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We generalize the formalism of dynamical density functional theory for translational Brownian dynamics
toward that of anisotropic colloidal particles which perform both translational and rotational Brownian motion.
Using a mean-field approximation for the density functional and a Gaussian-segment model for the rod
interaction, the dynamical density functional theory is then applied to a concentrated rod suspension in a
confined slab geometry made by two parallel soft walls. The walls are either expanded or compressed and the
relaxation behavior is investigated for an equilibrated starting configuration. We find distinctly different ori-
entational ordering during expansion and compression. During expansion we observe preferential parallel
ordering of the rods relative to the wall while during compression there is homeotropic ordering perpendicular
to the wall. We find a nonexponential relaxation behavior in time. Furthermore, an external field which aligns
the rods perpendicular to the walls is turned on or switched off and similar differences in the relaxational
dynamics are found. Comparing the theoretical predictions to Brownian dynamics computer simulation data,
we find good agreement.
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I. INTRODUCTION

Classical density functional theory �DFT� is a micro-
scopic theory which starts from the interparticle interactions
and bulk fluid correlations as an input and predicts the inho-
mogeneous density profiles in an external potential including
strongly inhomogeneous situations like freezing; for reviews,
see �1,2�. The results are in quantitative agreement with
simulation data and different approximations for the density
functional are available for various interparticle interactions.
For example, Rosenfeld’s fundamental measure theory �3,4�
has been shown to be reliable for hard spheres and the mean-
field approximation is asymptotically correct for soft core
interaction at high densities �5–7�.

While it is by now well-understood how to extract the
static equilibrium properties of an inhomogeneous system
from density functional theory, its extension toward time-
dependent dynamical situations in nonequilibrium is more
challenging. Recently, a dynamical density functional theory
�DDFT� was developed �8–10� for Brownian dynamics
which is the appropriate dynamics for colloidal suspensions.
DDFT results for the nonequilibrium dynamics of inhomo-
geneous Brownian fluids were found to agree with simula-
tion data �11–13�. Further important activities in developing
the dynamical extension of DFT lie in the existence proof of
the dynamical functional �14�, its ability to be applicable for
Newtonian dynamics �15�, and to include fluctuations and
noise effects �16�.

All activities in dynamical density functional theory were
focused on translational dynamics while the orientational de-
grees of freedom were neglected. The latter are trivial for
spherical particles but become highly relevant for asymmet-
ric �e.g., rodlike� particles. At high densities, the translational
degrees of freedom are nontrivially coupled to their rota-
tional counterparts.

In this paper, we extend the formalism of dynamical den-
sity functional theory to both translational and rotational de-

grees of motion by considering the Brownian motion of an-
isotropic colloidal particles. With similar approximations
used for the translational case �10�, we derive the dynamical
equation for the time-dependent density field ��r , �̂ , t� which
depends both on the position r and orientation �̂, where �̂ is
a unit vector. It is shown that this theory becomes equivalent
to the approach of Dhont, Briels, and co-workers �17,18� at
low density, where a virial approximation for the density
functional is appropriate. The theory, however, provides a
more general framework for dynamics and nonequilibrium
phenomena at higher densities as well. We then test the
theory against Brownian dynamics computer simulation for a
soft-core rod-segment model. This model is the rodlike ana-
log to spherical polymer models �19,20� and therefore de-
scribes bottlebrush polymers with a stiff backbone �21–23�.
We use a mean-field-type approximation for the density
functional and apply it to a situation of strong confinement
between two soft walls. Two situations are studied. First the
confined system is compressed and relaxed by compressing
and expanding the walls. In a second setup, an additional
external aligning field is turned on and switched off. We find
a nontrivial relaxation behavior which is nonexponential in
time. Expansion and compression proceed via different paths
as a function of time. In particular, distinctly different orien-
tational ordering during expansion and compression is ob-
served. During expansion, rods orient preferentially parallel
to the wall while during compression there is homeotropic
ordering perpendicular to the wall. Similar conclusions are
found for the aligning field. In general, good agreement be-
tween DDFT and Brownian dynamics simulation is found.

The paper is organized as follows. In Sec. II, we derive
the generalized dynamical density functional theory which
includes rotational Brownian motion. Sections III and IV
will be devoted to describing the rod model, the associated
free energy functional, and the dynamical processes, respec-
tively. In Sec. V, the predictions of our DDFT will be com-
pared with simulation results and notable effects will be dis-
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cussed. Finally, some conclusions will be formulated in
Sec. VI.

