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Abstract
The physics of wetting phenomena at structured surfaces by crystalline layers
as investigated by theory, computer simulation and experiments is reviewed.
Both realizations on the molecular scale and more mesoscopic realizations in
colloidal models systems are included. We explore how a crystalline wall
pattern affects the wetting by a crystalline phase in the context of a simple hard
sphere model relevant for sterically stabilized colloids. We further discuss
decoration lattices generated by adsorption of colloidal particles on stripe-
patterned substrates. For molecular systems, the influence of a rough and
preplated surface on triple-point wetting of hydrogen is calculated. Finally,
we present data for fluid layering in primitive model simulations of charged
colloids near neutral walls.

1. Introduction

While the traditional wetting transition by a liquid or vapour phase is well understood by now,
the same problem is much harder if the ‘wetting’ phase is a crystal. The reason is that the
translational symmetry is broken in the crystalline phase and thereby much more complex
wetting scenarios evolve such as discrete crystal layering [1, 2]. Moreover, in contrast to
a fluid, a solid can carry elastic shear stress which provides new physics in the wetting by
crystalline phases. In particular, we expect a wealth of novel phenomena if the wall which is
wetted carries a structural (e.g. periodic) pattern which favours certain crystalline structures.
This is an active research field and we shall review some results obtained in the past few years
in this paper.

However, three other (and simpler) cases are much better understood, namely:

(i) structureless (i.e. smooth) walls;
(ii) a periodic pattern in the bulk;

(iii) laterally structured walls in an inhomogeneous liquid far away from a wetting transition.
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All these cases are necessary prerequisites for the wetting of a structured wall by solid phases.
Therefore, let us mention some basic work in these subtopics first.

In the case of a wall without lateral structure, the wetting behaviour of a crystalline phase
has been intensely studied for a simple hard sphere model close to a hard wall. Based on
computer simulation studies [3, 4] and density functional theory [5], it was shown that there
is a precrystallization transition. This implies that there is a molecularly thick wetting layer
of several crystalline layers close to bulk fluid–solid coexistence when the stable bulk phase
is fluid. Details of this precrystallization transition, however, are still unclear. Recently, the
model has been used to study heterogeneous crystal nucleation close to a smooth wall [6].

Periodic external fields in the bulk lead to novel bulk phase diagrams with re-entrant
effects; for recent reviews see [7, 8]. This was demonstrated in experiments with colloidal
suspensions in crossed laser beams [9, 10]. If the resulting external field is compatible with a
crystal structure, then a stable crystal is obtained even if the crystallization transition is far away
in the field-free case. Such a laser-induced freezing was predicted by computer simulations
of microscopic models [11], by density functional calculations [12], and by Landau-type
theories [13].

Finally, for case (iii), the influence of a topographical wall structure—as modelled by
wall particles fixed on a triangular lattice—on structure and shear behaviour was investigated
by computer simulation [14]. Such a wall structure will greatly influence crystalline layering
transitions for small plate distances [15–17]. Studies with chemically heterogeneous patterns
(e.g. periodic stripes) are much more popular; see e.g. [18–22] and the papers by Lipowsky,
Dietrich, Krausch, Herminghaus, Rühe in this special issue. The aim of the paper is twofold:
first, we intend to review recent progress in the field of wetting of structured substrates by a
crystalline phase both for molecular and colloidal model systems. We discuss step by step the
case of a periodic wall pattern offered to a bulk hard sphere fluid where we review recent results
obtained by theory, computer simulation and real-space experiments on sterically stabilized
colloidal suspensions. We further address the formation of colloidal monolayer decoration
lattices on periodic substrate structures. Then we focus on triple-point wetting of molecular
systems such as hydrogen on different substrates where the roughness turns out to play a
crucial role. The second goal of the paper is to present some original results: first, a theory
for triple-point wetting in the case of a preplated substrate is presented which generalizes the
theory of previous approaches. Here we discuss possible experimental implications.

