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Abstract
We show how to implement stick boundary conditions for a spherical colloid
in a solvent that is coarse-grained by the method of stochastic rotation
dynamics. This allows us to measure colloidal rotational velocity auto-
correlation functions by direct computer simulation. We find quantitative
agreement with Enskog theory for short times and with hydrodynamic mode-
coupling theory for longer times. For aqueous colloidal suspensions, the Enskog
contribution to the rotational friction is larger than the hydrodynamic one when
the colloidal radius drops below 35 nm.

1. Introduction

Colloidal particles exhibit Brownian motion due to collisions with the molecules of the solvent
in which they are suspended [1]. The resulting momentum transfer leads to translational
diffusion of the colloidal positions. Because real colloids are not perfectly smooth or spherical,
the solvent molecules can also transfer angular momentum, leading to rotational diffusion
around the colloidal centres. Computer simulations of this process are difficult for two reasons.

(1) The lengthscales of a typical colloid and a solvent differ by many orders of magnitude; for
example, a colloid of radius 1 µm displaces 1.4 × 1011 water molecules, making direct
simulations over meaningful length- and timescales impossible in practice.

(2) Colloid–solvent interactions are usually taken to be radial, at least for a typical spherical
colloidal particle, which means that angular momentum is not transferred from the solvent
to the particle. In other words, the traditional implementation of molecular dynamics
forces results in slip boundary conditions [2], whereas for a realistic colloid, local surface
inhomogeneities would result in a tangential fluid velocity at the surface equal to the local
velocity of the colloid surface, leading to stick boundary conditions [3].
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The solution to problem (1) is to coarse-grain the fluid to larger time- and lengthscales.
There are many different ways of doing this, but in this paper we focus on stochastic rotation
dynamics (SRD), a method first introduced by Malevanets and Kapral in 1999 [4]. SRD
has the advantage that it includes thermal effects that dominate the short-time velocity auto-
correlation functions, and also the hydrodynamic forces that dominate at longer times. Briefly,
SRD represents the solvent by ideal particles. To coarse-grain collisions, space is partitioned
into cubic cells and in each one the particles exchange momentum with each other by rotating
their velocity around the centre of mass velocity of the cell during a ‘collision’ step. This
procedure conserves momentum and kinetic energy, and thus generates the correct thermal
Navier–Stokes hydrodynamics in the thermodynamic limit. Its simplicity means that transport
coefficients such as the viscosity can be calculated analytically [5, 6], facilitating the choice
of simulation parameters.

Solute particles can also be coupled to the SRD solvent by treating solvent–solute and
solute–solute interactions by a standard molecular dynamics scheme [7]. This method leads
to slip boundary conditions for spherical colloids [8, 9], described as problem (2) above. To
study rotational correlations, stick boundaries must be implemented, and how to do that is the
subject of the present paper.

We proceed as follows. In section 2, we briefly review our parameter choice for SRD.
Section 3 describes how we implement stick boundary conditions for colloids while section 4
contains our simulation results for the linear and rotational velocity auto-correlation functions
that verify our stick boundary implementation.

2. SRD model parameters

To simulate the SRD solvent, we follow our earlier implementation described in [8].
Throughout this paper our results are described in units of SRD mass m, SRD cell size a0

and thermal energy kBT . The number density (average number of SRD particles per SRD cell)
is fixed at γ = 5, the rotation angle is α = π/2, and the collision interval δtc = 0.1t0, with time
units t0 = a0(m/kBT )1/2; this corresponds to a mean-free path of λfree ≈ 0.1a0. In our units
these choices mean that the fluid viscosity takes the value η = 2.5m/a0t0 and the kinematic
viscosity is ν = 0.5a2

0/t0. The Schmidt number Sc, which measures the rate of momentum
(vorticity) diffusion relative to the rate of mass transfer, is given by Sc = ν/Df ≈ 5, where Df

is the fluid self-diffusion constant [5, 6]. In a gas Sc ≈ 1—momentum is mainly transported by
moving particles—whereas in a liquid it is much larger—momentum is primarily transported
by interparticle collisions. For our purposes it is only important that vorticity diffuses faster
than the particles do. With these parameters the Brownian timescales are also well-separated
[8]. If tc is the timescale over which the fluid loses memory of its velocity, and τB is the
timescale over which the colloid loses memory of its initial velocity, and τD is the timescale
over which the colloid diffuses over one radius a, then for the smallest colloids used, with
radius a = 2, τB ≈ 20tc and tB < τD ≈ 200tc. For larger colloids the timescales are separated
even further. In contrast to earlier papers [7–9], the colloid–solvent interaction was not treated
by a smooth potential which leads to slip boundary conditions. Instead, an effective hard-
sphere radius was imposed, and the method of coupling the colloid to the solvent is described
in the next section.

3. Stick boundary conditions for stochastic rotation dynamics

Stick boundary conditions imply that the tangential fluid velocity relative to an interface is zero
at that interface [10]. The detailed molecular origins of these boundary conditions, or even the
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exact location at which they should be applied, are subtle problems [3]. For a recent review of
the extensive literature on this subject see [11]. In some cases, such as a non-wetting surface,
large effective slip lengths can occur [12], but for most colloidal applications the lengthscales
over which these more complex processes occur are coarse-grained out by methods such as
SRD, so that simple stick boundary conditions should be sufficient.