II. EQUATION OF MOTION FOR THE ONE-BODY
DENSITY

In this section, we will derive an expression for the time
evolution of the one-body density, ��r , �̂ , t�, for anisotropic
Brownian particles with a three-dimensional spatial coordi-
nate r and orientation unit vector �̂. In doing so, we gener-
alize the derivation by Archer and Evans �10� to orientational
degrees of freedom.

We start from the full probability density distribution
P�rN , �̂N , t� to find N anisotropic Brownian particles at posi-
tions rN= �r1 , . . . ,rN� and orientations �̂N= ��̂1 , . . . , �̂N�. Ac-
cording to Ref. �10�, the n-body density is given by the fol-
lowing integral of the probability density distribution
P�rN , �̂N , t�:

�n�rn,�̂n,t� =
N!

�N − n�!� drn+1 . . .� drN� d�̂n+1 . . .� d�̂N

�P�rN,�̂N,t� , �1�

where the integral of the orientation is over the full unit
sphere. For overdamped Brownian dynamics of the particles,
the time evolution of P�rN , �̂N , t� is given by the Smolu-
chowski equation �24�.

�P�rN,�̂N,t�
�t

= L̂SP�rN,�̂N,t� , �2�

where the Smoluchowski operator is defined as

L̂S = �
i=1

N

��ri
· D��̂i� · ��ri

+ ��ri
U�rN,�̂N,t��

+ DrR̂i · �R̂i + �R̂iU�rN,�̂N,t��	 . �3�

Here, hydrodynamic interactions are not taken into account,
�−1=kBT is the thermal energy of the system, �ri

is the gra-

dient operator with respect to ri, and R̂i is the rotation op-
erator acting on the Cartesian coordinates of the orientation
�̂i. The latter is given by

R̂i = �̂i � ��̂i
. �4�

Furthermore, Dr is the rotational diffusion coefficient and
D��̂i� the translational diffusion tensor. For uniaxial �cylin-
drical� anisotropic particles this tensor may be expressed as

D��̂i� = D
�̂i�̂i + D��Î − �̂i�̂i� , �5�

in terms of the translational diffusion constant parallel �D
�
and perpendicular �D�� to the main particle axis �̂i, with Î
the unit matrix and �̂i�̂i the dyadic product. Assuming pair-
wise additivity for the total potential energy of the system
U�rN , �̂N , t�, we may write

U�rN,t� = �
i=1

N

Vext�ri,�̂i,t� +
1

2�
j�i

N

�
i=1

N

v2�ri,r j,�̂i,�̂ j� , �6�

where Vext�r , �̂ , t� is the one-body external potential acting
on each particle and v2�r ,r� , �̂ , �̂�� is the pair potential.
Upon integrating Eq. �2� with N�dr2 . . .�drN�d�̂2 . . .�d�̂N,
one obtains

���r,�̂,t�
�t

= �r · D��̂� · ��r��r,�̂,t�

+ ���r,�̂,t��rVext�r,�̂,t� − �F�r,�̂,t��

+ DrR̂ · �R̂��r,�̂,t� + ���r,�̂,t�R̂Vext�r,�̂,t�

− �T�r,�̂,t�� , �7�

with F�r , �̂ , t� denoting the average force and T�r , �̂ , t� the
average torque due to the interaction with other particles:

F�r,�̂,t� = −� dr�� d�̂���2��r,r�,�̂,�̂�,t��rv2�r,r�,�̂,�̂�,t�

and

T�r,�̂,t� = −� dr�� d�̂���2��r,r�,�̂,�̂�,t�R̂v2�r,r�,�̂,�̂�,t� .

�8�

Note that for the steady-state ��� /�t=0�, Eq. �7� reduces to
the first member of the Yvon-Born-Green �YBG� hierarchy
for molecular fluids �25�.

The equation of motion �7� for the one-body density
��r , �̂ , t� is exact but depends on the unknown time-
dependent two-body density ��2��r ,r� , �̂ , �̂� , t�. Using Eq.
�1�, a similar equation of motion may be derived for
��2��r ,r� , �̂ , �̂� , t� which will depend on the three-body den-
sity ��3� and so on. To make headway, a closure relation is
needed to terminate the resulting hierarchy of coupled equa-
tions of motion. As in static DFT, this can be done at the
second YBG level by recasting the average interaction force
and torque, given by Eq. �8�, into functionals of the nonequi-
librium one-body density to construct a dynamical density
functional theory.

