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Crystal structures of two-dimensional magnetic colloids in tilted external magnetic fields
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The stability of different crystal lattices of two-dimensional superparamagnetic suspensions that are confined
to a planar liquid-gas interface and exposed to a tilted external magnetic field is studied theoretically by lattice
sum minimizations. The magnetic field induces magnetic dipoles onto the colloidal particles along its direction,
whose strength can be controlled by the amplitude of the external field. The mutual interaction between the
colloids is governed by dipole-dipole forces and a short-ranged repulsion having its physical origin at the
presence of the colloidal cores. If the direction of the magnetic field is perpendicular to the liquid-gas interface,
there is a purely repulsive interaction leading to stable triangular crystals. By tilting the external field, the
interaction becomes anisotropic and a mutual attraction appears upon a threshold tilt angle. We have calculated
the full phase diagram at zero temperature varying the tilt angle, the colloidal density, and the strength of the
magnetic field. Apart from the triangular lattice we find a variety of stable crystal lattices including rectangular,
oblique, chainlike oblique, and rhombic structures. We also present the accurate derivation of the Hamiltonian
of two polarizable particles of finite arbitrary geometries in external magnetic and electric fields.

DOI: 10.1103/PhysReVvE.68.061406 PACS nunter82.70.Dd, 64.70.Kb, 61.56f

I. INTRODUCTION dipole interaction exhibits also attractive parts which can
give rise to new phenomena. By varying the tilt angleone

Crystallization in colloidal monolayers that are confined continuously interpolates between two extreme limitsgof
to a vapor-liquid interface is a fascinating self-organization=0° and¢=90°, both of which have been already studied:
process, details of which have been studied recditly7].  the preceding studies of the melting process invoke a perpen-
In particular, superparamagnetic microspheres suspended dticular field (¢=90°), while the parallel field case¢(
a pendant drop in gravity are excellent realizations of strictly=0°) corresponds to two-dimensional dipoles with a fixed
two-dimensional classical many-body systems; for recent reerientation in the plane. The latter model was considered in
views, see Refd8,9]. An additional external magnetic field the context of ferrofluidic monolayers where chain formation
will induce magnetic dipole moments on the particles, whoséhas been simulated by Satehal. [18].
direction and strength can easily be tailored via the external In this paper, we calculate by lattice sum minimization the
field [10]: the dipole moments almost perfectly align along stable bulk crystalline lattices in the case where the interac-
the field direction and the magnitude of the dipole moment igion energy between the colloids is much larger than the
proportional to the field amplitude. In the conventional setupthermal energkgT, so that thermal fluctuations can be ne-
the magnetic field is perpendicular to the air-water interfaceglected. As expected, the resulting stable bulk solid struc-
so that the colloidal particles will interact via purely repul- tures are strongly anisotropic and different from their coun-
sive dipole-dipole forces, additional to the short-ranged reterpart arising from purely repulsive interactions, which is
pulsion arising from the physical core of the particles. Forthe triangular lattice that has a high degree of isotropy. The
large magnetic fields, the typical strength of the repulsiveanisotropy of the interactions together with the additional
interaction is much larger than the thermal energy, enforcin@ttractions generate various two-dimensional crystalline
crystallization of the microspheres into a triangular mono-structures such as rectangular, oblique, chainlike oblique,
layer. It is known that the three-dimensional melting transi-and rhombic lattices. We obtain the whole phase diagram
tion [11] can be qualitatively different from that in two spa- varying the tilt angle, the particle concentration, as well as
tial dimensions following a two-stage scenario with anthe magnetic field strength relative to the strength of a short-
intermediate hexatic phase as theoretically predicted by Koranged repulsion that stems from a soft physical colloidal
sterlitz, Thouless, Nelson, Halperin, and You(i¢§TNHY) core. Both first- as well as second-order transitions between
[12]. In fact, by using video microscopy and digital image the different lattice structures are found.
processing, it was shown by Maret and co-workers that two- In relation to other previous work, our study is first
dimensional superparamagnetic colloidal suspensions indeemplementary to those assuming a perpendicular magnetic
follow the KTNHY scenarig 13—-1§. field (¢=90°) but exposing the system to an additional ex-

In the present paper, we consider the case of a magnetternal potential, such as gravity, that leads to the formation of
field that istilted with respect to the surface of the gas-liquid nonhomogeneous conformal crystgl®,20. Second, in our
interface. The reason for doing so is twofold: first, a setupmodel the orientation of the dipoles is fixed by the field,
with a tilted external magnetic field can easily be realized inwhich makes our model different from that of orientable di-
an experimenfl7]. Second, more fundamentally, a tilt angle poles where the dipole orientation is treated as an additional
induces an anisotropic interaction and therefore new physicstatistical degree of freedom. Such models have been inves-
Furthermore, if the tilt anglep of magnetic field with its tigated in detail in two spatial dimensions for the sphere
projection on the surface is smaller than 54.7°, the dipolecenters and the dipolar orientations of the spheres fixed on
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the three-dimensional unit spher¢21,22 and two-
dimensional unit circl¢23]. In the latter case, ring formation
of dipolar chains was obtained by computer simulation.