Bounce-back collision rules, where the tangential component of the velocity relative to
the surface of collision is reversed, could be used to implement stick boundary conditions.
However, as Lamura et al [13] showed in their study of Poiseuille flow, the stochastic coarse-
graining of the interparticle collisions together with the grid shift necessary for Galilean
invariance [6] leads to a finite slip length at a planar wall, even when bounce-back rules are
used. To fix this, they used the following prescription for cells that intersect the boundary: if
the number of SRD particles in a cell ncell is smaller than the average number of SRD particles
per cell in the bulk (γ ), they add the difference in virtual particles. In practice this means
adding a Maxwellian velocity of variance (γ − ncell)kBT/m for each Cartesian component,
and setting the number density (for the calculation of the centre of mass velocity) equal to γ .
If the number of SRD particles is larger than γ , no virtual particles are added. We call this the
Lamura rotation rule. It increases the effective friction for a planar wall, and indeed reduces
the tangential velocity to nearly zero as required. That non-equilibrium effects can result in
finite slip-lengths was shown as early as 1879 by James Clerk Maxwell [14], but his derivation
results in a slip-length proportional to the Knudsen number, and such effects are an order of
magnitude too small to explain the observed slip.

An alternative to the bounce-back rules is to use stochastic reflections where upon collision
the particles are given a random normal velocity vn and tangential velocity vt taken from the
following distributions:

P(vn) ∝ vn exp
(−βv2

n

)
(1)

P(vt) ∝ exp
(−βv2

t

)
, (2)

so that the wall acts as a thermostat [15]. Real colloids do not have perfectly smooth surfaces:
there could be a grafted polymer brush for steric stabilization, or an accumulation of co- and
counter-ions for charge-stabilized suspensions. Fluid particles interacting with the surface
would typically have multiple collisions with these local inhomogeneities, and stochastic
boundary conditions can therefore be viewed as a coarse-grained representation of these
processes. In that light, they appear more realistic than bounce-back rules, but whether that
is important for either long-ranged hydrodynamic effects or for local Brownian motion is not
clear. Inoue et al [16] first implemented such stochastic boundary conditions for SRD and
more recently Hecht et al [17] used a similar, but more sophisticated, approach for spherical
colloids.

We applied the Lamura rotation rule along the curved surface of a colloid (both reflection
rules are equivalent); this is non-trivial because it is not obvious how to choose the distribution of
the virtual particle velocities for a cell partially overlapping a colloid. All the implementations
we tried resulted in rotational frictions that were too large. At present, the reasons for this are
not completely clear; they may be related to the fact that the colloids can move, and therefore
have a local temperature, in contrast to the walls used in [13], which are immobile.

For spherical colloids we finally settled on the following implementation of stochastic
reflections, related to that used in [17]: if an SRD particle overlaps with a colloid, go half
a time step back (−v dt/2), and place the particle along the shortest vector r∗ to the surface
of the colloid. Then choose a random velocity v′ according to the stochastic distributions
equations (1) and (2), which are now centred around the local velocity of the colloid surface,
which is given by vloc = V + Ω × (r∗ − R), where Ω and V are the colloid rotation and
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velocity vectors. Complete the second half of the time step with that velocity (+v′ dt/2). Add
all momenta changes for the colloid: 
P = ∑

m(v − v′), as well as all its angular momenta
changes: 
L = ∑

m(r∗ − R) × (v − v′). At the end of the time step, update the linear and
angular velocity of the colloid according to V → V + 
P/M and Ω → Ω + 
L/I , where M
is the mass and I = (2/5) Ma2 the moment of inertia of a colloid for radius a. This method
takes into account the fact that, on average, crossings take place at half a time step. It proved
to work slightly better than resetting the particle to the surface immediately, and then moving
it with its new velocity for a full time step as done in [17]. An exact calculation of impact time
and place would be even better but this is computationally much slower. In any case, for small
integration steps, there is not much difference between these different methods.

Finally, bounce-back reflections can also be implemented, and give similar results to
stochastic boundary conditions, but the latter were preferred because they locally thermostat
the fluid, which may be important under flow conditions.

4. Translational and rotational correlation functions

As a test of our stick boundary conditions, we directly measure the translational velocity
autocorrelation function (VACF), defined as 〈V (t)V (0)〉, where V (t) is a Cartesian component
of the translational velocity of the colloidal particle at time t , as well as the rotational velocity
autocorrelation (RVACF), defined as 〈�(t)�(0)〉, where �(t) is a component of its rotational
velocity. At t = 0, equipartition yields 〈V 2〉 = kBT/M and 〈�2〉 = kBT/I .