In equilibrium, a generalized force balance equation can
be proved �26,27�

�r�0�r,�̂� + ��0�r,�̂��rVext�r,�̂�

= − �0�r,�̂��r
 �Fexc���
��



�=�0�r,�̂�

, �9�

where �0�r , �̂� denotes the equilibrium one-particle density
field corresponding to the prescribed external potential
Vext�r , �̂� and Fexc��0� is the excess free energy density func-
tional in equilibrium. Likewise, a generalized torqued bal-
ance �27� reads in equilibrium as
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R̂�0�r,�̂� + ��0�r,�̂�R̂Vext�r,�̂�

= − �0�r,�̂�R̂
 �Fexc���
��



�=�0�r,�̂�

. �10�

A second set of balance conditions are the well-known YBG
relations �cf. Eq. �7�� in equilibrium �25�. These are for the
translational part

�r�0�r,�̂� + ��0�r,�̂��rVext�r,�̂�

= − �� dr�� d�̂��0
�2��r,r�,�̂,�̂���rv2�r,r�,�̂,�̂��

�11�

and for the rotational part

R̂�0�r,�̂� + ��0�r,�̂�R̂Vext�r,�̂�

= − �� dr�� d�̂��0
�2��r,r�,�̂,�̂��R̂v2�r,r�,�̂,�̂�� ,

�12�

respectively. Consequently, the following two relations hold
in equilibrium:

�0�r,�̂��r

�Fexc���

��0�r,�̂�

=� dr�� d�̂��0
�2��r,r�,�̂,�̂���rv2�r,r�,�̂,�̂��

�13�

and

�0�r,�̂�R̂
�Fexc���

��0�r,�̂�

=� dr�� d�̂��0
�2��r,r�,�̂,�̂��R̂v2�r,r�,�̂,�̂�� .

�14�

The two right-hand sides of Eqs. �13� and �14� occur in the
dynamical �nonequilibrium� context as average force and
torque in Eq. �7�. The basic approximation now is to use this
expression in the nonequilibrium situation. This may be
called an adiabatic approximation since the underlying idea
is to identify—for a fixed time t—the dynamical one-particle
density profile ��r , �̂ , t� with an equilibrium density profile
�0�r , �̂� with a suitably prescribed external potential. Strictly
speaking, the two latter quantities depend parametrically on
time t. Hence nonequilibrium correlations are approximated
by equilibrium correlations of a suitable equilibrium refer-
ence system that possesses the same one-particle density
�8,9�.

Within this adiabatic approximation, we obtain our cen-
tral dynamical density functional theory �DDFT� result:

���r,�̂,t�
�t

= �r · D��̂� · ���r,�̂,t��r

�F���r,�̂,t��

���r,�̂,t�
�

+ DrR̂ · ���r,�̂,t�R̂
�F���r,�̂,t��

���r,�̂,t�
� , �15�

in terms of the total equilibrium Helmholtz free energy func-
tional

F��0� = Fid��0� + Fexc��0� +� dr� d�̂ �0�r,�̂�Vext�r,�̂,t� ,

�16�

where the ideal contribution reads

Fid��0� = kBT� dr� d�̂ �0�r,�̂��ln V�0�r,�̂� − 1� ,

�17�

with V the thermal volume of the anisotropic particle.
We finish this section with some remarks: First of all, the

DDFT equation for spherical particles is recovered when the
density is independent of orientation. In this case, the adia-
batic approximation has been shown to hold even for strong
inhomogeneities and strong time dependencies and turned
out to give remarkably good agreement with results from
Brownian dynamics computer simulations
�7,10–13,16,28–31�. Second, we emphasize that the above
equation reproduces the approach proposed by Dhont and
Briels �17,18� for thin hard rods if Fexc��0� is represented by
the Onsager functional �32,33�. Third, a similar dynamical
density functional theory approach was proposed by Chandra
and Bagchi �34,35� on a phenomenological basis. In the lat-
ter work, the explicit coupling between orientational and
translational diffusion was neglected.

