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Abstract
We calculate the effective interaction between two solute particles in a solvent
of Lennard-Jones (LJ) particles in two dimensions where the solvent is in the
stable liquid phase near the liquid–gas phase coexistence and the solute–solvent
interaction is repulsive. Our grand canonical Monte Carlo (GCMC) simulations
show that the effective interaction between two solute particles is attractive for
separations between the solute particles up to a range of a few nanometres,
beyond which the interaction exhibits a marked repulsion. Such an effective
interaction stabilizes clusters of nanometre (nm) sizes.

A fluid solvent close to its critical point has drawn recent interests due to potential industrial
applications. Supercritical solvents, known as ‘Green Chemistry’ solvents, are used for
environment friendly waste processing [1]. Subcritical liquid water is extensively used in the
extraction processes in agricultural industries [2]. Other solvents close to phase transitions
include, for instance, a solvent mixture close to a fluid–fluid demixing transition [3], and a
liquid crystalline solvent close to its isotropic nematic transition [4]. The key issue in these
applications is how the solute particles are solvated [5] via the redistribution of the solvent
particles around the solute. The solvent mediated effective force between two solute surfaces is
crucial to industrial applications and interesting pedagogically, as the effective force determines
the structure and dynamics of the solute in the solution [6]. If a solvent below its phase-
coexistence is placed in contact with a surface, and the solute surface prefers the unstable phase
relative to the stable solvent phase, the surface gets wetted, namely, covered by the unstable
solvent phase, the other part of the solvent remaining in the stable bulk phase. For instance, if
the solvent is in the stable bulk gas phase below the bulk liquid–gas phase coexistence, and the
solute surface is ‘solvophilic’, namely, having attractive solute–solvent interactions, the surface
is wetted by liquid layers. The solvent mediated effective wall–particle force in solvophilic
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condition exhibits anomalies at a separation where the two liquid layers bridge [7–9]. On the
other hand, if the solvent is in the bulk subcritical liquid phase below the gas–liquid phase
coexistence, and the solute surface is ‘solvophobic’, namely, having a repulsive solute–solvent
interaction, the solute surface gets covered by the gas phase. Reference [10] deals with both
solvophobic and solvophilic walls with respect to a particular component, immersed in a binary
mixture in the two-phase region. This work shows that the solvation force is attractive for
solvophobic walls and oscillatory for solvophilic ones. It is important to note that the wetting
behaviour depends crucially on the geometry of the surface [11]. While an infinite planar
surface could be completely wetted by the unstable phase with a diverging thickness, a surface
with a finite curvature can have only partial wetting, the thickness of the layer of the unstable
phase being large but finite. A natural question arises: Does the partial wetting affect the
solvent mediated effective force between a pair of solute particles? Earlier works [7–10] do not
address this issue. Reference [12] deals with effective interaction between two dry spheres in
water, albeit far from the solvent phase transition.

With this backdrop we report our simulation studies in two dimensions on the effective
force between two solvophobic circular solute particles mimicking the finite curvature effects,
the solvent being an LJ system in the stable subcritical liquid phase below the bulk gas–liquid
coexistence. Our GCMC simulations show an attractive effective force between two solute
particles for smaller separations whose range, determined by the thickness lb of the gaseous
solvent interface around the solute particle, extends up to a few nanometres. More interestingly,
the consequence of having a finite thickness of the solvent density profile around a spherical
solute particle follows for separations larger than 2lb. The bulk solvent liquid now fills up
the intervening region between the solutes, leading to a weak and longer ranged repulsive
force unlike that described in [10]. We further show by Monte Carlo (MC) simulations that
such an effective interaction leads to cluster formation of the solutes. Our work theoretically
demonstrates in a system the presence of a short ranged attraction and long ranged repulsion
which has been proposed recently to explain cluster formation in a wide range of systems of
technological as well as biological interest [13, 14].