The paper is organized as follows: in Sec. Il we define our
model; details for the derivation of the Hamiltonian are pre-
sented in the Appendix. The lattice sum minimization tech-
nique is explained in Sec. lll, whereas the resulting phase
diagrams are presented and discussed in Sec. IV. Finally, in
Sec. V we summarize and conclude.

confining plane

Il. THE MODEL B

We consider a system of superparamagnetic colloidal par- m m
ticles interacting with each other via the dipole-dipole pair 0 oy J
potential, valid for pointlike magnetic dipoles, T

1 m;-m;—3(m;-n)(m;-n) (b) view from above
rymi1mj)_§ r3 ’ (1)

dd,
u™(
FIG. 1. A schematic view of two superparamagnetic colloids
. ) - confined to a plane and placed in a tilted magnetic figjd For
and a truncated-and-shifted Lennard-Jones pair potential: gyperparamagnetic particles, the magnetic momentsm; align
1
_|_ -

o2 [ completely along the external fiel,.

¢ ( r ) ( r 4 (2) =10 Am?%T [10]. In this case, in the two-particle Hamil-

0 if r>26g, tonian of the system, EqA6), the dipole-field interaction

termsu®Bo, u%PBo [Eqgs.(A3) and(A4)] as well as the field

wherer is the interparticle separation vector=r/r is the  energyu®o [Eq.(A2)], become irrelevant constants. Thus, for
unit vector along the line connecting the colloids’ centers, our two-dimensional superparamagnetic particles the dipole-
andm; are the magnetic moments carried by parti¢lead; dipole interaction potentigll) takes the form
(i#]), o is the effective particle diameter, anrdsets the

6
if r<2Y6s

u-l(r)=

energy scale of the short-ranged soft core repulsion. The fac- uP(r,Bo)=u"(r, xBy,xBo)
tor 1/2 in Eq.(1) appears due to the paramagnetic nature of )
colloids, i.e., it stems from the fact that the dipoles on the _ (XxBo) i _ 2 2
: : (1-3 cosgcosh), 3)
particles are not permanent but rather induced by the external 2 3

magnetic field. A detailed derivation of the interaction energy

of two polarizable particles in an arbitrarily varying external where cog)=r-B;/(rBy), By is the in-plane component of

field is presented in the Appendix. The purely repulsivethe magnetic fieldy is the tilt angle of the magnetic field

Lennard-Jones potential, E(), is used to model the short- with respect to the confining plane. We introduce the nota-

ranged repulsion between the physical cores of the particlesion u®P(r,B,) to discriminate from the general case, En.

whereas dispersion attractions between them are ignored. Assuming pair additivity of the interactions, the total Hamil-
In our problem the colloids are spherical with a finite tonian of the system takes the form

extent but, for the sake of simplicity, we consider their mag-

netic dipoles as pointlike. Their motion is confined on the p? g L

plane formed by the water-air interface. This two- H=2 mf; [u™(ri—rp+u-(Iri-r;Dl, @

dimensional system consisting Nfparticles is placed under ' )

a spatially homogeneous magnetic figigl which inducesin \here the first term is the total kinetic energy, with the mo-

each particle a magnetic momemf, i=1,2,... N. Sincé  anan and the mass of the particles, and the second is
water has roughly the same magnetic permeabilitys air, e total potential energy. Since we are going to work at

the presence of the interface is not relevant from the point °femperatureT=0 in what follows, the kinetic energy is ir-

view of the magnetic interactions and thus the derivation ing|eyant. Figure 1 shows a side view and a view from above

the Appendix(which is carried out in the absence of such ¢, o, system, in order to elucidate the considered geometry
physical interfacescarries over to the problem at hand. In and the physical setup.

this paper we considesuperparamagneticolloids [13] for The relative strength of the isotropic truncated and shifted

which the magnetic momemn; completely align§ with the | ennard-Jones interaction and the orientationally dependent
external fieldB, and the following relation holds: dipole-dipole interaction is characterized by the dimension-
less coupling constant

m; = xBo,
2
wherey is a magnetic susceptibility of the particles and for A= (xBo) _ (5)
the superparamagnetic particles it has a typical valug of e
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FIG. 2. The total potential of interaction between two superpara- .
magnetic colloidal particles at coupling constant 3, as a func- x

tion of interparticle separation Here the dipoles are fully aligned, FIG. 3. Geometry of a two-dimensional candidate lattice with
6=0, and the curves correspond to different tilt angles, as indicatedne and two particles per unit cell, view from above. Shown are the
in the legend. unit vectorsa andb of the candidate Bravais lattice with one par-