The wall structure is classified by two extremes: in the first case, the characteristic length
scale of the wall pattern is comparable with the interparticle spacing of the bulk fluid. This is a
situation frequently encountered for colloidal systems where the interparticle spacing is of the
order of micrometres. The surface structure can then be realized either by chemical etching or
other lithographic techniques [23, 24] or by fixed colloidal spheres on a substrate [25–34]. Even
a periodic wall pattern by many fixed colloidal spheres can be realized. Examples are discussed
in section 2. In the second limit, the wall structure varies on a length scale much larger than
a typical interparticle spacing. This limit is encountered for wetting by molecular systems on
rough substrates, such as hydrogen on gold. This case is extensively discussed in section 3. We
further present computer simulation results for density profiles of charged colloids near a hard
wall modelled within the primitive model with explicit counterions. Finally, we address the
case of a smooth but charged wall in the context of charged colloidal suspensions in section 4.

2. Wetting of walls which are patterned on a ‘molecular’ scale

If sub-micrometre wall patterns are exposed to a bulk colloidal suspension, there is a
competition between bulk interparticle correlations and the length scale of the wall pattern.
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This can give rise to various novel self-organization effects at the wall. In this chapter we
review in particular wetting of periodically structured walls by colloids.

2.1. Wetting of periodically structured hard walls by hard spheres

The wetting behaviour of periodically structured walls by a hard sphere fluid was recently
studied extensively by theory, computer simulation [35–37] and real-space experiments [38].
When fixed hard spheres form a periodic lateral array on the wall [39–43], one may ask whether
the system prefreezes by picking up the two-dimensional lattice symmetry.

In the simulations, different substrate patterns were investigated: triangular lattices, square
lattices, zig-zag stripe and rhombic patterns. The first three patterns arise if an fcc crystal is cut
along the (111), (100), and (110) orientations. The rhombic pattern, on the other hand, does
not correspond to a thermodynamically stable crystal but rather to a sheared fcc crystal. In
the first case, the mismatch between the lattice constants of the wall crystal and the coexisting
bulk crystal is the essential parameter: a necessary condition for complete wetting by the
undistorted bulk crystal is that the two lattices fit perfectly. The simulation data [35–37] show
that even for perfectly matching lattice constants, there is complete wetting only for the (111)
pattern but not for the (110) and (100) patterns. Furthermore, the formation of crystalline
layers happens in a discontinuous way via a layer-by-layer growth mode. A first crystalline
layer is formed well below the bulk crystallization transition. For a rhombic pattern, there are
two possibilities; either there is incomplete wetting by a few layers, or there is no wetting at
all. For a triangular pattern, the freezing of the first layer can be enhanced if the lattice constant
is larger than that of the coexisting bulk crystal.

Via phenomenological approaches which combine thermodynamics, elasticity theory and
effective interface potentials, scaling relations were predicted [35, 36] which were confirmed
by the simulations. Real-space studies [38], on the other hand, have confirmed the first-order
transition in the first layer. Further studies on different periodically structured templates made
by fixed hard spheres exactly realize the hard sphere simulation model. The behaviour predicted
in the simulation was basically confirmed for different surface orientations [44]. Finally, the
layer-by-layer growth mode was also found in binary crystals [45].

There is still a debate about complete wetting of a structureless (smooth) hard wall.
The wall–fluid, wall–solid and fluid–solid interfacial tensions are known by computer
simulation [46–48] but the statistical errors are too large to discriminate complete wetting
from incomplete wetting. A recent direct computer simulation [4] gives evidence for the fact
that there is complete wetting but it starts close to bulk coexistence.

Finally, let us mention a complementary case of a wall structure which disfavours
crystalline layers. Combined with a strong attractive interaction one can then achieve local high
densities at the wall while the structure remains fluid-like. In a recent simulation study [49] it
was investigated whether the wall induces a fivefold symmetry in the liquid which was found
in recent scattering data [50]. The simulation data of [49] revealed that the degree of fivefold
symmetry is governed more by the local density than by the wall itself. The wall suppresses the
fivefold symmetry only in the first two layers adjacent to the wall. This confirms the inherent
assumption made in the interpretation of recent scattering data [50] that the surface-sensitive
experiments basically probe the degree of fivefold symmetry in the bulk.

