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Reentrant Transitions in Colloidal or Dusty Plasma Bilayers
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The phase diagram of crystalline bilayers of particles interacting via a Yukawa potential is calculated
for arbitrary screening lengths and particle densities. Staggered rectangular, square, rhombic, and
triangular structures are found to be stable including a first-order transition between two different
rhombic structures. For varied screening length at fixed density, one of these rhombic phases exhibits
both a single and even a double reentrant transition. Our predictions can be verified experimentally in
strongly confined charged colloidal suspensions or dusty plasma bilayers.
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variety of different staggered solid lattices to be stable
which are separated by either first- or second-order phase

energy scale is set by V0 alone and phase transitions in
large bilayer systems are completely determined by two
Confined systems exhibit structural and dynamical
behavior very much different from the corresponding
bulk state [1,2]. In particular, freezing is strongly af-
fected by the presence of a planar wall. In equilibrium,
solidification near walls can occur at thermodynamic
conditions where the bulk is still fluid (so-called ‘‘pre-
freezing’’) [3,4]. In nonequilibrium, the wall may act as a
center of heterogeneous nucleation [5] in order to initiate
crystal growth [6]. A system confined between two par-
allel planar walls exhibits various layered crystalline
states at low temperature if the plate distance gets com-
parable to the mean interparticle distance. For hard
spheres between hard plates, geometric packing consid-
erations lead to the stability of different crystalline latti-
ces including multiple square and hexagonal layers [7] as
well as buckled [8], rhombic [8,9], and prism superlattices
[10]. On the other hand, for pure Coulombic systems such
as (classical) electrons in quantum wells [11] or trapped
ions [12], several crystalline bilayer structures were re-
ported [13].

Most of our experimental knowledge of freezing in
confining slitlike geometry is based on real-space mea-
surements of mesoscopic model systems such as charged
colloidal suspensions between glass plates [7,10] or of
multilayers of highly charged dusty plasmas [14]. The
actual interaction between these mesoscopic ‘‘macroions’’
is neither hard-sphere-like nor pure Coulombic but is
described by an intermediate screened Coulomb or
Yukawa pair potential [15,16] due to the screening via
additional microions in the system. The screening length
can be tailored by changing the microion concentration:
For charged colloids, salt ions are conveniently added to
the aqueous suspensions; the complex plasma, on the
other hand, consists of electrons and impurity ions.

In the present Letter, we study the stability of different
crystal lattices in bilayers of Yukawa particles as moti-
vated by the experimental model systems. The zero-
temperature phase diagram is calculated for arbitrary
screening lengths and particle densities [17]. We find a
0031-9007=03=91(14)=146101(4)$20.00 
transitions. The two known extreme limits of zero or
infinite screening length corresponding to hard spheres
[9] and the plasma [13,18] are recovered. For intermediate
screening lengths, the phase behavior is strikingly differ-
ent from a simple interpolation between these two limits.
First, there is a first-order coexistence between two differ-
ent staggered rhombic lattices differing in their relative
shift of the two unit cells. Second, one of these staggered
rhombic phases exhibits a novel reentrant effect for fixed
density and varied screening length. Depending on the
density, the reentrant transition can proceed via a stag-
gered square or a staggered triangular solid including
even a double reentrant transition of the rhombic phase.
All of our theoretical predictions can, in principle, be
verified in real-space studies of confined charged suspen-
sions or dusty plasmas.

In detail, our system consists of two layers containing
in total N particles in the �x; y� plane. The total area
density of the two layers is � � N=A with A denoting
the system area in the �x; y� plane. The distance D be-
tween the layers in the z direction is prescribed by the
external potential confining the system. The particles are
interacting via the Yukawa pair potential,

V�r� � V0
exp���r�

�r
; (1)

where r is the central separation. The inverse screening
length � which governs the range of the interaction is
given in terms of the microion concentration by Debye-
Hückel screening theory. The energy amplitude V0 �
Z2 exp�2�R��=��1� �R�2 scales with the square of the
charges Z of the particles of physical hard core radius R
[19] reduced by the dielectric � permittivity of the sol-
vent (� � 1 for the dusty plasma). Typically, Z is of the
order of 100–100 000 elementary charges such that V�r�
at typical interparticle distances can be much larger
than the thermal energy kBT at room temperature justify-
ing formally zero-temperature calculations. Then the
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dimensionless parameters, namely, the reduced layer den-
sity � � �D2=2 and the relative screening strength � �
�D. For zero temperature, the stable state is solid but
different crystalline structures of the bilayers are con-
ceivable. As possible candidate structures, we assume that
the two two-dimensional periodic lattices in the bilayers
are the same, have a simple unit cell, and are shifted
relative to each other in the lateral direction by a displace-
ment vector c. If the two layers are labeled with A and B,
the particle positions in the �x; y� plane of the two layers
are given by

RA�m; n� � ma1 � na2; RB�m; n� � ma1 � na2 � c;

(2)

where a1 and a2 are the primitive vectors of the two-
dimensional lattice and m; n are integers. The total inter-
nal energy U is obtained by the double lattice sum,

U �
1

2

X

RA�R0
A

V�jRA �R0
Aj� �

1

2

X

RB�R0
B

V�jRB �R0
Bj�

�
X

RA;RB

V��jRA �RBj
2 �D2	1=2�: (3)

In the limit N ! 1, the stable crystalline structure mini-
mizes the total internal energy per particle U=N.