ticle per unit cell, as well as the basis vectahat characterizes the
Changing of the tilt angle of the magnetic field allows for position of the second particle in the cell, for the case of a lattice

an interplay between the repulsive and attractive contribuwith a basis. The small arrows on the particles denote the orienta-
tions of the dipole-dipole interaction. In addition to the steriction of the in-plane magnetic dipole momenmts, which coincides
repulsion, the freedom of varying and ¢ makes the inter- with the direction of8; . The two different coordinate systemsy
action dependent on the relative orientation of the dipolegnd 'y’) are introduced for technical reasons in the computation
and offers wide freedom in tailoring the forces between theof the lattice sums via the Lekner method; for an explanation see
particles. The dipole-dipole interaction favors fully aligned the text.

moments(head-to-tail configurationsas seen in Fig. 2. Due ) - o

to the presence of the vertical component of the field, nefaced with the additional complication that these can be
attractions between particles show up for head-to-tail condecorated with bases of an arbitrary number of particles. In
figurations ¢#=0) only when the tilt angles lies below the orde_r to keep the calculation manageab_le, we have chosen to
threshold value arccos({8)~54.7°. restrict Qurselves tq two classes of perlpdlc strgctures only:

Our purpose is to find the stable crystal structures forme&ihc_’Se W_'th one particle per unit cell, Wh'Ch are_lndeed Bra-

by the systenat zero temperatureThe area density of the vais lattices, and those W'th a t_wo-pqmcle b_aS|s. Th_e long-
system is given as=N/A, with the areaA occupied by the range charag:ter of the qlpole-dlpole_ mteracthn requires the
colloids, and it is understood throughout that the thermody”‘nplementa.tlon of special summation techniques and the
namic limit is taken. We define the dimensionless area denc_:orrespondlng formulas take different forms for the two
sity asn* =no2. The problem is thus characterized by three3S€S at hand. In what follows, we present the method of our
parameters), n*, and the tilt anglep of the external field. calculation in some detail.

If the particles arrange themselves in a Bravais lattice, the _ _
total energy per particléJ, is given by the expression A. One particle per unit cell

In this case, the possible candidate structures are repre-
1 i sented by a two-dimensional unit cell that is repeated peri-
__ dip LJ g . . .
Us 2 ;0 [u™(r,Bo) +u™(r)]+const, 6) odically over the space. In full generality, the unit cell is a
parallelogram formed by the vectoasandb that sustain an
where the sum runs over the set of Bravais lattice vectors an@ngley between them, as shown in Fig. 3. The position of an
the additive constant includes the irrelevant contributiongrbitrary particle on the lattice site is given by the linear

from the dipole-field interaction and the field energy. combinationr =la+mb, wherel andm are integers. Intro-
ducing a coordinate systenxy) and choosing the axis
Il CALCULATION OF THE PHASE DIAGRAM parallel to the unit-cell vecta, the components, andr,, of

the vectorr=(r,,ry) can be written as followsr,=al
Strictly speaking, the determination of the periodic struc-+m, ry=+ym, where we have introduced parameters

ture that corresponds to the absolute minimum of the energy a, S=Db cosy and y=Db siny, with ¢ being the angle be-
is unfeasible: though there are only five Bravais lattices intween the vectob and thex axis. Having inserted the ex-
two dimensions and they can be easily parametrized, one @icit expressions of particle positions in E@®), the energy
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U, in Eq. (6) takes the form of a lattice sum componenB and thex axis(see Fig. 3 which characterizes
S/ _.Zh-_.(---) running over integersandm, with the  the relative orientation of the magnetic dipoles with respect
combination {,m)=(0,0) being excluded. In order to find to a lattice direction in the crystal.

stable structures of solid that correspond to the lowest total While the short-ranged Lennard-Jones t&ot(r) does
energy, we need to minimize the lattice sum with respect taot cause any problems during computation, the long-ranged
all free variational parameters. In the case at hand, there atéipole-dipole interaction summatioBu®?(r,B,) converges

a, B, andy, which are introduced above for convenienceslowly and it takes too long time to obtain the required ac-
instead of unit-cell parameteis b, and . Working at a  curacy of the resulting value. To accelerate convergence, we
fixed densityn acts as a constraint that eliminates one ofrewrite the seriesSu®?(r,B,) in terms of the modified
those due to the relationship=1/yn, therefore we are left Bessel functionsKy(x) and K;(x) following the Lekner
with the two parameterg and y. One additional variational method. Making use of the substitutions proposed by Lekner
paramete® is the angle between the in-plane magnetic field[24], it is straightforward to derive the expression