2.2. Colloidal decoration lattices on stripe-patterned substrates

An interesting competition arises when colloids are adsorbed on attractive stripe-patterned
walls. The widths of the stripes and the interstripe distance then provide further length scales
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to the hard core of the colloidal particles. From a competition of these length scales, it
was shown [51] that a wealth of different stable decoration lattices occurs such as triangular,
quadratic, rhombic, kite-like and sheared honeycomb lattices and triangular slices as well as
triangle superlattices. This theoretical result is of relevance for growing crystals of unusual
structure: the decorated substrate may be offered as a template to other mobile colloidal
particles in order to nucleate further colloidal crystalline sheets and to grow ‘exotic’ colloidal
bulk crystals [39, 52]. One may speculate that growing a metastable quasicrystal would be
possible if a suitable template structure is taken.

3. Wetting of rough substrates by crystalline sheets

The problems dealt with in the previous chapter can be classified as rough substrates where
the typical variation of the roughness is in the microscopic scale, i.e. of the order of the
interparticle spacing. We now focus on the opposite case where the roughness is characterized
by a length scale much larger than the interparticle distance as relevant for wetting of substrates
by molecular solids (such as e.g. hydrogen films). For idealized completely flat substrates, a
thorough theoretical understanding of wetting has been achieved by now and it is possible to
predict the thickness of a liquid film as a function of the substrate–particle and interparticle
interactions for given thermodynamic parameters such as temperature and pressure. However,
if the temperature T of the system is below the triple temperature T3, a solid film can form on
the substrate near the sublimation line. The authors of [53–56] have shown in their experiments
that a solid film wets a solid substrate only incompletely, that is, the width of the solid film
remains finite when approaching gas–solid coexistence.

The solid film experiences elastic compression induced by the substrate attraction which
it cannot relax. These strains lead to incomplete wetting [35]. This fact is also the basis of
the traditional Gittes–Schick theory [57] of solid adsorption on flat substrates. However, the
Gittes–Schick theory predicts that, for a particular value R0 of the Hamaker constant R of the
substrate attraction, complete wetting by a solid layer is possible. Furthermore, for R > R0,
the thickness of the solid film �s decreases with increasing R. This is in contrast to liquid
wetting. The Gittes–Schick theory deals with wetting on flat substrates only. However, real
substrates used in experiments will always exhibit a certain roughness. In the following we
will focus on the role of this substrate roughness and describe a simple theory which proves
that surface roughness plays a key role in wetting by a solid. Even a small roughness inevitably
leads to incomplete wetting and our theory predicts, for realistic parameters, a considerable
reduction in the film thickness �s compared to the Gittes–Schick theory. Complete wetting
by a solid no longer occurs for any choice of R. Therefore, we can show that the substrate
roughness plays a decisive role in triple-point wetting and the assumption of a flat surface is not
justified. Parts of this theory have already been published elsewhere [58] where the predictions
were compared successfully to experimental data for hydrogen on gold substrates; here, we
describe more details and also include the preplated case.

Holding the system at a fixed temperature T and pressure P , we calculate the excess
grand potential � per unit area with respect to a non-wetting situation. This can be done
conveniently by using density functional theory in the local density approximation with mean-
field corrections [59].

We model the system as follows: the substrate is taken to lie in the xy-plane at z = 0, but
modulated by a roughness function ζ(x, y) which is supposed to vary on a typical length scale
h in the vertical and b in the lateral direction where b � h, σ , with σ being a molecular length
scale. The substrate is preplated by a solid sheet of thickness d which has another Hamaker
constant H ′ than that of the bulk material which we denote by H . By varying the preplating
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Figure 1. Situation of a preplated substrate. The preplate has a thickness d; the solid and liquid
wetting layers possess a thickness �s and �l. The substrate roughness is described by a height
function ζ(x, y).

thickness one can tune the effective Hamaker constant in the range between H ′ (for large d)
and H (for small d). The whole situation is illustrated in figure 1. The preplated substrate is
covered by a solid slab of thickness �s. On top of the solid lies a liquid slab of thickness �l.

The excess grand potential � is the sum of three terms, � = �1 +�2 +�3, which represent
thermodynamic free energies, the lateral elastic strain in the solid and the elastic free energy
cost of a distorted solid picking up the substrate roughness. The thermodynamic part involves
the Hamaker constants which give rise to van der Waals attraction. In the traditional approach
of the sharp-kink approximation of a mean-field density functional [59], the full density field
is approximated by a stepwise constant (‘sharp-kink’) function as shown in figure 2.

