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We employ dynamical density functional theory (DDFT) and Brownian Dynamics (BD)
simulations to examine the fully developed dynamics of ultrasoft colloids interacting via
a Gaussian pair potential in time-dependent external fields. The DDFT formalism employed
is that of Marconi and Tarazona [J. Chem. Phys., 110, 8032 (1999)], which allows for
determination of the time-dependent density profile based on knowledge of the static,
equilibrium density functional. Three different dynamical situations are examined: firstly, the
behaviour of Gaussian particles in a spherical cavity of oscillating size, including both sudden
and continuous changes in the size of the cavity. Secondly, a spherical cavity with a fixed size
but varying sharpness. Finally, to investigate a strong inhomogeneity in the density profile we
study the diffusion of one layer of particles which is initially strongly confined and separated
from the remaining system via an external potential. In all cases, DDFT is in excellent
agreement with BD results, demonstrating the applicability of the theory to dynamical
problems involving overdamped interacting particles in a solvent.

1. Introduction

Equilibrium density functional theory (DFT), as for-
mulated in the domain of classical statistical mechanics
[1], has proved to be a highly successful tool in analysing
a variety of phenomena associated with the behaviour of
classical inhomogeneous fluids. The quantity of central
interest in DFT is the ensemble-averaged one-particle
density �ðrÞ, which depends on the spatial coordinate
r, reflecting the system’s inhomogeneity, and it is,
evidently, time-independent. Spatially inhomogeneous
density profiles arise in a variety of physical situations:
they can be induced by spatially dependent external
fields VextðrÞ (fluids in contact with walls or under
the influence of other external fields), imposed by
suitably chosen thermodynamic and boundary condi-
tions (fluid–fluid interfaces between coexisting phases),
or even emerge as states of spontaneously broken
symmetry in phase transitions (crystallization). The
formalism of classical DFT rests on the uniqueness of
the intrinsic Helmholtz free energy functional F½��
for a given interaction potential between the particles.

Further, the equilibrium density profile minimizes
the value of the grand potential functional
O½�� ¼ F½�� þ

R
dr½VextðrÞ � ���ðrÞ, where � is the

chemical potential. For consistency with what is to
follow, we also define F½�� � F½�� þ

R
drVextðrÞ�ðrÞ, the

sum of the intrinsic and external potential-contributions
to an extended Helmholtz free energy functional F½��.

Much less is known about classical fluids far from
equilibrium. In this case the one-particle density
acquires an explicit time dependence and becomes a
spatiotemporal field �ðr, tÞ. This explicit time depen-
dence can arise, e.g. in situations in which the system is
driven from one equilibrium state to another (due to
the lifting or imposition of a constraint) or is constantly
held in a non-equilibrium state by the influence of a
space- and time-dependent external field Vextðr, tÞ. The
possibility of using equilibrium DFT, supplemented by
a time-evolution operation, to describe the dynamics of
a classical fluid is very appealing. Along these lines,
Munakata has constructed a dynamical DFT [2],
starting from phenomenological, hydrodynamic
equations for the density �ðr, tÞ and the momentum
density gðr, tÞ of a damped, Brownian fluid. The result
of this approach is a first-order in time differential
equation for �ðr, tÞ that involves the deterministic free
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energy functional F½�� as well as a random contribution
from the solvent-induced noise [2, 3]. Shortly thereafter,
Dean [4] put forward another equation for the time
evolution of the density field, which is similar to that of
Munakata [2] in its form but it involves a different free
energy functional, H ½��, which is not the one obtained
in equilibrium DFT. Another dynamical equation for
�ðr, tÞ has been obtained in the approach of Marconi
and Tarazona (MT) [5]. Here, the time–evolution
equation is completely deterministic and it involves the
equilibrium density functional F½��. This is the theory
used in this paper and will be elaborated upon in what
follows.
The apparent contradictions between the various

dynamical equations were clarified in the recent works
by Archer and Rauscher [6] and by Yoshimori [7].
Archer and Rauscher focused their attention exclusively
on Brownian particles, taking as a starting point the
N coupled Langevin equations for the N interacting
particles. They then showed that the presence or absence
of random contributions in the dynamical equation
depends on the definition of the one-particle density
field. If one focuses on the ensemble-averaged, time-
dependent one-particle density �ðr, tÞ without involving
coarse-graining, then the dynamical equation of motion
should be deterministic. Under additional, physical
assumptions the dynamical density functional theory
(DDFT) of MT follows [6]. The equation of Dean [4]
holds for the non-ensemble-averaged density operator
�̂�ðr, tÞ, and it includes noise terms, as also does the
equation of Munakata [2], which describes the evolution
of a coarse-grained density field ���ðr, tÞ. Yoshimori, on
the other hand, started from the Liouville equation
using a microscopic Hamiltonian [7], and applied a
projection-operator formalism, reaching similar conclu-
sions to Archer and Rauscher [6]. Another important
recent development has been the proof by Chan and
Finken [8] that a stationary action principle for the time-
dependent density exists. Chan and Finken were also
able to recover the DDFT equations of [4, 5] by
employing a suitably-defined adiabatic limit.
The DDFT of Marconi and Tarazona has attracted

considerable attention recently for various reasons. On
the one hand, its deterministic character renders the
solution of the differential equation simpler than in
other approaches. On the other hand, the existence of
accurate Helmholtz free energy functionals for a number
of model systems allows for testing the DDFT for a
variety of time-dependent external potentials. In the
original paper of Marconi and Tarazona [5], they
applied their DDFT to a driven, one-dimensional,
hard-rod system, for which the equilibrium free energy
functional is exactly known. Dzubiella and Likos [9]
examined the relaxation dynamics of soft colloids under

sudden expansion- and compression-processes. Penna
and co-workers analysed the steady-state dynamics of
colloidal particles in narrow channels [10] as well as
the density profile of a polymer bath through which a
colloidal particle is pulled with constant speed [11]. The
problem of two colloids driven in a bath of polymer coils
and the associated dynamical depletion force has been
examined by Dzubiella et al. [12]. Archer and Evans
applied the DDFT formalism to the problem of spinodal
decomposition of a phase-separating fluid [13], and,
most recently, Archer extended the DDFT to mixtures,
studying the dynamics of a binary phase-separating fluid
of Gaussian particles in a cavity [14]. Finally, Rex et al.
have studied ultrasoft colloids driven by travelling fields
and sheared between two topographically patterned
walls [15].