We simulate a bulk two-dimensional (2D) LJ solvent at ε/kBT = 0.45 [15] by the standard
GCMC techniques [16] at a given chemical potential µ/kBT in a periodic 50σ × 50σ box,
σ being the LJ length parameter. The bulk ρ∗

0 (=ρ0σ
2, ρ0 being the number density) versus

µ/kBT data, shown in figure 1(a), indicates a jump at µ/kBT = −3.8 with the coexisting
liquid density (=0.72) and gas density (=0.04) in agreement with the known data [15]. Next
we carry out the GCMC simulations with a single solute sphere in the solvent for µ/kBT in a
subcritical liquid phase. The solvophobic solvent–solute interaction has a hard-core of radius
rc and a softer tail: Vss(|�r − �R|) = εss[σss/(|�r − �R| − rc)]12, the solvent being at �r , the
solute at �R, εss being the scale of the softer repulsive interaction and σss its range. We take
εss/ε = 5, σss/σ = 1 and rc = 2.5σ . The solvent density profile, ρ∗(s) = ρ(s)σ 2, s being
|�r − �R|/σ , about the solute at �R = 0 has been shown in the inset of figure 1(a) for different
µ/kBT . ρ∗(s) is significantly lower than the bulk ρ∗

0 in the vicinity of the solute. ρ∗
s → ρ∗

0
over an interfacial width l∗b (=lb/σ , lb being the length of the interfacial region). Note that
l∗b ∼ 7.5, significantly larger than rc/σ at µ/kBT = −3.7, and decreases as µ/kBT moves
away from the coexistence.

Finally we perform GCMC simulations by inserting a pair of solute particles at �R1/σ =
(s12/2, 0) and �R2/σ = (−s12/2, 0) along the x-axis. Insets I and II in figure 1(b) show
two snapshots of equilibrated configurations (50 000 GCMC steps) of the solvent particles
for s12 = 12 and 16 respectively. While s12 = 12 shows clear depletion of the solvent
particles between the solutes, the solvent configuration for s12 = 16 consists of two vapour
bubbles with the solute particles at the core, submerged in the liquid phase. Due to the finite
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Figure 1. Data from different GCMC simulations. (a) The bulk density ρ∗
0 versus −µ/kBT plot

for the 2D LJ solvent at ε/kBT = 0.45 without any solute particle. The discontinuity in ρ∗
0 values

(0.04 and 0.7) around µ/kBT = −3.8 is taken to be the gas–liquid coexistence. Inset: the solvent
density profile ρ∗(s) as a function of s, the distance from the centre of a solvophobic solute fixed at
the centre of the simulation box for µ/kBT = −3.7 (the solid line) and −3.5 (the dotted line). (b)
The density of solvent particles lying within 2rc = 5.0 distance around the axis (x-axis) joining a
pair of solvophobic solute placed symmetrically about the centre of the box, ρ∗(x), as a function of
x , the distance from the centre of the box, at µ/kBT = −3.7 for different distances s12 between the
solute pair: s12 = 12 (solid line) and s12 = 16 (dotted line). Only the positive half of the x-axis has
been shown due to the inversion symmetry. Equilibrated configuration snapshot at µ/kBT = −3.7
for s12 = 12 (inset I) and s12 = 16 (inset II). The circles show the solute particles.

thickness of the drying layer around the finite-sized solute, the stable liquid phase occupies the
intervening region between the solutes. The density profiles, averaged over 1000 equilibrium
configurations, along the x-axis, ρ∗(x) = ρ(x)σ 2, of the solvent particles within a rectangular
strip of size 2rc, chosen symmetrically about the x-axis, have been shown in figure 1(b) for
µ/kBT = −3.7 for different s12. The centre of the box, x = 0, is significantly depleted of
solvent particles, compared to the large-x region at s12 = 12.0. This behaviour persists up to
s12 � 2l∗b . However, the solvent density at x = 0 at s12 = 16.0 is higher compared to that
surrounding the solutes. The higher ρ(x) at x = 0 is a consequence of presence of the two
confining gas–liquid interfaces.