. - 1 [(al + Bm)coss+ (ym)sin5]?
udP(r,By) = 1-3cog
(xBo)? 20 (r:Bo (||,’nT)2¢fo°?0) [(al+Bm)?+(ym)?]¥2 (el +Bm)?+(ym)?
167 o < |
=[1—cos’-<p(1+sin25)]a7: ;1 2 acos(erélm) K1(27T£|m
2 o] o0
+cos’-<pcos{25)32: > |2CO{27T§|m)KO(27TZ|m)
o =1 m=1 a o
2 * 2 2
—codesin25) - 3 S Izsin(ZwEIm Kl(szlm)+[1—c052<p(1+sin26)]§W—Z
o =1 m=1 o a ay
2
+(1-3 codpcoss) — ¢(3), )
o

where {(x) is the Riemann zeta function. The use of thesecond lattice are located at the pointsc=(al+Bm
right-hand side of Eq(7) instead of the original expression +c,,ym+c,), where |, m are integers ande=a, S
drastically improves the convergence speed and allows for & cosy, y=b siny. The class of such structures includes,
very fast computation of the energy, during its minimiza-  among others, the honeycomb and “herringbone” structures
tion procedure. The lattice structures minimizing the energy,s possible lattices, as well as periodic repetitions of two-
U, with respect to variational parametegs y, 6 span in  chain pundles, similar to those observed in Monte Carlo
this way the five two-dimensional Bravais lattices, ,namelysimulations in the fluid phasig].
the_trlangular, square, rectangu_lar_, rhpr‘r[lﬁﬁ], and oblique For this system the total energy per particle reads as
lattices. The results of the minimization procedure are pre-
sented in the following section. 1
_ di LJ
B. Two particles per unit cell Ua=Uat 2 2:0 [uR(r+c,Bo) +u™X(r +d)], ®)
The second possible class of candidate structures we con-
sider are generated by the periodic repetition of a unit cell,
defined as above b, b, andy, having one more additional Which is the energy,, given by Eq.(6), of a particle inter-
particle placed inside the parallelogram. The position of theacting with all other particles within its own sublattice, plus
added particle is specified by the vector (c,,c,). When  the additional energy of interaction with the other sublattice.
such a cell is repeated periodically over the space, it proOnce more, the sdr} spans a Bravais lattice. The param-
duces two lattices shifted with respect to each other by theters characterizing the lattice structure ares, v, c,, and
vectorc, as shown in Fig. 3. In other words, we are dealingc,. The constraint of constant particle density allows to
here with lattices possessing a two-patrticle basis. The poseliminate the parametet=2/yn. As before, we do not fix
tions of the particles of the first lattice on the,¥) plane are the direction of the magnetic field with respect to the lattice
given by the vectors= (al + B8m, ym), while the sites of the axis and allow for the variation o, the angle betweeB;

061406-4



CRYSTAL STRUCTURES OF TWO-DIMENSIONA. . . PHYSICAL REVIEW E 68, 061406 (2003

and thex axis. The stable crystal structures are found by(8), we apply the Lekner metho[®4] as in the preceding

minimization of energyJ, with respect to the parametefs  section. Accordingly, the slowly converging suBuP(r

¥, 6, €y, andcy. +¢,By) is written in terms of the modified Bessel functions
To achieve rapid convergence of the dipolar series in EqKy(x) andK;(x) as follows:

2 .
By? A e B

oo

1

B [ (el + Bm+c,)cosd+ (ym+cy)sin ]2
Lriste [(al + Amt )2+ (ymtc,) 2

(al+Bm+c,)?+ (ym+c,)?

1-3cose

Ki

:[1—co§<p(1+sin2¢$)]8—727Izl > I—cos(ZWI (Bm+cy)
a® F1m===

27l .
- ymie ™ e o e

1672
+cog ¢ cog25)
o

A 2l
3 2’1 m;w Izcos<7(,8m+cx)

27l
KO Tl ym+ Cyl

—coge sin(25)16

772 ” ”
. |21 > sinl —— (Bm+cy)

|2(3/m+Cy) _ (27T|
o -

K 27l N
. |ymtcy @ N« [ym+cyl

27?

1-cop(l+sintd)]——,
tl1-cosg(l+sl )]ayzsinz(wcy/y)

(€)

where (@l + gm+c,,ym+c,)#(0,0). the value of the lattice surttotal energy of the systenin-

For ym+c,>0 the first three summations of the right- variant with respect to the rotation of the coordinate system.
hand side of Eq(9) can be obtained directly from E¢7) by Thus, switching between the two representations of summa-
making use of the substitution8m— Bm+c, and ym  tions allows us to achieve fast convergence. In general, there
—ym-+c,, which correspond to a shift in the coordinate &€ infinitely many coordinate systems that can be chosen for
Spacer,—r+cy, ry—r,+c,. However, the last terms of the representations of the serig3 and (9).