III. MODEL AND FREE ENERGY FUNCTIONAL

In this work, we consider systems of soft rods of length L,
each composed of NS segments of ultrasoft spheres; see Fig.
1 �65�. The distance between two consecutive segments on
the rod is �=L / �NS−1�. The interaction potential between
two segments of different rods is supposed to be a Gaussian.
The total rod-rod interaction potential is then given by

∆

L

FIG. 1. Gaussian segment model of NS=3 and segment spacing
�.
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v2�ri,r j,�̂i,�̂ j� = � �
�=−K

K

�
�=−K

K

exp�−
�r���2

	2 � , �18�

where K= �NS−1� /2 and r��= �ri+���̂i�− �r j +���̂ j� is the
distance between segment � on rod i and � on rod j �i� j�.
Furthermore, 	 is the range of the Gaussian potential which
sets the unit length and �=kBT provides the unit of energy
for the system. In all cases, we consider slightly anisotropic
rods with NS=3 and L�	.

The Gaussian segment model can be considered as a sim-
plified model for the effective interaction between so-called
bottlebrush polymers with a short, stiff backbone �21–23�.
For ultrasoft particles at high densities, a very accurate and
simple functional Fexc��� is available, namely the mean-field
or random-phase approximation:

Fexc��� =
1

2
� dr� dr�� d�̂� d�̂���r,�̂�v2�r,r�,�̂,�̂��

���r�,�̂�� , �19�

which was demonstrated to become exact for bounded po-
tentials at asymptotically high densities �5–7�. The accuracy
of the static mean-field DFT for soft rods enables us to scru-
tinize the validity of the adiabatic approximation for the dy-
namics of systems with coupled translational and rotational
degrees of freedom.

An important limitation of our model is that, within the
mean-field approximation, the rotational diffusion becomes
ideal for homogeneous systems. This can be easily inferred
from the excess functional Eq. �19� using the rod pair poten-
tial Eq. �18�. Identifying ��r , �̂�=� and carrying out the spa-
tial integration over the Gaussian potential leads to a con-
stant, independent of the orientation. This result, which in
fact holds for any bounded segment-segment potential, im-
plies that in homogeneous systems all rotational correlations
are absent and that the system cannot form a stable nematic
phase. Although this effect may seem unphysical, it is in fact
reproduced by Brownian dynamics simulations of the seg-
ment model provided that the density is sufficiently high
�36�. Therefore, in order to avoid the rotational diffusion
being trivial we will only consider inhomogeneous systems
throughout this paper. This is done by confining the fluid in a
slab geometry consisting of two soft walls, see Fig. 2, so that
a nonuniform density distribution is generated. The soft
walls are supposed to model an optical trap such that only
the colloidal particles are affected by the field and the solvent
remains quiescent. For the external wall potential, we choose
the following form:

Vwall�z,t� = V0�z/Z�t��10. �20�

Here, V0=10kBT is the amplitude of the potential and Z�t�
the potential range that will be changed in time; see Sec. IV.
In this setup, the instantaneous density profile ��z ,
 , t� de-
pends on only one spatial coordinate z �normal to the wall�,

an angular one 
 �the angle between the rod and the wall
normal�, and time t. A similar setup for the statics of hard
ellipsoids between hard walls was studied by Chrzanowska
et al. �37�.

IV. DYNAMIC PROCESSES

We intend to study two different setups. First, the system
is compressed and expanded by changing the wall separation
Z�t�. For the compression case, the wall separation is reduced
linearly in time, so that

Z�t� = �2	 if t � 0,

2	 − ct if 0 � t � 
B,

	 if t � 
B,
� �21�

with the velocity of the wall c=	 /
B. 
B denotes the Brown-
ian time scale and will be specified later. The reverse direc-
tion is implemented for the expansion case. Additionally, we
investigate the expansion process for an instantaneous exten-
sion of the wall separation. We do not look at the inverse
problem: The instantaneous compression.

In a second setup, we instantaneously switch on an exter-
nal orienting field represented by

Vnem�
� = − �0 cos2 
 , �22�

where the strength of the potential is �0=10kBT and 
 is the
angle between the wall normal and the orientation of the
rods: cos 
= ẑ · �̂. This field generates strong homeotropic
nematic ordering with a director parallel to the wall normal.
All setups are summarized in Table I.

In each system the initial density is the equilibrium den-
sity �0�z ,
 , t0� of the respective system and we follow the

V
nem

z

ω

ϑ

Z

FIG. 2. �Color online� Schematic sketch of the system setup.
The Gaussian rods are confined in a slab geometry that consists of
two soft walls and an orienting field. Vnem is applied perpendicular
to the walls. The relevant coordinates of the system are the spatial
coordinate z normal to the wall and the angle 
 between the rod and
the wall normal.
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time evolution of ��z ,
 , t� to the new equilibrium state. Note
that in the first scenario the external field primarily couples
to the translational degree of freedom, whereas in the second
one the orienting field acts only on the rod orientations. Both
cases will provide insight into the intricate interplay between
the translational and orientational degrees of freedom during
the dynamic processes.