We shall follow this approach and generalize it towards a situation of a preplated substrate.
The resulting thermodynamic part of the excess grand potential per unit area, �1, is then given
by
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for large �s and �l and close to the triple point.
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Figure 2. Sharp-kink approximation (dashed) and physical density profile (solid curve).

Here, the quantities γi j are the extrapolated interfacial tensions between wall (i = w), solid
(i, j = s), liquid (i, j = l) and gas ( j = g), and P0 (P ′

0) is the sublimation (condensation)
pressure. The liquid number density at liquid–gas coexistence is denoted by ρl, while ρs

and ρg are the number densities of solid and gas, respectively, at the sublimation line. We
assume ρg � ρl < ρs. In those regions where the coexistence is metastable, we extrapolate
these quantities from their thermodynamically stable regions. The van der Waals tails of the
interaction potentials of the adsorbate–substrate (i = s) and adsorbate–preplate (i = p) decay
as −2Ci/z3, that of the adsorbate–adsorbate interaction as −12H/πr6 for large separations z
or r where Ci and H are the respective Hamaker constants [2].

For the special case of no preplating (d = 0) this formula reduces to the well
known [2, 58, 60] result

�1(�s, �l) = γws + γsl + γlg − γwg +
ρs

ρg
(P0 − P)�s +

ρl

ρg
(P ′

0 − P)�l

+
A1

�2
s

+
A2

�2
l

+
A3

(�s + �l)2
(2)

for large �s and �l and close to the triple point. Here, we have further used the following
abbreviations: A1 = (ρs − ρl)(Cs − ρs H ), A2 = (ρs − ρl)ρl H , and A3 = ρl(Cs − ρs H ).

For large preplating thicknesses (d � �s, �l), (1) also reduces to (2), but with Cp substituted
for Cs.

We note that by a priori setting �l = 0, the theory can also be used close to the sublimation
line but away from the triple point.

The next term, �2, describes the free energy of the solid strain caused by the substrate
attraction. Its explicit form for large �s was elaborated by Gittes and Schick [57] as

�2(�s) = −BS2/�s − 2BS3/�2
s , (3)

where B = 3E
2(1+ν)

, E is Young’s modulus of the adsorbed solid, and ν is its Poisson ratio.
The total reduced stress is S = 0.0229(R − R0)σ where R = C/Hρs is the ratio between
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the adsorbate–substrate and adsorbate–adsorbate interactions. Combining �1 for d = 0 and
�2 yields the Gittes–Schick model. In this model, complete wetting is possible only for
R ≡ R0 = 1.88 where S vanishes.

A surface roughness induces an additional bending of the adjacent crystalline sheet. A
weakly bent crystalline layer of width �s has the following elastic free energy per area A [61]:

�3(�s) = EG

24(1 − ν2)
�3

s (4)

with the mean curvature G measuring the strength of roughness

G = 1

A

∫ ∫
A
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∂x2

∂2ζ

∂y2

]}
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It is possible to calculate G from experimental data (which are obtained e.g. from atomic
force microscopy). Such data, however, typically cover only a small part of the substrate.
Therefore, a model surface depending on only a few parameters is desirable. One model is
given by sinoidal protrusions on a square lattice

ζ(x, y) = h

2
sin

2πx

b
cos

2πy

b
(6)

with parameters h, b as introduced earlier. Choosing a rectangular area of integration, A, we
obtain

G = 4π4h2

b4
. (7)

Alternatively, one can put the protrusions on a hexagonal lattice, which yields

ζ(x, y) = h

2
sin

2πx

b
sin

π(x +
√

3y)

b
sin

π(x − √
3y)

b
. (8)

Taking the area of integration to be a parallelogram with equal sides and an internal angle of
60◦, we obtain in this case

G = 24π4h2

b4
. (9)

The equilibrium solid and liquid thicknesses are obtained by minimizing �(�s, �l) with
respect to both �s and �l. The dependence of the wetting layer on the parameters h and b is
shown in figure 3. For d = 0, a substantial increase of the crystalline layer thickness is only
achieved for h < σ , or for very large b.