In all the aforementioned studies, excellent agreement
between the DDFT and simulation results was found. It
is important to emphasize that accurate static func-
tionals were employed throughout, so that the conclu-
sion can be drawn that the dynamics of Brownian
fluids is governed by their statics. Yet, the dynamical
situations examined were either relaxative (sudden
quenching or expansion [9, 13, 14]) or of steady-state
nature, in which the density field depends on space and
time solely through the combination r� ct, c denoting
the velocity of a colloidal particle driven through the
system or of some external, travelling wave [10–12, 15].
The dynamics of fluids under the influence of external
fields arbitrarily varying both in space and in time has
not yet been investigated with the DDFT formalism. It is
the purpose of this paper to address precisely this
question, by considering ultrasoft, Gaussian colloids in
cavities of constantly varying shape or sharpness. This
paper is organized as follows: in section 2 we present
a concise derivation of the DDFT formalism and
we discuss the conditions under which hydrodynamic
interactions can be ignored. In section 3 we present and
discuss our results for various time-dependent external
fields, whereas in section 4 we examine the question of
the diffusion of a single layer of ultrasoft particles in the
bulk of the rest of the fluid. Finally, in section 5 we
summarize and draw our conclusions.

2. Dynamical density functional theory (DDFT)

2.1. The formalism

The DDFT equation of Marconi and Tarazona [5] can
be derived in various different ways. The first route,
which has been followed in the original derivation of [5],
starts from the Langevin equations of motion. Archer
and Evans [13], as well as Archer [14] have put forward
an alternative derivation, which has as a point of

528 M. Rex et al.
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departure the Smoluchowski equation. The latter
describes the time evolution of the probability density
function of N Brownian particles. In the derivation of
[13] and [14] it has been shown that the DDFT equation
holds in full generality, i.e. when many-body interac-
tions between the constituent particles are present. The
crucial approximation which has to be made in both
approaches is that the equal-time two point correlations
in the time-dependent systems are identical to an
equilibrium system that has a static, one-particle density
�eqðrÞ equal to the instantaneous density field �ðr, tÞ of
the dynamical system. Yoshimori [7] termed this a local
equilibrium condition and has shown that it naturally
arises in a projection-operator formalism under the
imposition of a Markovian approximation. Chan and
Finken [8] argued that the DDFT equation results by
the replacement of the exact, dynamical free energy
functional with the equilibrium one and used, appro-
priately, the term adiabatic approximation. The latter
seems physically reasonable for overdamped Brownian
particles.
Each of the aforementioned derivations has its own

merits, with some being mathematically more demand-
ing than others. Here, we choose to present a brief
description of the original steps leading to the DDFT
equation [5], mainly on the grounds of simplicity and
physical transparency. We consider an assembly of N
Brownian particles, such as colloids in a microscopic
solvent, whose coordinates are r1, r2, . . . , rNf g. These
particles are assumed to interact by means of an effective
pair potential Vðjri � rjjÞy. In addition, the colloids are
under the influence of a time-dependent external
potential Vextðr, tÞ. We ignore hydrodynamic interac-
tions (HI) for the moment, returning to a justification of
this assumption later. In this case, the particles’ coupled
equations of motion are the following Langevin
equations that read as:

driðtÞ

dt
¼ �Grri

X
j 6¼i

Vðjri � rjjÞ þ Vextðri, tÞ

 !
þ wiðtÞ: ð1Þ

Here, G is a mobility coefficient originating from the
solvent and wiðtÞ ¼ wx

i ,w
y
i ,w

z
i

� �
is a stochastic Gaussian

noise term representing the random collisions with
the solvent molecules and having the properties

hwiðtÞi ¼ 0 , ð2Þ

hw�
i ðtÞw

�
i ðt

0Þi ¼ 2D����ðt� t0Þ , ð3Þ

where h. . .i denotes the average over the Gaussian
noise distribution and �,� ¼ x, y, z are the Cartesian
components. D is the Stokes–Einstein diffusion
coefficient, for which the Einstein relation gives
G=D ¼ ðkBTÞ

�1
� �, where kBT is the thermal energy.

Applying the rules of the Itô stochastic calculus [4] to
equation (1) and taking the average over all realizations
of the stochastic noise, the Langevin equations give

G�1 @�ðr, tÞ

@t
¼ rr � ��1rr�ðr, tÞ þ �ðr, tÞrrVextðr, tÞ

� �
þ rr �

Z
dr0 h�̂�ðr, tÞ�̂�ðr0, tÞirrVðjr� r0jÞ: ð4Þ

Here, �̂�ðr, tÞ �
P

i �ðriðtÞ � rÞ is the usual one-particle
density operator and �ðr, tÞ ¼ h�̂�ðr, tÞi is its expectation
value, averaged over all realizations of the noise. The
right-hand side involves the equal-time two-particle
distribution function �ð2Þðr, r0, tÞ � h�̂�ðr, tÞ�̂�ðr0, tÞi, which
is itself a noise-averaged quantity. Thus, equation (4) is
a relation between noise-averaged quantities, in which
random noise contributions are absent, and is therefore
deterministic in nature. Equation (4) is exact but
its form is not closed: it relates the time evolution of
the one-body quantity �ðr, tÞ to the two-body correlation
function �ð2Þðr, r0, tÞ. Following the same procedure, an
equation for the time evolution of �ð2Þðr, r0, tÞ can
be obtained, which in turn involves the three-
particle distribution function �ð3Þðr, r0, r00, tÞ. In this
way, one obtains an infinite hierarchy of relations,
analogous to the Born–Bogoliubov–Green–Kirkwood–
Yvon (BBGKY) equations [5].