As a final input for the dynamics, we need to specify the
diffusion constants D�, D
, and Dr. For these, we take the
results for hard ellipsoids of variable aspect ratio p reported
by Tirado and co-workers �38�:

D� =
D0

4�
�ln p + 0.839 + 0.185/p + 0.233/p2� ,

D
 =
D0

2�
�ln p − 0.207 + 0.980/p − 0.133/p2� ,

Dr =
3D0

�L2 �ln p − 0.662 + 0.917/p − 0.050/p2� , �23�

where D0 sets the unit of time via 
B=	2 /D0. In all cases, the
hydrodynamic aspect ratio of the rods was fixed at p=5. To
justify the use of the mean-field functional, we fix the overall
system number density to �0	3=1, which is close to the
overlap concentration of the rods.

Benchmark data to test our DDFT results were obtained
by Brownian dynamics �BD� simulations of the segment
model introduced in Sec. III. The simulation method is based
on a standard finite-difference integration of the overdamped

Langevin equations for N Brownian rods according to the
scheme of Ermak �39,40�. We simulated N=100 rods each
with NS=3 segments in a slab geometry with periodic bound-
ary conditions in the x and y directions. In all simulations,
the time step was fixed at 0.001
B. Instantaneous density
profiles were measured by averaging over 1000 consecutive
dynamical processes each starting from a different initial
equilibrium configuration. Each process was followed for the
duration of about 15−20
B. To check for finite-size effects,
additional simulations were carried out for N=500 rods
yielding virtually identical results in all setups.

V. RESULTS

In this section, we present the results obtained by DDFT
and Brownian dynamics simulation for the setups introduced
in the preceding section. For each situation we show the time
evolution of the density profile

��z,t� =� d�cos 
���z,
,t� �24�

and of the local nematic order parameter

S�z,t� =
1

��z,t�� d�cos 
��3

2
cos2 
 −

1

2
���z,
,t� �25�

for a sequence of times. The nematic order parameter gives
insight into the preferred direction of the rods. It is unity if
the rods are perfectly oriented perpendicular to the wall and
S=−0.5 if the rods are oriented parallel to the wall.

TABLE I. All setups investigated in this manuscript which are characterized by different time-dependent
external potentials and labeled by the letters A–E. In A, B, and C a slab confinement of two soft walls is
modeled with time varying wall separation Z�t� compressing or relaxing the system. z is the coordinate
perpendicular to the walls, V0=10kBT, and c=	 /
B. In D and E, in addition to a fixed slab geometry, a
nematic ordering field is either switched off D or on E. Here, 
 is the angle between the wall normal and the
orientation of the rods: cos 
= ẑ · �̂ and �0=10kBT. The Heaviside step function is defined by ��x�=1 if x
�0 and 0 if x�0.

Setups Vext�r ,� , t�

A Slow compression

V0� z
Z�t� �10, Z�t� = �2	 if t � 0,

2	 − ct if 0 � t � 
B,

	 if t � 
B
�

B Slow expansion

V0� z
Z�t� �10, Z�t� = �	 if t � 0,

	 + ct if 0 � t � 
B,

2	 if t � 
B
�

C Instantaneous expansion

V0� z
Z�t� �10, Z�t� = � 	 if t � 0,

2	 if t � 0
�

D Relaxation from initial alignment V0� z
2	

�10−�0 cos2 
��−t�
E Evolution toward alignment V0� z

2	
�10−�0 cos2 
��t�
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A. Compression and expansion

First we examine the compression and expansion setups
A, B, and C in Table I. The associated profiles are shown in
Figs. 3–5. From all figures it can be seen that the theory
correctly reproduces the time evolution of the density and
nematic order parameter profiles. Looking first at the evolu-
tion of the nematic order parameter S�z , t�, we find a quali-
tative difference between the slow compression and expan-
sion processes. Upon compression, the rods show enhanced
homeotropic ordering �perpendicular to the wall�, whereas
the expansion process seems to be associated with pro-
nounced planar ordering �parallel to the wall�.