We calculate the solvent mediated average effective force between the two solute particles,

given by [6]: 〈 f ∗(s12)〉 = 〈 f (s12)σ/kBT 〉 = 1
2kBT

( �R1− �R2)

| �R1− �R2| 〈
∑

i [ ∂

∂ �R1
Vss(|�ri − �R1|)+ ∂

∂ �R2
Vss(|�ri −

�R2|)]〉, �ri being the position of the i th solvent particle and 〈· · ·〉 a grand canonical average
over 50 000 configurations. The 〈 f ∗(s12)〉 versus s12 data has been shown in figure 2(a) for
µ/kBT = −3.7. The force is attractive up to s12 ∼ 2l∗b . Physically, the osmotic pressure
imbalance, created by the higher solvent particle density around the two solute particles
compared to that in the intervening region (inset I, figure 1(b)), leads to an effective attraction
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Figure 2. (a) Effective force, 〈 f ∗(s12)〉, as a function of s12 in different cases: µ/kBT = −3.7
(circles) and µ/kBT = −3.9 (squares with error bars). The solid and the dashed lines are guides to
the eyes. The error in the first case (circles), being 1–2%, is too small to be shown in the scale of
the y-axis. Note here that 〈 f ∗(s12)〉 is attractive for s12 � 2lb , beyond which it becomes repulsive.
Further, note the qualitative difference of 〈 f ∗(s12)〉 in the two cases. Inset: the fluctuations of force,
σ f ∗(s12)/〈 f ∗(s12)〉, as a function of s12 for µ/kBT = −3.7. (b) Effective potential, U(s12), as a
function of s12 for µ/kBT = −3.7. Inset I: an equilibrated snapshot of MC simulations on the
solute particles alone with the effective pair potential as in (b) with a hard core at 2rc. The clustered
patches of finite size are clear. Inset II: g(r/2rc) versus r/2rc plot. The peaks indicate a typical
cluster size of ∼7rc. Inset III: the probability distribution h(m) of finding a cluster with m particles
as a function of m in log-normal plot. Inset IV: the ground state energy εgs for different m number
of particles in a closed box with the same area as a typical cluster. Note that the horizontal axis of
(a), not marked separately, is s12 and scaled as in that of (b).

between the solute particles up to s12 ∼ 2l∗b . This large range is in marked contrast to that
in depletion mediated attraction, which is, for instance, realized in hard sphere solutes and
solvents [17] where it is only of the order of the solvent hard core. Moreover, here the interfacial
width of the solvent distribution around the solute determines the range of attraction, and is
observed to be sensitive to the proximity to the phase coexistence.

〈 f ∗(s12)〉 changes over to repulsion for s12 > 2l∗b . This is a consequence of the finite
thickness of the drying layers around the finite solutes. Inset II in figure 1(b) shows a stable
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liquid phase in the region between the solutes. The liquid surrounding a vapour bubble exerts
inward pressure on the interface of the bubble which exceeds the outward pressure exerted on
the interface by the gas, the pressure gradient being counterbalanced by the interfacial surface
tension according to the classical Laplace formula, to provide stability to the gas bubbles
surrounding the solute particle core. The local density of the liquid being larger in between the
particles than that in the surrounding region as in figure 1(b), the bubbles are pushed away from
each other. More quantitatively, the repulsion induced via the liquid layer intervening between
the gas bubbles comes from a repellant effective interface potential between two liquid–gas
interfaces [11]. Our repulsion data show an exponential decay with length scale of about
3σ , comparable to the correlation length in the bulk liquid [11]. Therefore, the range of the
repulsion can be tuned via the location of liquid–gas solvent coexistence in the bulk phase
diagram which is relevant for equilibrium cluster formation [18]. The repulsive 〈 f ∗(s12)〉 for
large s12 is in sharp contrast to the findings in [10] with hydrophobic plates. Here the wetting
layer thickness diverges, excluding the possibility of repulsion induced via intervening stable
bulk phase. Our data thus bring out the important role of the curvature in determining the
effective interaction. We also point out the qualitative difference of our observations from
the long ranged attractive solvation pressure, falling off as slowly as −1/h3, between a pair
of plates induced via capillary drying [19, 20] where, unlike our case, the bulk fluid solvent
is not close to phase transition. However, reference [21] by simulating model water shows
that metastable liquid water exists between two slits even when capillary drying is expected,
resulting in repulsion down to very small separations.