In order to obtain closure to equation (4), Marconi
and Tarazona [5] proposed a physical assumption,
incorporating the density functional formalism into the
theory: as the system follows its dynamical evolution,
the equal-time two-particle correlations are approxi-
mated by those of a system in thermodynamic equili-
brium with a static one-particle density �eqðrÞ that is the
same as the noise-averaged, instantaneous dynamical
one-particle density �ðr, tÞ. This assumption is reason-
able for Brownian fluids, for which the momentum
degrees of freedom relax instantaneously and the local
equilibrium condition [7] appears intuitively correct.
The benefit arising from this assumption is that, in
equilibrium, all correlation functions are uniquely
determined by the one-particle density, due to
the uniqueness of the free-energy functional F½��;

yAn effective potential includes both the direct interaction between mesoscopic, colloidal particles and the indirect interactions
mediated by the microscopic, solvent degrees of freedom, which are assumed to have been integrated out. For a discussion of
the notion of the effective potential, see, e.g. [16]. For the applicability of effective interactions in dynamical problems, see the
discussion in [14].

Ultrasoft colloids in cavities of oscillating size or sharpness 529
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in other words, the correlation functions are unique
functionals of �eqðrÞ [1, 5]. By extending the uniqueness
property to dynamics, equation (4) can be cast into
a form that involves exclusively the equilibrium
Helmholtz free energy functional F½��, reading as

G�1 @�ðr, tÞ

@t
¼ r � �ðr, tÞr

�F½�ðr, tÞ�

��ðr, tÞ

� �
: ð5Þ

This is the central equation of DDFT. In equation (5),
the equilibrium Helmholtz free energy functional is
given by [17]

F½�� ¼ ��1

Z
dr �ðrÞfln ½L3�ðrÞ� � 1g

þ

Z
dr �ðrÞVextðr, tÞ þ Fex½�� , ð6Þ

where L is the (irrelevant) thermal de Broglie
wavelength and Fex½�� is the excess Helmholtz free
energy functional, i.e. the contribution arising from
interparticle interactions. Note that equation (5) has the
form of a continuity equation with the current density
jðr, tÞ given by

jðr, tÞ � �G�ðr, tÞr
�F½�ðr, tÞ�

��ðr, tÞ
� �G�ðr, tÞr�ðr, tÞ , ð7Þ

where �ðr, tÞ is a non-equilibrium, local chemical
potential that reduces to the equilibrium value in the
absence of time-dependent external potentials [13]. That
the DDFT equation can be written in the form of a
continuity equation guarantees the conservation of the
total number of particles N in the system.
Before proceeding with specific applications of

DDFT, a few remarks on the issue of hydrodynamic
interactions (HI) should be made. In its present
formulation, HI are ignored within the DDFT. A
major effect of HI can be simply incorporated by
rescaling the drag coefficient G into an effective one [18].
With this scaling, HI can be taken into consideration in
our treatment; they will just renormalize the timescale.
A more detailed analysis shows that leading order
corrections due to HI scale as C2�1=3, where
C ¼ �rr�1=3=a, �rr is the mean interparticle spacing, a is
the physical core size, �=2 is the interaction radius and
� ¼ ð4p=3Þ�a3 is the volume fraction [19–21]. In our
studies (see below), we have typically �rr � � and
� ¼ 1=�3. Insertion yields a correction of the order of
ð�=2aÞ2� ¼ 2pa=�. Therefore, our treatment applies to
particles with small physical core size a but large
interaction radius �=2. There are several examples for
such particles, e.g. stiff polyelectrolyte stars, tetrapods,

star polymers and dendrimers, which fulfil these
conditions.

In this work, we consider ultrasoft particles inter-
acting by means of a bounded, Gaussian effective pair
potential of the form

Vðjr� r0jÞ ¼ � exp �ðjr� r0j=�Þ2
� �

: ð8Þ

The Gaussian pair potential has been shown to be a
realistic description for the equilibrium effective pair
potentials between self-avoiding polymer coils [22],
low-arm star polymers [23], dendrimers [24–26] and
weakly charged polyelectrolyte chains [27]. For most
cases, we set � ¼ kBT, providing the energy unit of the
system, whereas �, which corresponds to the gyration
radius of the ultrasoft particles, will be the unit of length
henceforth. Accordingly, the natural timescale of the
problem, providing the unit of time in this work, is the
Brownian timescale 	B:

	B ¼ �2=ð�GÞ: ð9Þ

For Gaussian particles, the mean-field or random-
phase approximation (RPA) functional Fex½�� has been
shown to be very accurate for static properties [28–35]:

Fex½�� ¼
1

2

Z Z
dr dr0Vðjr� r0jÞ�ðrÞ�ðr0Þ: ð10Þ

Inserting equations (10) and (6) into equation (5) yields

G�1 @�ðr, tÞ

@t

¼ ��1r2
r�ðr, tÞ þ rr�ðr, tÞ �

Z
dr0 rrVðjr� r0jÞ�ðr0, tÞ

þ �ðr, tÞ

Z
dr0 r2

rVðjr� r0jÞ�ðr0, tÞ

þ rr�ðr, tÞ � rrVextðr, tÞ þ �ðr, tÞr2
rVextðr, tÞ: ð11Þ

Given an initial density field �ðr, t ¼ 0Þ and a prescribed
external potential Vextðr, tÞ, equation (11) can be solved
numerically to obtain �ðr, tÞ. We have considered
external potentials that are either spherically symmetric,
Vextðr, tÞ ¼ Vextðr, tÞ or depend on a single Cartesian
coordinate, Vextðr, tÞ ¼ Vextðz, tÞ. In these cases the
resulting density is a function of r, �ðr, tÞ ¼ �ðr, tÞ, and
of z, �ðr, tÞ ¼ �ðz, tÞ, respectively.