Egs.(7) and(9), corresponding to,=0 orr,=0, are totally To find the energy minimum we used the Powell method,
different. the initial mput_for which was thg approximate minimum

During the calculation of the lattice sum, it can happenfou.nd by scanning th_rough the grid in the space _of minimi-
that the argument of the Bessel functions becomes small. ipation parameters. Flr_1ally, we remark that the minimization
this case, the values of the Bessel functions are large and t th respect to the lattice vectors does not' automatically pro-
many terms of the series will be necessary to add in order t uce the shortest ones, so that thg resulting crystal structure
obtain the required precision. We cope with this problem's_nOt always _automatlcally recognizable. In order to r_emedy
following the approach proposed in RéR6], namely we this shortcomlng, we calculate subsequentlyshertesﬂm-
rewrite both summation&) and(9) in a different coordinate ear_ly mdependent vectoa;nm_and Binin that Span the given
system &'y’). While in the coordinate systenxy) the di- lattice. Their lengths are given aa;m.inzmmk|b—ka| and
rection of the vecto coincides with thec axis, in the new  Pmin=MiN|amin—Ib|, wherek andl are integers. In what fol-
coordinatesX'y’) they’ axis is directed along the vectby ~ 'OWS, We adopt the conventicayin=Dr,
see Fig. 3. The transformation between the two coordinate
systems is the rotation arouadxis by the angler/2— . It

is easy to derive the substitutions that are necessary for re- IV. RESULTS AND DISCUSSION
ertlng the right'hand SideS Of Eqﬁ?) and (9) in the new We have Carried out the minimizations ul and U2
coordinate system:  a—a'=B"+9?, B—B"  [Egs.(6) and (8)] with respect to the corresponding varia-

=aplNB+vy°, y—y =aylB*+y°, sind—sin(—45), tional parameters and found the stable crystal structures for
COSS—COSE— ), Cx—Cyx=CyCosy+csinyg, and c,—c;  various values of parameteks n*, and¢. Our numerical
=c,siny—c,cosy. After making these substitutions, the ex- calculation has shown that both sutds and U, have ex-
pression of summations will change and the arguments odictly the same minima with the same crystal phases over the

Bessel functions will take different values, leaving, howeverwhole parameter space. In other words, the optimal value of
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FIG. 4. The phase diagram in the*(,¢)
plane at magnetic field strengkth=3. The dotted
(solid) lines denote continuougdiscontinuous
transitions. The dashed line, termed “unsticking
line” in the text, indicates second-order transition
from the oblique phase to the chainlike oblique;
for a quantitative characterization of these
phases, see the text. The open circles denote a
. continuous transition within the chainlike oblique
ik phase. The gray region denotes phase separation

o)
o
\

[3,]

(@)

\
\
\

¢ [in degrees]
8
&b

30 { Tectangular chain-like oblique fiqud between the phases lying at the two opposite
1 boundaries for a given value @f. Accordingly,
20 the transitions denoted by the lines that penetrate

| By

this region are preempted by it but they are nev-

10 1 ertheless shown in order to demonstrate the de-
velopment of the structural changes of the lattice
0 0 at all ¢ values.

the variational quantitg that describes the positioning of the from 0° to 90°, the size ratia,;,/b,, Shows cusps at dif-
basis is always such that a Bravais lattice is generated arfdrent values ofp, depending on the density*. At the low-
there are no stable periodic non-Bravais arrangements with @ part the size ratios are large and decrease monotonically
nontrivial two-particle basis for the system at hand. Thougmpon increasingp. In fact, for low-p values, the parameter
this does not rule out the existence of structures with a Iargqgmm remains practica”y constant for all densities at a value
number of basis members, it acts as an indication that thghat almost coincides with the minimum of the total interac-
system prefers the simpler periodic Bravais structures. Aion potential for a head-to-tail orientation of the dipoles, see
wealth of those appears in the phase diagram nevertheless-ig. 6. The particles form, thereforehainswith a constant
First, we note that for all stable lattice structures thathead-to-bead distance, whereas an increase of the density
minimize the energy, the direction of the in-plane componentjmply reduces the value od,,, bringing those chains
of the magnetic fieldB, coincides with that of the shortest closer together. In view of this fact, we characterize the ob-
elementary lattice vector. This result is in agreement withijque lattice in the region below the line delineated by the
results obtained by Monte Carld8] and molecular dynam- |gcus of cusps in the parametey,,/byi, as chainlike ob-
ics [27] simulations. lique. Above the aforementioned line, the particles forming
We begin with the phase diagram for a value of the couthe chains “unstick.” The physical reason for this lies in the
pling parameteh =3, presented in Fig. 4. In the absence ofjncreasingly strong repulsions that take placeagows and
anisotropic interactionsp=90°, the radially symmetric re- which do not favor such a high degree of anisotropy any-
pulsion gives rise to a triangular lattice, as expected by the
fact that the latter possesses optimal packing properties -————————————————————