The first effect can be inferred from the overshoot in the
nematic order parameter profile compared to the final equi-
librium one; see Fig. 3�b�. During the slow expansion, S�z�
gradually becomes negative indicating an orientational relax-
ation path characterized by the rods being preferentially ori-
ented parallel to the wall �Fig. 4�b��.

This effect becomes even more pronounced for the instan-
taneous expansion, shown in Fig. 5�b�. Here, the initially
depleted area is flooded with rods that are strongly oriented
parallel to the walls. This is best seen for the curves t1, t2,
and t3 in Fig. 5�b� where S�−0.4 close to the walls.

Both expansion processes B and C roughly consist of two
steps. First, the initial two peak structure of S�z , t� rapidly
vanishes within the time interval of about 1 
B. Second, a
slow evolution �spanning multiple 
B� toward the final three

peak structure is observed. On the contrary, for the slow
compression case the initial two peak structure is preserved
throughout the process and the weak third peak at z=0
slowly fades.

Now we turn our attention to the time evolution of the
density profiles ��z , t�. For the slow compression, the pre-
ferred homeotropic alignment corresponds to a shoulder in
the density profiles �see t4 and t5, Fig. 3�a��. Note that it is
not present in the final equilibrated configuration: t6 in Fig.
3�a�. Due to the increased local homeotropic alignment, there
is an excess of rods with position Z−L /2� �z��Z which
gives rise to the shoulder.

Apart from the shoulder, the density profiles for the slow
expansion and compression processes seem very similar.
Both show a layering effect that becomes manifest by a third
peak emerging at z=0. This is most pronounced for t
�0.5
B, where the effective wall-wall distance is such that
three layers of rods can be accommodated between the walls.
For the sudden expansion, the correlation peaks vanish com-
pletely during the relaxation process and the path toward the
new equilibrium state goes via a four-peak structure illus-
trated by curve t4. Another difference is that the planar ori-
ented rods give rise to an overshoot in the correlation peaks
compared to the final equilibrated profile; see t5 and t6.

In order to quantify the described asymmetry of the path
of the different processes we calculate the second moment of
the density, defined as
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FIG. 3. DDFT �solid curves� and BD �dashed curves� results for
�a� the time-dependent density profile ��z , t� and �b� order param-
eter S�z , t� for the slow compression; see A in Table I. The profiles
correspond to the following time sequence: t0=0.0, t1=0.2
B, t2

=0.4
B, t3=0.6
B, t4=0.8
B, t5=0.9
B, and t6=15.0
B. At t6 the sys-
tem has virtually relaxed to equilibrium.
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FIG. 4. DDFT �solid curves� and BD �dashed curves� results for
�a� the time-dependent density profile and �b� order parameter for
the inverse case to Fig. 3, the slow expansion; see B in Table I. The
profiles correspond to the following time sequence: t0=0.0, t1

=0.2
B, t2=0.4
B, t3=0.6
B, t4=0.8
B, t5=0.9
B, and t6=15.0
B. At
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coincide with the initial ones, t0, in Figs. 3�a� and 3�b�.
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m2�t� =� dz z2���z,t� − ��z,t = ��� . �26�

The quantity m2�t� is a measure of the spread of ��z , t�
around its center. The resulting curves are shown in Fig. 6. In
a similar study for spherical particles �29�, it was found that

m2�t� behaves monotonically and can be best fitted to a
single-exponential function for the expansion case and to a
double-exponential function for the compression process.
Here, m2�t� turns out to be a nonmonotonic function of time
for all three processes which precludes a simple description
in terms of an exponentially decaying function. From this we
may already conclude that there is an interesting interplay
between rotational and translational dynamics not found in
systems of spherical particles.

The complicated relaxational behavior found here is re-
lated to the nonmonotonous evolution of the density profiles
due to a transient enhanced localization of rods, viz. the
shoulders emerging during the compression process. Finally,
we note that in all three setups the reorientation process to-
ward the new equilibrium state is approximately an order of
magnitude slower than the initial relaxation of the positional
degrees of freedom of the rods.