2.2. Numerical details

The partial differential equation governing the
time evolution of �ðr, tÞ, equation (11), was solved
numerically employing the Forward Time Centred

530 M. Rex et al.
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Space (FTSC) algorithm [36]. This method employs a
finite difference approximation to solve the initial value
problem and requires appropriate boundary conditions.
We have discretized the density on a grid with spacing
�r for the spherically symmetric external potentials
and �z for the planar ones, using �r ¼ �z ¼ 0:001 �.
For the case of spherical confinement, the maximum
distance rmax was chosen to be four to five times the
extension of the confining cavity, thus the density field
could be set to zero at the system’s boundaries, without
imposing any artefacts. Since the applied difference
scheme is only accurate to the first order in �t, we use
a small time step �t ¼ 10�6	B in solving equation (11),
to guarantee sufficient accuracy.
In order to check the accuracy of the approximate

DDFT equation (5), we have accompanied our study
with Brownian dynamics (BD) simulations of the
original Langevin equations (equation (1)) that describe
the microscopic dynamics of the fluid. For the cases in
which the external potential depends only on one spatial
coordinate, z, we fix the value of the density per unit
area �0 ¼

R
dz�ðz, tÞ. The Langevin equations of motion

including the external field are numerically solved using
a finite time step �t ¼ 0:002	B in all simulations,
together with the technique of Ermak [37, 38]. In
order to obtain the time-dependent density �ðr, tÞ we
perform a large number Nrun of independent runs with
different initial configurations, typically Nrun ¼ 5000,
sampled from a situation with a static external potential.
We checked that after a sufficiently long time of roughly
t ¼ 5	B, the system runs into the same steady-state for
all initial configurations chosen.

3. Time-varying external fields

In this section we consider a system of particles
interacting by means of the Gaussian potential of
equation (8) in time-varying, spherically symmetric
geometric confinements. The energy scale � in
equation (8) has the value � ¼ kBT. An additional
parameter is the total number of particles,
N ¼

R
dr�ðr, tÞ. Since this is a conserved quantity, it is

sufficient to fix its value at t¼ 0. We have chosen
N ¼ 100 throughout.

3.1. Cavities of oscillating size

We first examine the Gaussian fluid in an explicitly
time-dependent, radially symmetric external potential
that is periodic in time and is described by

Vextðr, tÞ ¼ F0 ðr=R1Þ
10Yð� sin ð2pt=	ÞÞ

�
þðr=R2Þ

10Yðsin ð2pt=	ÞÞ
�
, ð12Þ

where r ¼ jrj, R1 6¼ R2 are two distinct length scales,
F0 sets the strength of the external potential, YðxÞ is
the Heaviside function, which is defined as follows

YðxÞ ¼
1 , if x � 0 ;

0 , if x < 0 ,

(
ð13Þ

and 	 is the period of the change of the external
potential. This potential models a spherical confining
cavity with a sudden, periodically repeating change in
size between R1 and R2. Henceforth, we will refer to R as
the length scale of the cavity. Every 	=2 the length scale
jumps suddenly from R1 to R2 and vice versa. After each
change in R, the system tries to relax to its equilibrium
configuration determined by the new length scale, until
the size of the cavity changes again. Hence, depending
on the period 	, full relaxation to equilibrium is
hindered by the constant ‘kicks’ from the external
potential and the system rather reaches a steady-state,
periodically repeating density profile �ðr, tÞ ¼ �ðr, tþ 	Þ.

We choose F0 ¼ 10kBT, R1 ¼ 5� and R2 ¼ 4�.
Previous work on this system has already been carried
out by Dzubiella and Likos [9], who examined the
relaxation of the density profiles under a single sudden
expansion or compression. In this work, the expansion
and compression processes alternate and repeat them-
selves periodically, as is evident from the form of the
potential described by equation (12). In [9], it was found
that the system exhibits three characteristic timescales.
One timescale, 	þ ¼ 0:287	B characterizes the expansion
process, whereas two distinct scales, 	�1 ¼ 0:036	B and
	�2 ¼ 0:189	B show up during the compression process
[9]. Whereas 	þ is a characteristic relaxation time for
the expansion, the compression is, in fact, a two-step
process: upon a sudden shrinking of the confining
potential, first a fast process, characterized by the
timescale 	�1 , takes place, in which the fluid is confined
in the new cavity but still far from equilibrium.
Thereafter, a slower relaxation to equilibrium takes
place, with a characteristic time 	�2 .

Motivated by knowledge of these timescales, we
examine the steady-state response of the system for
four different choices of the period 	, namely
	1, 2 ¼ 2	�1, 2 and 	3 ¼ 2	þ, as well as for the period
	4 ¼ 2	B. In figure 1 we display the density profiles at
the steady state, taken at the moment exactly before the
cavity changes its radius from R1 to R2 or vice versa. In
other words, the system has just spent a time interval
�ti ¼ 	i=2 (i ¼ 1, 2, 3, 4) in a cavity of the size indicated
on the plots.