Upon deviation of the magnetic field angle from the value 24 | o4l T
¢=90°, the anisotropy of the interaction induces a continu- e 1207
ous transformation of the triangular lattice into an oblique 22t - A'=09 |

one with two unequal lattice constants, and with the in-plane
component of the dipolesn;, oriented along the shorter
lattice vector. At low values of the angle, the strongly
attractive dipolar interactions cause a broad coexistence re §
gion that terminates at a critical point for a tilt angle %E
=60°. o
The broad phase coexistence region can be suppressed |
reducing the value of, as will be discussed later. In order to
obtain some insight into the mechanisms bringing about the
stability of the various phases, we neglect for now this co-
existence region and focus our attention on the structura
characteristics of the oblique phase at arbitrary valuas*of 0 10 20 30 40 S0 60 70 80 90
ande. There exist further phase transitions within this phase
and, in order to characterize them, we introduce the ratio
amin/bmin between the two lattice constants as a suitable or- FIG. 5. The aspect rati@y,/by;, between the shortest unit
der parameter. vectors vs the tilt anglep, for various values of dimensionless
As can be seen in Fig. 5, upon increasing the angle densityn* and forx=3.

¢ [in degrees]
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130 y ™ T y and the effect of changing* is merely a shrinking of the
— \ lattice. In the chainlike oblique phase, on the other hand, the
125 | | === ¢=27" \ . smaller lattice constar,,, is essentially density indepen-
I ‘P=45: \\ dent and onlya,,, changes. We locate, therefore, a line of
120 | - S; "\ \ i “unsticking transitions” through the phase diagram that
\ \ splits the oblique phase into two domains, the regular ob-
o 3 \ lique and the chainlike oblique. We will discuss the physical
R \ Y T origin of this line shortly.
° e TR The same line goes also through a region of the phase
L I\ T—-  diagram in which the rectangular lattice is stable and which
_—__,\\\‘{,‘___ occurs typically fom* <0.25 ande<<56°. Upon increase of
105 b mmmmmmmmTTRRT TN n*, the rectangular lattice transforms continuously into the
chainlike oblique one, since a staggered configuration of the
100 . . . . long chains becomes then energetically more favorable than
0.0 0.2 0.4 0.6 08 1.0 the parallel ond18]. At the high-density part of the phase

n diagram and for angles 35°¢=<78°, a first-order transition
, from the chainlike oblique to the rhombic lattice takes place,
FIG. 6. Dependence of the shortest lattice constigfif on the 55 a4 pe seen from the inset of Fig. 7: the aspect ratio
density at\ =3. The arrows on the right denote the positiqg, of a,n /b displays there a jump to the value unity. At lower

the total interaction potential®+ u“’ for a head-to-tail configura- . e . . .
. lon p al . 9 values, the first-order transition line continues, separating
tion. The arrow lines are coded in the same way as the curves on the

plot, corresponding thereby to the valuesgoindicated in the leg- nﬁw FWO (r:]halnlltlge toblthge phtzfljgif(r)ogn ciﬂe anottheir. We em-
end. For the anglep=63° and 72°, such a minimum does not phasize here that at densitigs =0.9, the particles are

exist. densely packed and thus there are no chains to be recognized
anymore. Nevertheless, we still characterize the high-density

. . hase of the system as chainlike oblique because there is a
more as the one present in the chain phase. As can be seer’:E y d

Fig. 7, in the obliqgue phase the size ratio remains at a co
stant (but ¢-dependentvalue for all values of the density,
thus a change af* there simply causes the oblique unit cell
to shrink uniformly. The reason for this behavior lies therein
that in this part of the phase diagram the short-range ste
repulsionu“Y(r) is not felt by the particles, which interact

Sth in the phase diagram that goes around the rhombic
phase, still lying below the unsticking line, which connects
the high-density region with the low-density chainlike ob-
lique phase without crossing any phase boundaries. This path
‘cannot be clearly discerned in Fig. 4 because it is very nar-
Mfow due to the close proximity of the unsticking line with the
. . ’ . ~~ upper tip of the rhombic phase area; but it exists neverthe-
|ndsigead exclusively by means of the dipolar interactionoqq \wjthin the high-density chainlike oblique phase, an-
u™(r,Bo), Eq.(3). Since the latter has the form of a scale- yhar continuous phase transition takes place, as witnessed
free power law, the average density sets the only length scajg, 5 fyrther cusp in the aspect ratio that can be seen in the

inset of Fig. 7. This transition is denoted by the open circles

3.1 in Fig. 4.
29 We have also calculated the phase diagrams for other val-
ues of the coupling parameter, representative results are
21 shown in Figs. 8 and 9. The topology of the phase diagram
2.5 remains the same. One important quantitative difference oc-
23 curs for the coexistence region at the bottom of the phase
diagram. This becomes broader for 10 but disappears al-
g 21 together forA =0.0001 since in the latter case the dipole-
Q\'E 1.9 dipole attractions are very weak.
S, The location of the “unsticking line” remains exactly the
) same in the ranga =0.0001 . ..,1000. This demonstrates
15 that the physical origin of this line lies exclusively in the
13 dipolar interaction and has nothing to do with the presence of
. the Lennard-Jones cores. Indeed, within the whole range of
1.