B. Orienting external field

We will now focus on the setups D and E in Table I, a slab
confinement of fixed wall separation with an additional ori-
enting field. We investigate both the relaxation from an ini-
tially aligned state by instantaneously switching off the field
�Fig. 7� and the opposite case, in which a system is driven
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FIG. 6. Second moment of the density profiles, m2�t�, versus
time t. The full curve corresponds to the instantaneous relaxation C,
the long-dashed curve to the continuous relaxation B, and the short-
dashed curve to the compression A, respectively. The inset shows a
magnified view of the same curves for small values of m2�t�.
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0

2

4

6

8

10

12

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

σ
3 ρ(

z)

z/σ

(a)
0
t

t
1

t
2

t
3t

4
6
t 5

t

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

σ3 S(
z)

z/σ

(b)

t
3

t
2

t
1

0
t

6
t

5
t

t
4

FIG. 5. DDFT �solid curves� and BD �dashed curves� results for
�a� the time-dependent density profile and �b� order parameter for
the instantaneous expansion; see C in Table I. The profiles corre-
spond to the following time sequence: t0=0.0, t1=0.02
B, t2
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into an aligned state after the field is switched on �Fig. 8�.
For the relaxation process both density and order parameter
profiles agree very well with the simulation results. For the
aligning process, however, larger discrepancies are found,
especially in the nematic order parameter profiles. Here, the
orienting process seems to be faster in the DDFT than in the
BD simulations. �See Fig. 8�b�.� A possible explanation is
that the fast aligning process generates additional dynamic
correlations that are not accounted for by the adiabatic as-
sumption in our DDFT.

Although the external orienting field couples only to the
orientation of the rods, the positions are also clearly affected.
By forcing the rods to orient perpendicular to the wall, rod
overlaps will be more common and the system will feel an
effective compression. As a result, layering becomes more
prominent, as we see from the sharpening of the density
peaks in Fig. 8�a�. The order parameter profiles show that the
rods strongly orient perpendicular to the wall when the ori-
enting field is switched on resulting in a value close to unity.
Only very close to the walls do the rods lie parallel but the
local density there is rather low.

In order to demonstrate the asymmetry of the two pro-
cesses, we show the absolute values of the second moment in
Fig. 9. First of all, the two data for m2�t� fall on different
curves showing that the processes are asymmetric. Still both
systems need approximately the same time to equilibrate,
roughly 20
B. Furthermore, the log-linear plot shown in the
inset shows that there are clear deviations from a straight
line. Hence again the behavior is not a single exponential

function in time. In contrast to the compression and expan-
sion the time evolution of m2�t� is a monotonous function of
t for both situations.

VI. CONCLUSIONS

We have presented a formalism to predict the dynamical
evolution under nonequilibrium conditions for anisotropic
colloidal particles. The input needed for this theory is the
equilibrium free energy density functional. Within a mean-
field approximation for the functional valid for bounded
Gaussian segment-segment interactions, the relaxation dy-
namics was studied for rods confined in a slab geometry.
Slab expansion and compression was studied as well as turn-
ing on and off an aligning external field. Good agreement
with Brownian dynamics computer simulations was found.
The relaxation was a nontrivial interplay between rotational
and translational dynamics. The system chose different paths
of relaxation upon compression and expansion implying that
the sequence of density fields is not inversion symmetric,
even not with a suitably scaled time variable.

The present formalism can be applied to describe both
different systems and setups. For example, hard rods or
platelets can be treated by more sophisticated density func-
tionals as, e.g., within the fundamental measurelike approxi-
mation �41–43� and Yukawa-segment models can be de-
scribed by a mapping onto effective hard spherocylinders
�44�. Other setups concern switching dynamics in different
aligning fields which is the basic process in a liquid-
crystalline optical device �45–47�, sedimentation problems in
rodlike suspensions �48–51�, and orientational dynamics in
rotating light fields �52–55�. Furthermore, it would be inter-
esting to study the orientational glass transition within the
DDFT approach in order to explore whether the orientational
and translational dynamics get frozen-in at the same densi-
ties or not �23,56�. For future studies, it would be challeng-
ing to incorporate shear flow in the dynamical density func-
tional theory formalism in which case macroscopic solvent
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the inverse case to Fig. 7, the evolution toward an aligned state; see
E in Table I. The profiles correspond to the following time se-
quence: t0=0.0, t1=3.0
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B, t3=7.0
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flow will couple strongly to the orientation of rodlike par-
ticles �57,58�. We acknowledge that serious modifications
have to be carried out to our present DDFT formalism in
order to correctly account for the distorted pair correlation
function due to the shear �59–61�. Finally, we think that the
present approach will be helpful to describe solvation dy-
namics �62,63�, the orientational diffusion of supramolecular
aggregates �like proteins� in solution, and the dynamics of
stiff polymers �64�.
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