We observe excellent agreement between the BD
simulation results and those from DDFT, in all cases
considered. The timescale 	4 is sufficiently long that

Ultrasoft colloids in cavities of oscillating size or sharpness 531
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at the end of every half-period the system reaches the
profile corresponding to static equilibrium for the
corresponding value R1, 2; the profiles are depicted
in figure 1 (d). If on the other hand, the period of
switching is much shorter the density profiles barely
change, since the system has no time to react to the
rapidly changing external field. Such a case is
displayed in figure 1 (a), corresponding to 	 ¼ 	1.
The density profiles only change close to the cavity
boundaries and remain unaffected by the switching of
the external field towards its centre. This situation
persists for the cases where 	 ¼ 	2 and 	 ¼ 	3 shown
in figures 1 (b) and (c). It is mainly the outer part of
the density profile that experiences the influence
of the time-varying external field, leading also to an
overshoot of the larger density peak over its
equilibrium height, as the cavity size shrinks, an
effect observed also in the case of a single compres-
sion process [9].

In order to analyse the time dependence of the density
fields more quantitatively, we introduce the second
moment of the density, m2ðtÞ, defined as

m2ðtÞ ¼

Z
drr2�ðr, tÞ: ð14Þ

Clearly, m2ðtÞ is a measure for the spread of the density
around the centre of the external potential at any given
time t. In figure 2 we display a representative result for
m2ðtÞ for the period 	1, as obtained by solving the
DDFT equation. Evidently, the system needs several
periods until it reaches the steady-state, periodic
solution. Moreover, we define the squared amplitude,
A2ð	Þ, of the oscillations as the difference between the
maximum and minimum values of m2ðtÞ in the steady
state:

A2ð	Þ ¼ max fm2ðtÞg �min fm2ðtÞg: ð15Þ
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Figure 1. DDFT (solid curves) and BD results (noisy lines) of the steady-state density profiles �ðr, tÞ under the influence
of the external potential of equation (12) for four different choices of the period 	: (a) 	 ¼ 	1 ¼ 2	�1 ¼ 0:072	B;
(b) 	 ¼ 	2 ¼ 2	�2 ¼ 0:378	B; (c) 	 ¼ 	3 ¼ 2	þ ¼ 0:574	B and (d) 	 ¼ 	4 ¼ 2	B. In all cases, F0 ¼ 10kBT, R1 ¼ 4� and R2 ¼ 5�.
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Since the response of the system depends on the period
of the external field, the amplitude becomes a function
of 	.
In figure 3 we show the dependence of A2ð	Þ on 	.

For sufficiently long periods, 	0 	B, the squared
amplitude A2ð	Þ approaches a constant value, which is
due to the fact that the system relaxes completely into its
equilibrium configuration within a half-period. For
small 	 the amplitude goes to zero, because the changes
in the external potential occur on timescales much
shorter than the Brownian timescale and are therefore
too fast for the particles to follow. We find no resonant
response of the system (maximum of A2ð	Þ for some
specific period) but rather a monotonic dependence of
the amplitude on 	. This can be understood in terms of
the overdamped nature of the dynamics. It is a well
known fact that, for instance, the Brownian harmonic
oscillator in the absence of the stochastic force does not
not exhibit a resonant frequency either. This behaviour
can be generalized to our problem.
Whereas the external potential of equation (12)

does feature a periodic time dependence, it has the
particularity that it is time-independent throughout a
whole half-period 	=2, i.e. the changes of the external
potential are instantaneous. We now proceed to examine
a more involved case, in which the external potential
Vextðr, tÞ changes continuously with time. We confine the
system inside a spherical cavity whose effective radius
is changing with time in a sinusoidal fashion and
modelled by the external potential

Vextðr, tÞ ¼ F0
r

ðRþ a sin ð2pt=	ÞÞ

� �10
, ð16Þ

where F0 again sets the strength of the potential, R
is the cavity radius, and 	 and a are the period and
the amplitude of the radius oscillations, respectively.
Thus, the instantaneous size of the cavity, RðtÞ ¼
Rþ a sin ð2pt=	Þ, oscillates between R� a with a
period 	. We choose the parameters as F0 ¼ 10kBT,
R ¼ 5� and a ¼ �. Here, we have a fully time-dependent
external potential and therefore the possibility of
studying fully-developed as opposed to relaxation
dynamics.