Contrary to the Gittes–Schick theory, the bending free energy prevents complete wetting
by a solid sheet even when the total reduced stress S vanishes since the third term in � (4)
diverges as �3

s .
In figure 4 it is demonstrated that incomplete wetting occurs for T < T3 (with T3 denoting

the triple-point temperature) where the thickness � = �� + �s reaches only a value of 4 σ at P0

instead of approximately 50 σ computed for vanishing roughness. Furthermore, the thickness
of the wetting layer has been measured experimentally for H2 on Au. Quantitative comparison
to these experiments for the unpreplated case (d = 0) was published in [58]. The theory was
capable of describing the whole set of experimental data.

The dependence of the complete (liquid and solid) wetting layer upon the thickness of
a preplate is shown in figure 5. For the Hamaker constant of the preplate, two values have
been taken to illustrate the general behaviour. As an example of a strongly attractive preplate,
Cp = 2 Cs was chosen, while Cp = 0.5 Cs represents weakly attractive preplates. In both
cases, the thickness of the wetting layer is only slightly changed.
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Figure 3. Thickness of a solid wetting layer at the sublimation line in reduced units as a function
of valley to peak height h of the roughness profile. A Lennard-Jones model is used with [62]
T = 0.585, C = 8.7εσ 3, E = 41.7εσ−3, ν = 0.35, ρs = 0.988σ−3, and ρg = 2.57 × 10−4σ−3.
The different curves are for different lateral roughness parameters b = 100, 200, 500 σ (bottom to
top). Inset: thickness of the solid layer as a function of the lateral roughness parameter, b. Different
curves are for different vertical parameters h = 5, 10, 25 σ (top to bottom).
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Figure 4. Adsorption isotherm slightly below the triple point. The same parameters as in figure 3
are used. The total wetting layer thickness is shown as a function of pressure in units of the
sublimation pressure. The upper curve is for a vanishing substrate roughness G = 0, while the
lower one is for G = 10−3σ−2. There is a substantial reduction of the wetting layer thickness due
to surface roughness near the sublimation line.

Thus, a preplated situation just shifts the thickness of the wetting layer towards a value
that would be achieved with a different Hamaker constant (namely, that of the preplate). This
shift takes place in a continuous and monotonic fashion; therefore, the fundamental behaviour
of the system remains unchanged.

In conclusion, for a smooth wall, the thickness of the solid wetting layer, �s, is much larger
than for a rough substrate. Even a small finite roughness dictates the width of the crystalline
layer. The effect of the roughness is much stronger than strain caused by the substrate attraction.
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Figure 5. Total thickness of the wetting layer as a function of preplating thickness. Upper curve,
Cp = 2 Cs; lower curve, Cp = 0.5 Cs. The roughness parameters are b = 100 σ and h = 15 σ .
All other parameters are as in figure 3.

We have calculated the dependence of the wetting layer thickness on substrate roughness and
have shown that a finite roughness always enforces incomplete wetting by a solid adsorbate.

4. Charged colloids near walls

While the considerations in section 2 were for neutral colloidal particles, it is tempting to ask
whether the charge on the colloidal spheres will alter the wetting behaviour significantly.
Dispersions of charged colloids were used in real-space experiments to form crystalline
templates [63]. It is fair to say that the theoretical understanding of wetting by charged
colloids is much less advanced than that of neutral hard-sphere-like colloids. If one focuses on
a simple Yukawa description of the interaction between the colloids which is valid for high salt
concentrations, the structure of crystalline layers confined between two parallel walls has been
investigated recently, and re-entrant transitions in crystalline bilayers were discovered [17].

However, for deionized suspensions where the Yukawa interaction is expected to break
down, much less is known. Near smooth walls, even the theoretical understanding of the
effective interaction between charged colloids is far from being complete, but computer
simulations have revealed that there are no attractions for monovalent counterions [64]. The
simulations are typically done within the so-called ‘primitive’ model of strongly asymmetric
electrolytes with explicit counter- and coions [65]. Simulations of the ‘primitive’ model for
many colloids were mainly done in the bulk [65, 66]. One more recent study [67] has addressed
macroions near a charged wall where the charge asymmetry Z/q between the macroion charge
Z and the counterion charge q was limited to 20. Clearly more data are needed for colloidal
density profiles near the walls. In particular, if one wants to get insight into precrystallization
or wetting by a crystalline sheet one has to simulate close to the bulk fluid–solid coexistence.
This problem is much harder to solve than for the hard-sphere fluid since the bulk freezing
transition is not yet known and the simulation is more time consuming due to the presence of
the additional counterions.

