-strength asymmetry

(0.06<m� 0.5), see fig. 2, the stability of the composition
X = 1/2, corresponding to the mixtures AB and A2B2,
is dominant and the phase diagram gets richer involv-
ing all the different structures (except T(AB2)) shown
in fig. 1. More specifically, for the composition X = 1/2,
we have two phases S(AB) and Rh(A)AB2. The transi-
tion between these two phases is continuous as marked by
a symbol # in fig. 2. For X = 2/3, many stable phases
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emerge as depicted in fig. 2. In the B-rich region at large
asymmetry, the stability will involve many different struc-
tures which are probably not considered here. Therefore
we leave this region open, see the gray box in fig. 2.
Below X = 2/3, at large asymmetry (m� 0.2), the true
phase diagram will also involve a very dense spectrum
of stable compositions, as suggested by the already many
stable compositions (see fig. 2), which are not among the
candidate structures considered here. This feature is very
similar to the behavior reported in hard disk mixtures [14],
where a continuous spectrum of stable mixtures is found
for X � 2/3 at high size asymmetry. In the limit m→ 0,
a triangular lattice for the A particles will be stable with
an increasingly complex substructure of B particles.
In conclusion, the ground-state phase diagram of a

monolayer of two-dimensional dipolar particles shows a
variety of different stable solid lattices. The topology
of the phase diagram is different from that of hard
disks. Whereas short-ranged interactions lead to a phase
separation into pure A and B crystals at low asymmetries,
there are two intermediate A2B and AB2 mixtures for
softer interactions. This explains the experimental findings
of Hay and coworkers [26] who found an AB2 crystal
structure in millimeter-sized steel and brass spheres [26]
which does not occur to be stable for hard particles.
A further more quantitative experimental confirmation
of our theoretical predictions are conceivable either in
suspension of magnetic colloids or for binary charged
colloidal suspensions [42] confined between two parallel
glass plates [43] or for any other situation where two-
dimensional dipolar particles are involved.
We finish with a couple of remarks: First, based on

the present studies it would be interesting to study
the behavior of tilted dipoles where anisotropies and
attraction play a significant role [44]. Our data may also
serve as a benchmark to perform further studies on melting
of the composite crystals and crystal nucleation out of
the melt in two spatial dimensions. The extension to one-
component bilayers [45,46] made up of dipolar particles
would certainly be relevant. It would also be interesting
to apply the method of evolutionary algorithms [47] to
the present problem in order to increase the basket of
candidate phases.
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