In figure 4 we show the steady-state solutions of
the density profile for four different choices of the
oscillation period, 	1 ¼ 0:1	B, 	2 ¼ 0:4	B, 	3 ¼ 	B and
	4 ¼ 2	B. Once more, excellent agreement between the
DDFT and Brownian Dynamics simulations is found,
demonstrating thus the ability of the former to capture
the full dynamics of a system of overdamped particles.
Some of the features that we found in the previous
section are also seen here. As for the case of the external
potential of equation (12), we find that for small periods,
such as 	1 and 	2, figures 4 (a) and (b), the centre of the
system is hardly influenced by the changes in the
external potential. At the same time, there are also
important differences between the response of the
system to sudden or continuous changes of the external
potential. For the longest period, 	4 ¼ 2	B, for which
the density profiles are shown in figure 4 (d), we can
ascertain that the system is still quite far from the
quasistatic response, i.e. the density profile at any
time is not identical with the equilibrium profile for
the instantaneous value of the cavity’s radius. Here, the
profiles for R ¼ 5� differ, depending on whether this
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Figure 2. The second moment of the radial density profile,
m2ðtÞ, as defined in equation (14), against the time t as
obtained by DDFT. The external potential is that of
equation (12) and the period is 	1 ¼ 0:072	B.
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Figure 3. The squared amplitude A2ð	Þ, as defined in
equation (15), for the system of Gaussian particles in the
time-varying spherical confining potential of equation (12),
against the switching period 	 of the latter. The line is simply
connecting points at which the amplitude was calculated,
which are denoted by the grey circles.
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value of the radius is reached during the expansion
(4 ! 6) or compression (6 ! 4) half-cycle, as indicated
by the numbers in the brackets in figure 4. This should
be contrasted with the case in figure 1(d), which pertains
to the density profiles under the influence of external
potential equation (12). In this case, a switching period
	 ¼ 2	B is long enough for the system to react in a
quasistatic fashion. Evidently, the continuous change
of external potential equation (16) prevents the system
from exhibiting a quasistatic response for 	 that largely
exceed those relevant for external potential (12), which
features only sudden changes. We find that a quasistatic
response to external potential (16) occurs only for very
large values of the period, 	s 0 250	B. In figure 5 we
display the steady-state density profiles, where it can be
seen that the profile for RðtÞ ¼ 5� is independent
of whether the instantaneous value of the confining
radius is reached during compression or expansion.
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Figure 4. DDFT (solid curves) and BD results (noisy lines) of the steady-state density profiles �ðr, tÞ under the influence of the
external potential of equation (16) for different periods 	: (a) 	 ¼ 	1 ¼ 0:1	B; (b) 	 ¼ 	2 ¼ 0:4	B; (c) 	 ¼ 	3 ¼ 	B and (d) 	 ¼ 	4 ¼ 2	B.
The parameters of the external potential read F0 ¼ 10kBT, R0 ¼ 5� and a ¼ �. The labels on the plots denote the instantaneous
value of the cavity radius. As the instantaneous value RðtÞ ¼ 5� is reached twice within a period cycle, the numbers in the
parentheses indicate whether this value occurs during the ‘expansion’ (4 ! 6) or the ‘compression’ (6 ! 4) stage of the oscillation.
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Figure 5. DDFT results of the steady-state density profiles
�ðr, tÞ under the influence of the external potential (16) for the
period 	 ¼ 250	B and for F0 ¼ 10kBT, a ¼ � and R ¼ 5�.
Here, the time evolution of the system is quasistatic.
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On the other hand, for 	9 	s, we find a depleted zone at
the outermost parts of the density profile for R ¼ 6�,
when compared with the static equilibrium density
profile; the oscillations are too fast for particles to
reach this region. In summary, a cavity with a
sinusoidally oscillating radius requires an enormous
increase of the timescale necessary for the system to
reach quasistatic response, whereas for a sudden,
periodically oscillating radius, this occurs for periods
exceeding, roughly, 2	B. In the case of continuous
oscillations this threshold value increases by two orders
of magnitude.
Additionally, we find that there is a phase-shift ’

between the external potential and the response of the
system. For sufficiently rapid oscillations, 	 ¼ 	1, shown
in figure 4 (a), both the maximum value of �(r) and
its maximum extension in r are achieved for R ¼ 5�, the

former during the expansion and the latter during the
compression processes of the oscillation. These are
purely dynamical effects, since in the static case the
density peak is highest for the most confined cavity
(R ¼ 4�) and its extension is maximal for the most
expanded cavity (R ¼ 6�). Upon increasing the oscilla-
tion period, the maximal density peak appears indeed
for R ¼ 4�, as seen in figures 4 (b)–(d). This is what one
would intuitively expect, since the equilibrium profile
is maximal for R ¼ 4� among the radii we considered,
see figure 5.

For a more quantitative analysis, we again look at
the second moment of the density, m2ðtÞ, defined in
equation (14) above. This quantity is shown in figure 6
for four different oscillation periods, 	 ¼ 0:1	B,
	 ¼ 0:4	B, 	 ¼ 0:8	B and 	 ¼ 5	B. For 	 ¼ 0:1	B,
figure 6 (a), the periodic maxima and minima of m2ðtÞ
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Figure 6. The second moment of the radial density profile, m2ðtÞ, defined in equation (14) plotted against time t for the spherical
external potential equation (16) for the periodic times: (a) 	 ¼ 0:1	B; (b) 	 ¼ 0:4	B; (c) 	 ¼ 0:8	B and (d) 	 ¼ 5	B. The labels on the
plots indicate the instantaneous values of the cavity radius and the numbers in the parentheses have the same meaning as in figure 4.
The dots indicate the time after each quarter of the periodic time for which the instantaneous values of the cavity radius are
displayed in the plot as well.
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occur for the instantaneous cavity radius R ¼ 4:41� and
R ¼ 4:69�, during the compression and expansion
phases, respectively. This is already counterintuitive,
since, from the static point of view, compression shrinks
the system and expansion swells it, hence one would
expect that m2ðtÞ is smaller in the former than in the
latter case. This ordering of maxima and minima persists
also to the longer period, 	 ¼ 0:4	B, shown in figure 6 (b).
The maximum of m2ðtÞ, at R ¼ 5:06�, is still far from its
expected instantaneous cavity radius R ¼ 6� from static
considerations. Upon further slowing down the fre-
quency of oscillations, 	 ¼ 0:8	B, shown in figure 6 (c),
the minimum of m2ðtÞ occurs for R ¼ 4:19�, which is
already close to the most compressed state, R ¼ 4�,
while the maximum remains far from R ¼ 6�; the
instantaneous radius value is R ¼ 5:31� during the
compression process. At the even slower frequency,
	 ¼ 5	B, shown in figure 6 (d), the maxima and minima
of m2ðtÞ approach the expectations arising from static
considerations, yet the system is still far from quasistatic
evolution.
The extensions of the cavity for which m2ðtÞ are

minimal and maximal are thus continuous functions of
the period 	 or, in other words, the phase shift ’ between
the external potential and the response of the system is a
continuous function of the frequency ! ¼ 2p=	. In the
quasistatic case, the system and the external potential
have to be in phase, whereas the phase shift increases
with increasing frequencies. This effect stems from the
Brownian nature of the dynamics.
To gain some insight into the physical origin of the