In this section, we present some results of extensive computer simulations for density
profiles of charged colloids at or between smooth neutral walls. In figure 6, density profiles for
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Figure 6. Density profile of a one-component colloidal suspension between hard walls. Solid
curve: macro-ions, hard-core diameter σ , charge 20 e. Dashed curve: monovalent counterions,
hard-core diameter σ/128, charge −e; the size of the simulation box is 8 × 8 × 16 σ 3, the Bjerrum
length is σ/128, and the macro-ion density is 0.098 σ−3. The counterion density has been scaled
by a factor of 20. There is no added salt.

macroions (solid curve) and counterions (dashed curve) are shown for an asymmetry Z/q = 20.
Here, monovalent counterions were considered and no salt was added. The wall separation
is L = 16 σ where σ is the hard-core diameter of the colloids which serves as a convenient
length scale. The Bjerrum length λB = q2/εkBT is fixed to be σ/128 where ε is the dielectric
constant of the solvent. The counterions are point particles. The bulk macroion density is
ρ = 0.098/σ 3. All parameter combinations will result in a colloidal fluid well away from the
bulk freezing transition.

The density profiles exhibit a strong peak at contact with the wall and then decay and
oscillate towards the bulk value in the middle between the plates. The fluctuations in the
maroion profiles are from statistical uncertainties of the simulation. Since the counterion
density is magnified by a factor of Z/q a local coalescence of macro- and counterion densities
implies local charge neutrality. Close to the wall, local charge neutrality is strongly violated.
This is due to the fact that counterions can get closer to the wall because they are point particles
and entropy will force them to spread over the whole space available. This builds up a local
electric field at the wall like a little capacitor obtained via colloidal layering. Interestingly,
in the layered region macroions and counterion density are alternating; the former is minimal
when the latter is maximal.

A higher charge asymmetry of Z/q = 50 is considered in figure 7. This results in a larger
repulsion between macroions and hence in a larger contact value of the macroion density at
the wall. Finally, in figure 8, the bulk density of the macroion is increased with respect to that
used in figure 6. This means—by global charge neutrality—also a higher counterion density.
Again this results in a higher density at contact and more pronounced layering.

Other recent studies have considered charged suspensions near a wall together with a
gravitational field where entropic charge lifting for one-component [68–72] and a colloidal
brazil nut effect for two-component suspensions [73] was found. The latter implies that the
heavier colloidal particles are on top of the lighter ones provided their mass per charge is
smaller than that of the lighter ones. The full wetting problem with crystalline layers at the
wall has not yet been tackled by simulation and is a challenging problem for future work.



Wetting of topographically structured surfaces by crystalline phases S439

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12 14 16

ρσ
3

z/σ

Figure 7. Density profile of a one-component colloidal suspension with a higher charge asymmetry
of 50. The counterion density has been scaled by a factor of 50. The other parameters are as in
figure 6.
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Figure 8. Density profile of a one-component colloidal suspension at a higher density. The
macro-ion density is 0.146 σ−3; the other parameters are as in figure 6.

5. Conclusions

If a structured substrate is wetted by a crystalline sheet, the competition between the length
scales of the substrate structure and the thermodynamically stable bulk solid gives rise to a
variety of different effects: template-induced prefreezing if the substrate structure is favourable
for wetting and template-disallowed wetting if the surface structure is incompatible with the
wetting solid. Furthermore, new structures can form such as sheared honeycomb decoration
lattices on stripe-patterned substrates. Moreover, substrate roughness will strongly influence
triple-point wetting by punishing crystalline layers with a bending free energy cost. The
interaction of charged colloids is even more subtle and when exposed to a charged patterned
substrate more wetting effects are conceivable which still have to be discovered in detail.

In all parts of this paper, we have neglected the role of crystal defects in solid layers which
can lower the free energy cost of the elastic strain. This should be an important point of future
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work. The resulting structures play a key role to stimulate crystal growth of exotic lattices
needed e.g. for the construction of optical bandgap materials. The resulting wetting structures
may further be useful to fabricate micro- and nanofluidic devices.
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