We have minimized U=N with respect to a1, a2, and c
under the constraint of prescribed density � for given �
mapping out the phase diagram in the ���� plane. As a
result, five typical staggered lattice structures turn out to
minimize U=N for different �. Adopting the notation
developed for plasma bilayers [18], we label them by I,
II, III, IV, and V. As summarized in Table I, phase I is the
staggered rectangular crystal with a fixed aspect ratio
a2=a1 of

���
3

p
; phase II is also staggered rectangular but

with a different aspect ratio � interpolating continuously
between phase I and the staggered-square phase III where
a2=a1 � 1. The staggered rhombic phase IV has two
nonorthogonal lattice unit vectors (a1 and a2) forming
an angle � and contains a general lateral shift c � ��a1 �
a2� between the two rhombic lattices. In fact, we find two
possibilities for � defining two variants of stable rhombic
phases which we call IVA and IVB. For IVA, � � 1=2
TABLE I. Structure and parameters of the different stag-
gered bilayer crystals. a1 is set to �a1; 0�, where a1 is the nearest
intralayer distance between particles. For phase II, � � a2=a1
is the aspect ratio. For phase IV, � is the angle between a1 and
a2, and � is a free parameter characterizing the relative lateral
interlattice shift c.

Phase a2=a1 c �a21=2

I. Rectangular �0;
���
3

p
� �a1 � a2�=2 1=

���
3

p

II. Rectangular �0; �� �a1 � a2�=2 �
III. Square (0,1) �a1 � a2�=2 1
IV. Rhombic �cos�; sin�� �a1 � a2�� 1= sin�
V. Triangular �1=2;

���
3

p
=2� �a1 � a2�=3 2=

���
3

p
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while �< 1=2 for IVB. Finally, phase V is a staggered
triangular crystal. Both phases III and V can be consid-
ered as special cases of the rhombic phase IV; the former
has � � �=2 and � � 1=2 while the latter is character-
ized by � � �=3 and � � 1=3.

The result for the phase diagram for a wide range of
screening strengths (0  �  100; � ! 1) and densities
(0  �  0:8) is shown in Fig. 1. At very low screening
�, we recover the known plasma limit [18], with our
labeling of the phases being in line with their sequence
0.5 0.52 0.54 0.56 0.58 0.6
η

0.00

FIG. 1 (color online). Phase diagram of the Yukawa bilayer in
the ��; �� plane. (a) The hard sphere limit � ! 1 is sketched
on top. The dashed (solid) lines denote continuous (discontinu-
ous) transitions. The filled region corresponds to the coexis-
tence domain of phases IV and V. The vertical arrow indicates
the double reentrant behavior of phase IVA. The insets show the
lattice geometries, where the filled (open) circles correspond to
the lower (upper) layer. (b) Magnification of (a) showing a
reentrant behavior of phase IVA occurring at moderate �. The
four diamonds along the arrow indicate state points which were
investigated by computer simulation at finite temperatures.
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for increasing density �. Phase I has a finite but extremely
small density region of stability up to � � 3:6� 10�5 at
� � 0 [18]. For finite �, the I ! II transition stays second
order and occurs at even smaller densities which decrease
monotonically to zero as a function of � until the hard-
sphere limit � ! 1 is reached. In this latter case, a1 is
playing the role of an effective particle diameter. This is
sketched by the vertical line in Fig. 1. The II ! III tran-
sition is second order and the transition densities increase
drastically with growing � and interpolating monotoni-
cally between the plasma and hard-sphere limit. More
details of the I ! II ! III transition scenario are de-
picted in Fig. 2 where the aspect ratio � of phase II is
shown versus � for different �. Phases I and III corre-
spond to � �

���
3

p
and � � 1, respectively. As can be

clearly deduced from Fig. 2, the aspect ratio � interpo-
lates continuously as a function of � between

���
3

p
and 1 for

any � such that both the I ! II and the II ! III transitions
are second order. In the hard-sphere limit, � approaches
�hs � �2��

�����������������
4�2 � 3

p
continuously which is also

shown in Fig. 2.
Novel effects are observed for the III ! IV ! V tran-

sitions. First, for small �, the III ! V transition proceeds
via a IVA phase, the former being second order, and the
latter first order. For � � 8, however, there is a strong first-
order transition directly from III toV with a large density
jump as determined by Maxwell’s construction [20]. For
even higher screening, � * 30, the III ! V transition
happens via the cascade III ! VIA ! IVB ! V. The
stability range of the IVA phase becomes smaller for
increasing � shrinking to zero in the hard-sphere limit.
Details of the III ! V transition scenario can be detected
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FIG. 2 (color online). Aspect ratio � � a2=a1 for phase II
versus density � for different screening strengths �. The hard
sphere case �hs is also shown. The lattice geometry is shown as
an inset, where the filled (open) circles correspond to the lower
(upper) layer.
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via the order parameters sin� and � of the lattice mini-
mizing the total potential energy at prescribed density �.
Plotting sin� and � versus � reveals the order of the
transitions (see Fig. 3): A cusp, which is found for the
III ! IVA transformation, implies a second-order tran-
sition. All other transitions are first order as signaled by
discontinuous jumps in at least one of these order pa-
rameters. The corresponding coexistence density gap is
not shown in Fig. 3 but included in Fig. 1(a). Across the
IVA ! IVB transition, the order parameter jump is small
yielding a tiny density gap which cannot be resolved in
Fig. 1(a).

Our most striking result is reentrant behavior of the
IVA phase at fixed density upon varying � as indicated in
Fig. 1 by the vertical arrow. For 0:5<�< 0:525, there is
reentrance of the VIA phase via the III phase. The
full sequence over the whole range of � is IVA !
III ! IVA ! IVB. For 0:530<�< 0:536, there is even
a double reentrant behavior of the VIA phase via the
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FIG. 3 (color online). (a) Sine of the angle � and (b) the
relative shift parameter � � c=‘ (with ‘ � ja1 � a2j) versus
density regarding the III ! IV ! V transition scenario for
different �. The insets show the lattice geometry of phase IV.
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sequence IVA ! V ! IVA ! III ! IVA ! IVB. This
rich scenario is due to a subtle interplay of the range of
the interaction in conjunction with the different bilayer
lattice structures. Finally, at finite temperatures T, we
performed extensive Monte Carlo computer simulations
with 800 particles in a rectangular-shaped box periodi-
cally repeated in the x and y directions and with hard
walls of distance D in the z direction allowing fluctuating
z positions of the particles (‘‘buckling’’). For fixed � �
0:533, we investigated four states at � � 0:5, 3.0, 8.2, 10
[see the four diamonds along the arrow in Fig. 1(b)] for
different T up to melting. The melting point is detected
via a modified Lindemann-type criterion involving dif-
ferences of mean-square displacements of nearest neigh-
bors [13]. We confirm that the reentrant behavior is stable
with respect to increasing T up to melting.

In summary, we have calculated the full phase diagram
for a Yukawa bilayer at zero temperature by lattice sum
minimizations. A competition between three length
scales, namely, the bilayer distance D, the averaged par-
ticle distance ��1=2, and the range 1=� of the interaction,
induces a rich phase behavior which is different from a
simple interpolation of the extreme limits of the confined
plasma and the hard-sphere system. We predict a coex-
istence of two different rhombic phases at finite screening
and a single and double reentrant scenario for one of the
rhombic phases for varied ‘‘softness’’ of the interaction.
These effects are in principle detectable in real-space
experiments of charged colloidal suspensions confined
between plates and in layers of dusty plasmas by tuning
the screening strength via the microion concentration. The
reentrant effect as obtained here in equilibrium should
also manifest itself as an interesting fingerprint in non-
equilibrium situations. For example, bilayer crystal nu-
cleation and growth could be greatly stimulated via
structures which are energetically close to the stable
ones [21]. Soft particle interactions different from the
Yukawa type of Eq. (1), as, e.g., inverse power potentials
where V�r� / r�n, will lead to similar reentrant effects as
long as the softness of the potential (e.g., the exponent n)
is varied. Different realizations of soft interactions occur
in sterically stabilized colloids, in spherical block-
copolymer micelles, and in star polymers and den-
drimers, where the softness of the effective interaction
can be tuned by the length and grafting density of the
polymer chains or the solvent quality [22]. Hence, the
reentrant scenario should also occur in foam films con-
taining polymer bilayers [23]. Finally, for a general ex-
ternal potential confining the particles to layers, the
bilayer distance D is not prescribed but the system will
minimize its total energy realizing an optimal D. In this
case, second-order phase transitions will still be de-
scribed in terms of scaled parameters. This implies a
universal behavior of our bilayer phase diagram. In a
general external potential, however, the system has the
146101-4
additional possibility to split into tri- and higher-order
multilayers. This can happen either discontinuously or
continuously via merging prism phases. Details have to
be explored in future studies.
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