frequency-dependent phase shift, we put forward here a
simple physical picture. We consider a random colloidal
particle with instantaneous position coordinate x(t),
taking one-dimensional motion for simplicity. The
remaining particles provide a restoring force �CxðtÞ
around the particle’s local equilibrium position, whereas
the solvent acts on it by inducing a friction contribution
�b _xxðtÞ. An additional, external force FðtÞ ¼ F0 cos ð!tÞ,
stemming from the oscillating external potential, is also
acting on the particle. In the spirit of the Langevin
equations (1), we ignore the inertial contributions to the
equations of motion (overdamped case) and thus x(t)
obeys the first-order differential equation:

b _xxðtÞ þ CxðtÞ ¼ F0 cos ð!tÞ: ð17Þ

Defining G � 1=b, equation (17) takes the form

_xxðtÞ ¼ �G CxðtÞ � F0 cos ð!tÞ½ �: ð18Þ

Equation (18) above is analogous to the coupled
Langevin equations (1). The absence of the random

force contributions at the right-hand side of
equation (18) does not affect the arguments to follow,
which pertain to the !-dependence of the particle’s
response. Equation (18) can be solved using standard
methods, yielding the solution xðtÞ ¼ x0 cos ð!tþ ’Þ,
with the amplitude x0 and the phase shift ’ given by

x0 ¼
F0

C

GC

½ðGCÞ2 þ !2�
1=2

ð19Þ

and

’ ¼ � tan�1 !

GC

� �
: ð20Þ

The amplitude of the oscillation, x0, attains its
maximum as ! ! 0, decreasing monotonically there-
after as ! grows. In the same limit, the phase difference
’ approaches zero, thus the system and the external
stimulus oscillate in phase. In the opposite limit,
! ! 1, the phase difference between the external
force and the particle’s response tends to the limiting
value ’1 ¼ �p=2. Moreover, the amplitude x0 becomes
vanishingly small, precisely as seen in our many-body
system as well.

We now examine the frequency-dependent squared
amplitude of the system’s response, A2ð	Þ, defined
in equation (15) for the case with external potential
(12). In order to explore the limits of the analogy with
the driven, overdamped harmonic oscillator described
above, we have attempted to fit our results with a
functional form inspired by the 	-dependence of the
one-particle analogue of A2ð	Þ, namely the quantity x20.
Following equation (19), and setting 	=	B � 
, we
propose to describe the 	-dependence of A2ð	Þ through
the two-parameter fit function:

fð
Þ ¼
�0

1þ �1
�2
, ð21Þ

where the two parameters, �0 and �1, play a role
analogous to the single-particle quantities F0=C and
ðGCÞ�1, respectively. The raw DDFT data and the
best �2-fit, achieved for �0 ¼ 0:458 and �1 ¼ 0:131, are
shown in figure 7. It can be seen that the results can
indeed be very well described by the functional form
(21), demonstrating that the analogy between the many-
body system and a single, driven, Brownian oscillator
can be carried to a quantitative level. This is an
intriguing result, in view of the complexity of the
interacting system and the simplicity of its one-particle
counterpart.
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3.2. Cavities of oscillating sharpness

In both the preceding cases with time-dependent
potentials, given by equations (12) and (16), we have
seen that the external influences have chiefly influenced
the parts of the density profile lying close to the cavity
borders, i.e. for r ffi R. In the next example, we examine
how one can directly influence the density field in the
centre of a spherical cavity by introducing an external
potential of oscillating sharpness. This is achieved by
temporally modulating the exponent n, namely:

Vextðr, tÞ ¼ F0ðr=RÞ
nðtÞ , ð22Þ

where F0 is the strength of the potential and

nðtÞ ¼ n0 þm sin ð2pt=	Þ: ð23Þ

The exponent n oscillates around n0 with period 	 and
amplitude m. The external potential of equations (22)
and (23) represents a spherical cavity of fixed size R
but with the sharpness of the confinement changing
continuously with time t. We choose the parameters
F0 ¼ 10kBT, n0 ¼ 6 and m¼ 4. The equilibrium density
profiles of this system for several exponents n are shown
in figure 8.
It is evident that potential equation (22) is capable of

influencing the centre rather than the outer parts of the
system. In figure 9 we display DDFT and simulation
results for the steady-state density profiles for various
choices of the period 	. Once again, we find excellent
agreement between theory and simulation. The centre of
the fluid is mainly influenced, as expected, whereas the

outer parts of the system remain relatively untouched.
Thereby, the system can be manipulated selectively at its
centre (by employing external potentials of the current
form) or at its periphery (by using external potentials of
oscillating size). As before, we find that for sufficiently
rapid changes in the external potential, the system
hardly responds, see figure 9 (a). Moreover, even for the
long oscillation period 	4 ¼ 2	B, the system is still far
from showing quasistatic evolution.

Just as for the case with external potential given by
equation (16), we find a phase shift ’ between the
external potential and the response of the system, which
depends on the periodic time 	. In order to quantify this
shift, we focus now on the quantity that responds most
sensitively to the external field, namely the value of the
density profile at the origin, �ðr ¼ 0, tÞ. Representative
results for two choices of the period 	 are shown in
figure 10. Whereas in the static case this quantity has
a maximum for n¼ 2 and a minimum for n¼ 10 (see
figure 8), in the dynamical case the positions of the
extrema are shifted. For rapid oscillations, figure 10 (a),
the effect is more drastic than for slower ones,
figure 10 (b). Moreover, the amplitude of the oscillations
in �ðr ¼ 0, tÞ increases as the frequency decreases, in
full analogy with the previously found results.