For short times, the correlation functions can be approximated using Enskog dense-gas
kinetic theory, see e.g. [18, 19], which predicts the following exponential decay:

lim
t→0

〈V (t)V (0)〉 = 〈
V 2

〉
exp

(−ζ V
ENSt

)
(3)

lim
t→0

〈�(t)�(0)〉 = 〈
�2

〉
exp

(−ζ�
ENSt

)
, (4)

where the Enskog friction coefficients are given by

ζ V
ENS = 8

3

(
2πkBT mM

m + M

)1/2 1

M
γ a2 1 + 2χ

1 + χ
(5)

ζ�
ENS = 8

3

(
2πkBT mM

m + M

)1/2 1

M
γ a2 1

1 + χ
(6)

and χ = I/(Ma2) = 2/5 is the gyration ratio. Note that ζ V
ENS/ζ

�
ENS = 1 + 2χ = (9/5) > 1, so

that the short-time decorrelation of linear velocity is faster than the short-time decorrelation of
angular velocity, contrary to what would happen if one (erroneously) described the Brownian
relaxation with hydrodynamic friction coefficients:

ζ V
h = 6πηa/M (7)

ζ�
h = 8πηa3/I. (8)

Using only these Stokes–Einstein frictions, one finds ζ V
h /ζ�

h = 6χ/8 = (3/10) < 1, which
gives exactly the opposite effect (a difference of a factor 6)!

For the long-time relaxation we can compare with hydrodynamic mode-coupling
theory [20, 21] which predicts algebraic long-time tails of the form

lim
t→∞ 〈V (t)V (0)〉 = kBT

12mγ (π(ν + Dc)t)
3/2 (9)

lim
t→∞ 〈�(t)�(0)〉 = kBT π

mγ (4π(ν + Dc)t)
5/2 (10)
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Figure 1. Translational (circles) and rotational (squares) velocity autocorrelations for four different
colloid radii. The x-axes are in units of t0 = a0(m/kBT )1/2, and the y-axes are in absolute units,
e.g. 〈V (0)V (0)〉 = kBT/M = 1/125 for a = 2, etc. Solid lines are hydrodynamic mode-coupling
predictions from equations (9) to (10), dashed lines are short-time Enskog friction predictions from
equations (3) to (6), and show good agreement with no free parameters. Note that, for the smaller
colloids, the Enskog and hydrodynamic regimes overlap substantially.

(This figure is in colour only in the electronic version)

where Dc is the colloidal diffusion constant which, in this case, is much smaller than the
kinematic viscosity ν, and can be ignored.

In figure 1 we show VACFs and RVACFs for colloids of various radius a. We kept the
colloid density constant (i.e. M ∝ a3) and investigated four different sizes: a = 2 (M = 125),
a = 3 (M = 422), a = 4 (M = 1000), and a = 5 (M = 1953). To keep finite-
size corrections [22] small and comparable in each case, the box size was varied to keep
L/a = 24 fixed. Thus the number of SRD particles varied from about 5.5 × 105 for a = 2–
8.6×106 for a = 5. We find excellent agreement with theory for the short-time behaviour, and
good agreement for the long-time behaviour of the autocorrelation functions. For the smaller
particles the statistics for the long-time tails are better than for the larger particles. Overall,
these results suggest that our coarse-grained method to implement stick boundary conditions
leads to the correct physical behaviour.

Note that for the smallest colloid, the Enskog and hydrodynamic friction regimes are
not clearly separated, especially for the rotational autocorrelation function. A naive parallel
addition of the two types of friction to find the total friction ζ

1

ζ
= 1

ζENS
+

1

ζh
(11)

will therefore be incorrect, in particular for the rotational friction coefficient. For larger
particles, this works better though,as shown in [9], where a similar analysis is performed for the
translational friction coefficient of a colloidal particle with slip boundary conditions. Naively
using only the Stokes–Einstein hydrodynamic frictions, i.e. assuming that the hydrodynamic
radius is equal to the hard-sphere radius, will lead to significant errors for small colloids.
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Consider the following example of a density-matched colloid in an H2O solvent with viscosity
η = 0.001 Pa s at a temperature of 300 K. Taking a in metres and ζ in s−1, one finds
ζ V

ENS = 764/a and ζ V
h = 4.5 × 10−6/a2 for translations and ζ�

ENS = (5/9) ζ V
ENS = 424/a

and ζ�
h = (10/3) ζ V

h = 15 × 10−6/a2 for rotations. The physical radius at which the Enskog
and hydrodynamic frictions are equal is given then by aV

crit = 6 nm for translations and
a�

crit = 35.4 nm for rotations. Because ζENS/ζh ∼ a, even for 100 nm the Enskog contribution
to the rotational friction is of order 30% and cannot be ignored3.

5. Conclusions

We have shown how to implement stick boundary conditions for a colloid in a coarse-
grained SRD solvent. Using stochastic reflections with an approximate rule to determine
the point where the SRD particle crossed the colloid surface was found to work best. This
method was tested by explicit computer simulations of the translational and rotational velocity
autocorrelation functions, which compare well to analytic calculations of the short-time
behaviour via Enskog theory, and the long-time behaviour via mode-coupling theory. Our
successful implementation of stick boundary conditions also shows that for small particles
the Enskog and hydrodynamic effects are not clearly separated, and that the Enskog, or
microscopic, contribution [19], can be larger than the hydrodynamic one for small (nano)
colloids, in particular for the rotational friction.
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