stability of the oblique phase, the particle positions are such
0.9 . L . L . L . L . that the nearest neighbors of the lattice find themselves at
0 o1 02 03 04 05 06 07 08 09 1  (istances larger that the cutoff distand€@ of the Lennard-
Jones potential. The colloids interact, therefore, exclusively
FIG. 7. The aspect rati@,,;,/b,, between the shortest unit Dy means of the dipolar interaction which causes the transi-
vectors vs dimensionless density for various values of the tilt  tion to the chainlike oblique phase along the unsticking line.
anglep and forA=3. The inset shows the high-density part of the Only inside the chainlike oblique phase do nearest neighbors
diagram in more detail and its axes carry the same labels as those @pproach close enough so that the steric repulsion is felt and
the main plot. then the competition between the anisotropic and the radially

061406-7



FROLTSOVet al. PHYSICAL REVIEW E 68, 061406 (2003

90 ; T , ; [28,29, photonic crystals, and microfluidic devices.

80 4 triangular zj Further future investigations should focus on the follow-
ing open problems: first, the elastic constants of the crystal

70

oblique can be calculated within lattice sums. In particular, it would

be interesting to examine the anisotropy of the elastic behav-

3 ‘ v ior for anisotropic crystalline structures. Second, one should
27 i consider the effect of a finite temperature. It would be very
=) ﬁ A interesting, in particular, to check how the KTNHY scenario
9307 rectangular chain-like oblique is affected in melting anisotropic two-dimensional crystal

lattices. Furthermore, the question whether there is a stable
chain liquid at finite temperature should be thoroughly ex-
plored. Finally, the present methods can be transferred to
three-dimensionaloriented or unoriented dipolar systems.
& 01 02 03 04 05 06 07 08 oo 1  Thiswouldbe of great interest for ferrofiuid80]. Indeed,
n various crystalline structures have recently been obtained in
FIG. 8. The phase diagram in the*,¢) plane for magnetic theory[31-34 and experimentt35-3§ but a full compre-

field strengthh =10. The meaning of the various lines is the Samehen_swg understajmdlng including a poss.|blle fluid phase of
as in Fig. 4. chains is not available at the moment. This is a challenge for

the future.

symmetric interactions gives rise to alterations of the phase
boundaries. In particular, as can be seen from Figs. 8 and 9, ACKNOWLEDGMENTS

an increase im causes the region of stability of the rhombic  Thjs work was supported by the Deutsche Forschungsge-
phase to shrink, since it increases the strength of the orienneinschaft(DFG), within subproject C3 of the SFB-TR6
tationally dependent potential that favors lattices with un-program, “Physics of colloidal dispersions in external
equal lattice constants. Moreover, an increasg icauses a fields.” We thank S. Dietrich, J. J. Weis, S. Odenbach, and R.
slight expansion of the domain of stability of the rectangular\jessina for helpful discussions.

phase towards higher densities.

APPENDIX: THE HAMILTONIAN OF TWO MAGNETIC
V. CONCLUSIONS (ELECTRIC ) DIPOLES IN A SPATIALLY

. . INHOMOGENEOUS EXTERNAL FIELD
In conclusion, we have calculated the phase diagram of a

two-dimensional suspension of superparamagnetic colloids In this appendix we derive the formula of potential energy
in a tilted external magnetic field in the limit where thermal of two polarizable permeabl@ielectrig objects placed in
fluctuations are small. Depending on the tilt angle and theexternal magnetic¢electrig fields.
particle concentration, we find a wealth of different stable As a first step, let us consider the situation in which an
two-dimensional crystal lattices including rectangular, ob-object of finite volumeV; and magnetic permeability is
lique, chainlike oblique, and rhombic structures. These preintroduced into a magnetic fieB(r) in a linear medium of
dicted structures should be verified in experimental investiiagnetic permeability.,. We assume that the object is neu-
gations and could be interesting to fabricate nanosievettal and there are no external current densities. Affected by
the field, the object becomes polarized, forming a magnetic

90 . — : . : : . 7 dipole and changing the field froBg(r) to B’(r) in all
80 triangular ﬁ ‘ space. The total energy of such a syster{35
] A
//,i
. 1
u’:—f B'-H'd%, (A1)
| 8w
% ] where the integration is performed over the whole space. The
= obliue] qguantityu’ can be rewritten as
(=g
o N r—! ! B0
20 rectangular chain-like oblique @ . ! ! * 2 u ,
T th¢mbic 1
10 1 where we have introduced the notatidis |5, andu®o as
EII
¢ o1 oz o3 04 05 06 07 08 09 1 ' ' 3
‘ . - B - . . |1:8_7r (B"=Bg)-(H'+Hg)d"r,