The fluctuations of the force, σ f ∗(s12)/〈 f ∗(s12)〉, σ f ∗(s12) being the standard deviation of the
force sampled over the equilibrium configurations, are shown as a function of s12 in the inset
of figure 2(a) for µ/kBT = −3.7. There are enormous fluctuations at bridging of the drying
layers around s12 = 2l∗b , indicating that the mean field theories [8] may not be applicable to the
present scenario.

We show in figure 2(a) for comparison the 〈 f ∗(s12)〉 data in the subcritical vapour solvent
condition, µ/kBT = −3.9, with solvophilic solute–solvent interaction where thick liquid
layers grow around the solute. 〈 f ∗(s12)〉 decays to zero around s12 ≈ 17. With decreasing s12,
we find an attractive effective force at s12 ≈ 16.0, where the liquid layers on the two solutes
start to overlap. Then, the force stays almost constant so long as the bridge remains intact, as
in [8], down to s12 ≈ 13.0. In sharp contrast to the metastable gas bubbles, the metastable liquid
droplets attract each other. The effective interface potential repulsion is drastically reduced in
the opposite case of a stable gas phase: here, there is no large correlation length for a gas layer
between two liquid droplets such that this force is masked by attractive interface fluctuations.
〈 f ∗(s12)〉 is oscillatory below s12 ≈ 13 due to liquid layer correlations.

The effective potential, U(s12), is obtained by integrating the force data for µ/kBT =
−3.7. U(s12), shown in figure 2(b), has an attractive well of depth of −10kBT and a range
of 2lb, beyond which it is weakly repulsive, having a potential barrier ∼kBT . Such a deep
attraction can lead to aggregation of the solute particles, surrounded by the gas bubbles.
However, the repulsion beyond 2lb would prevent flocculation of the solute aggregates, leading
to clusters of equilibrium size of 2lb∼ a few nanometres. We verify this scenario by performing
MC simulations on a system of 100 solute particles in a square periodic box having solute
volume fraction 0.003 with a pair interaction potential as in figure 2(b), superimposed on a
hard core diameter of 2rc. Inset I in figure 2(b) shows an equilibrium configuration snapshot
having finite clusters. Inset II of figure 2(b) shows the pair distribution function, g(r), namely,
the probability of finding a pair of particles at separation r [16]. g(r) has strong peaks up to
r/2rc � 3.5, indicating typical cluster diameter ∼7rc, quite comparable to 2lb. The probability
distribution h(m), to find a cluster of m particles [16], has been plotted in inset III of figure 2(b)
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which shows that clusters having m � 20 particles are the most prevalent ones, apart from the
usual single particle peak. In order to ensure that the condensation in the clusters takes place
up to a finite m, we consider a closed box of area equal to that of a typical cluster and calculate
the ground state energy [13] εgs for different m. Any non-trivial minimum of εgs gives the
maximum number of particles in a cluster, for the entropy effects would tend to reduce the
clusters to smaller sizes. εgs, shown in inset IV of figure 2(b), has a minimum around m = 20
which is consistent with the dominant cluster size4.

In conclusion we show that two solvophobic solute particles in a subcritical liquid
solvent exhibit an effective attraction at smaller separations and a long ranged weak repulsion,
as a consequence of the finite thickness of the solvent vapour density distribution around
the solute particles. The solutes, having such a mutual interaction, can aggregate on a
length scale of a few nanometres. Our observations show a ‘bottom-up’ route to the
synthesis of a technologically important class of materials, namely, nanostructured thin films
where the traditional electrostatic assembly may not be possible [22]. Our predictions are
verifiable in real-space experiments of confined suspensions, for instance, a sterically stabilized
colloidal suspension added in a non-adsorbing polymer binary mixture solution between glass
plates [23].

We thank R Evans, S Dietrich and A A Louis for helpful discussions and the DFG for support
within the SFB TR6.
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