4. Layer diffusion

In this section, we examine an even more drastic
inhomogeneity. We start from an external potential
that creates a layer of particles which is well separated
from the rest. By suddenly switching this potential to
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Figure 7. The squared amplitude A2ð	Þ for the density
profiles under the influence of the external potential of
equation (16) versus the period 	 of the latter. The grey circles
are the DDFT results and the solid line is the best fit obtained
by using a functional form given by equation (21).
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Figure 8. The equilibrium density profiles of the ultrasoft,
Gaussian colloids (N ¼ 100 particles) for different exponents
n in the external potential of equation (22). The values of the
exponents are indicated in the legend.
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zero the layer diffuses and the system relaxes back to the
constant equilibrium density. We show that even for this
very strong inhomogeneity which resembles a crystalline
structure the DDFT reproduces almost perfectly the
results of the Brownian dynamics simulations.
The external model potential which creates the

particle layer reads as

Vextðz, tÞ ¼ F0 exp �10ð �zz� 1Þ2
� �	

þ exp �10ð �zzþ 1Þ2
� �


Yð�tÞ , ð24Þ

where �zz � z=� and F0 ¼ 10kBT sets the strength of the
potential. As the external potential depends only on
one spatial coordinate z, we have �ðr, tÞ ¼ �ðz, tÞ. It is
supposed that the external potential of equation (24) has
acted on the system sufficiently long (t < 0), so that
thermodynamic equilibrium has been reached at t¼ 0.
Then, for t>0, the constraint is switched off and the

previously confined layer is allowed to diffuse into the
rest of the system, restoring an overall uniform density
profile. We considered two cases of interaction strengths
between the particles (equation (8)), � ¼ kBT as well as
� ¼ 10kBT. The higher interaction strength results in
stronger correlations between the particles and thus
allows us to put the theory to a more stringent test.

In figure 11 we show a simulation snapshot of the
particles’ positions before lifting off the external
potential. We checked that the density between the
layer and the remaining system is zero within the
numerical accuracy, to verify that the layer is almost
completely separated from the system.

The results of the DDFT and the Brownian Dynamics
simulations are shown in figure 12 (a) for interaction
strength between the Gaussian particles � ¼ 1kBT and
in figure 12 (b) for � ¼ 10kBT. Whereas in figure 12 (a)
we see a single peak at z¼ 0 initially, in figure 12 (b)
there is a double peak at, roughly, z ¼ ��=2. The reason
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Figure 9. DDFT (straight curves) and BD results (noisy curves) of the steady-state density profiles �ðr, tÞ under the influence of
the external potential of equation (22) for periods: (a) 	 ¼ 	1 ¼ 0:3	B; (b) 	 ¼ 	2 ¼ 0:7	B; (c) 	 ¼ 	3 ¼ 	B and (d) 	 ¼ 	4 ¼ 2	B. The
remaining parameters have the values F0 ¼ 10kBT, n0¼ 6 and m¼ 4. The labels on the plots indicate the instantaneous values of the
exponent and the numbers in the parentheses have the same meaning as in figure 4.
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lies in the much stronger interparticle repulsion in
case (b), which causes a ‘splitting’ into two sublayers
within the confined layer, see also the simulation
snapshot in figure 11.
As can be seen in figure 12, the DDFT equation (5)

describes quite accurately also the diffusion of single
layers into the bulk and the subsequent relaxation of the
density into its homogeneous, bulk value. Hence one
may conclude that DDFT works also in strongly
inhomogeneous situations and it can be expected that
freezing, melting and crystal nucleation can be tackled
within DDFT.

5. Summary and concluding remarks

We have applied the dynamical density functional
theory of Marconi and Tarazona [5] to examine the
full dynamics of a collection of ultrasoft, Gaussian
particles in a variety of spatially and temporally varying,

external confining fields. We employed a very accurate
yet remarkably simple static density functional [28–30]
for the ultrasoft colloids and we found excellent
agreement between theory and simulation in all cases
considered. We analysed quantitatively the response of
concentrated systems under the influence of oscillating
external fields, drawing quantitative analogies with the
problem of a periodically driven Brownian harmonic
oscillator. In a different problem, we established that
DDFT describes strong inhomogeneities very accurately
by investigating the diffusion of an initially confined
layer of Gaussian particles. This offers confidence that
DDFT will be capable of describing other problems in
which strong inhomogeneities are present such as, e.g.
nucleation in supercooled fluids.

The dynamical density functional theory of Marconi
and Tarazona therefore provides an excellent theoretical
tool for the study of the dynamics of colloids under
arbitrary external fields. However, it must be empha-
sized that since the theory rests on an accurate
description of the statics, employment of a reliable
equilibrium density functional is essential to its success.
The theory can be hence applied to a variety of
dynamical problems, e.g. dynamics of sedimentation,
pattern formation in driven systems, microfluidics etc. A
major challenge remaining for future consideration is
the incorporation of hydrodynamic interactions into the
theoretical formalism, either in a microscopic or in a
phenomenological fashion.
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Figure 10. DDFT results of the steady-state density value
�ðr ¼ 0, tÞ under the influence of the external potential of
equation (22) for the periods: (a) 	 ¼ 	1 ¼ 0:3	B and
(b) 	 ¼ 	4 ¼ 2	B.

Figure 11. Simulation snapshot of a layer of particles that is
separated from the rest of the system via the external potential
equation (24). Here, � ¼ 10kBT.
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Figure 12. DDFT (straight curves) and BD results (noisy
curves) of the density profiles �ðz, tÞ. The initial density is
determined by the external potential equation (24). Shown
are the results for two different interaction strengths of the
Gaussian interparticle potential Vðjr� r0jÞ: (a) � ¼ kBT and (b)
� ¼ 10kBT. The times are: (a) t0 ¼ 0, t1 ¼ 0:05	B, t2 ¼ 0:1	B,
t3 ¼ 0:2	B, t4 ¼ 2	B; (b) t0 ¼ 0, t1 ¼ 0:2	B, t2 ¼ 0:5	B, t3 ¼ 	B,
t4 ¼ 2	B.
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