FIG. 9. The phase diagram in the*(,¢) plane at magnetic field

— ; ; e i 1
§trepgthx—0.001. The meaning of the various lines is the same as = f (Bo-H' =B’ -H)d®r,
in Fig. 4. 8
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5 1 5 andu’ is given by Eq.(Al).
u~o= QJ Bo- Hod"r. (A2) The integrall ; vanishes by the same argument &s The
integral I, is zero within the volumé/, and in the space

The integrall | vanishes by the following argument. Since outsideV; and V,, sinceH’=B'/u;, H=B/u;, wherei
there are no free currentapart from the fixed currents pro- =0,1. 12 remains nonzero only within the volun& where
ducing the initial fieldB,), we have from the magnetostatics H' =B’/ o andH=B/u,. Therefore we have
Maxwell equations thaW XH’'=0. Therefore, a magnetic 1 1/1 1
scalar potentiakby, can be introducedH’=—-Vd,,. Ex- |2:__f _(___)B.BrdSr.
pressing the integrand df throughV®,, and performing 2Jv, AT\ o 2
integration by parts, one obtains tHat&=0.

Let us now calculaté; by splitting the integration space
into V; and the outer volume o¥,. Since the medium is
linear in its magnetic properties, we have the following rela-
tions: inside the volumé&/;, Hy=By/ug, H'=B'/uq, and
outside the volume/;, Ho=By/uo, H' =B’/ . As a re- B (r,):f 3[Ml(r)'n]n_M1(r)d3r
sult, the nonvanishing part of the integigl remains only ! vy [r—r'|3 '
over the voluméV/:

The magnetizatioM ,(r) of the second object is defined
asM,=(1/47r)(1—1/u,)B. The field outside the volum€,
is B’ =B+ By , with the magnetic dipole field

obtained as the dipolar contribution in the multipole expan-
, 1 1/1 1) &3 — uiBo sion[39], which can be applied for large separations as com-
'2__§LE %_Z B"-Bod r=u™. pared to the linear size of the object. Heme=(r—r")/
! [r—r’|. Thus we have
We introduce new notation®®o in order to make clear
the physical meaning of the integrb). In free spaceu,
=1. Making use of the definition of the magnetizati@9],
M, = (1/47)(1—1/u,)B’, we rewriteu®Bo as

| ,=u%9+ y%Bo,

whereu®®o s the dipole-field interaction energy,

1 d,B 1 3
u%Bo= — —f M- Bod®r. (A3) umte=—3 M- Bod®r (A4)
2 2 Va
dd ; : : ; - :
Thus, the energy of the system “external fieldpolarizable ~@ndu™ is the dipole-dipole interaction energy:
object” reads as
1
u’ =u%Bo+ yBo, udd:—f dir | d3’
2)v, Va

whereu®® [Eq. (A3)] is the energy of interaction between

the magnetic dipol®,(r) and the fieldBy(r), andu® [Eq. X Ma(r)-Ma(r’) = 3[My(r) - nJ[Ma(r )~n].

(A2)] is the initial magnetostatic energy. lr—r’|3

At the second step of our derivation, we place an object of (A5)
volumeV, and magnetic permeability, into the magnetic
field B'(r), which is the field considered aboyen the pres- Collecting all necessary terms, we finally obtain the en-

ence of one permeable object. Introducing a second objeelrgy u of two polarizable objects of finite arbitrary geom-

will change the field fronB’(r) to B(r). The energy of such etries in external spatially inhomogeneous magnetic fields as
a system is

1 u=u%4 y%Bo+ y%Bo+ yBo, (AB)
u=— J B-Hd3r.
8w where the dipole-dipole interaction energ$, the dipole-
, field interaction energiea®® (i=1,2) and initial field en-
We expressi throughly, I, andu’ as ergy uBo are specified by EqSA5), (A3), (A4), and(A2).
Note that the factor 1/2 in Eq$A3)—(A5) is traced to the

u=lytlz+u’, linear relation betwee and B and acquires its physical
where explanation from the fact that the di_poles are not permanent
but rather induced by the external field.
1 For the case of pointlike dipoles and making use of the
|1=gj (B—B’)-(H+H")d®, magnetic moment definition
[ 1 , N3 m:J’ M;(r)d3r
2—gJ(B'H—B'H)dF, =], Minr,
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Eq. (A5) reduces to Eq(l). same approach as for magnetostatics above. The result one
The expression for the energy of two polarizable dielec-obtains are EqgA2)—(A6), where the place of the magnetic

trics in external electric field can be readily derived makingfields B, H, and magnetizatioM will be taken by the elec-

use of the electrostatic Maxwell equations and following thetric fields E, D, and polarizatiorP, respectively.
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