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Azimuthal Frustration and Bundling in Columnar DNA Aggregates

H. M. Harreis, C. N. Likos, and H. Löwen
Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany

ABSTRACT The interaction between two stiff parallel DNA molecules is discussed using linear Debye-Hückel screening
theory with and without inclusion of the dielectric discontinuity at the DNA surface, taking into account the helical symmetry of
DNA. The pair potential furthermore includes the amount and distribution of counterions adsorbed on the DNA surface. The
interaction does not only depend on the interaxial separation of two DNA molecules, but also on their azimuthal orientation. The
optimal mutual azimuthal angle is a function of the DNA-DNA interaxial separation, which leads to azimuthal frustrations in an
aggregate. On the basis of the pair potential, the positional and orientational order in columnar B-DNA assemblies in solution is
investigated. Phase diagrams are calculated using lattice sums supplemented with the entropic contributions of the counterions
in solution. A variety of positionally and azimuthally ordered phases and bundling transitions is predicted, which strongly depend
on the counterion adsorption patterns.

INTRODUCTION

Many biological systems contain densely packed DNA

assemblies, as, for example viral phage heads and sperm. For

the proper functioning of these biological systems, including

humans, it is of extreme importance that the mechanisms

carrying out the packaging of DNA in the cell work in

a robust manner, since, for example, it is believed that DNA

packing in chromatin plays an important role in gene

regulation (Wolffe, 1992). In light of the rapidly growing

field of gene therapy it is of great interest to understand the

mechanisms actually responsible in living organisms for

condensing DNA into densely packaged assemblies. The

first step to this end is a model of DNA which is able to

capture its most significant characteristics, with the second

step consisting of devising a theory for DNA assemblies. In

the last few years, many efforts have been made on the

theoretical side to understand the interaction of two DNA

molecules and DNA condensation with a variety of methods,

including molecular dynamics and Brownian dynamics

simulations (Grønbech Jensen et al., 1997; Kornyshev and

Leikin, 1997; Ha and Liu, 1997; Podgornik and Parsegian,

1998; Shklovskii, 1999; Kornyshev and Leikin, 1999; Sottas

et al., 1999; Nguyen et al., 2000; Allahyarov and Löwen,

2000; Ha and Liu, 2001). The matter is complicated by the

fact that due to its chemical structure DNA is a helical

molecule, rendering solutions for the DNA-DNA interaction

considerably complicated. Moreover, the overall electro-

neutrality condition dictates that counterions be present in

the solution, and the latter screen the electrostatic repulsion

between the DNA rods. Only far from their axes can DNA

molecules be apprehended as uniformly charged cylinders:

this is the simplest approximation possible in an investiga-

tion of the DNA-DNA interaction and one that neglects the

helical symmetry completely (see, for example, Grønbech

Jensen et al., 1997; Levin et al., 1999; Hansen and Löwen,

2000; Levin, 2002; Strey et al., 1999, 1997; Oosawa, 1971;

Stigter, 1977; Manning, 1978; Frank-Kamenetskii et al.,

1987; and references therein). It has to be expected that such

an approximation works well for distances much larger than

the scale of the helical symmetry of the DNA molecule, R�
H, whereH� 3.4 nm is the DNA pitch length. This approach

amounts to calculating the interaction of two homogene-

ously charged cylinders, whereby the continuously smeared

charges along the cylinders create an electrostatic repulsion

of two DNA molecules (exponentially screened by the

electrolyte). Indeed, predictions for force-distance curves

on the grounds of a traditional Derjaguin-Landau-Verwey-

Overbeek theory for homogeneously charged cylinders

turned out to be accurate for separations larger than several

nanometers, whereas significant deviations in the biologi-

cally more relevant range of smaller separations (Kornyshev

and Leikin, 1997) emerged. It can be concluded that apart

from investigations where only the far-field behavior is of

importance, it is crucial to consider the helical symmetry of

DNAmolecules, since the interaction potential in the relevant

regime of intermediate distances is dramatically changed by

the presence of a highly inhomogeneous charge distribution.

An additional effect is provided by the fact that DNA is

a polyelectrolyte molecule; in an aqueous solution, its

cations dissolve into the solution, leaving behind a negatively

charged DNA phosphate backbone. A major fraction of the

cations condenses in the Bjerrum layer (Manning, 1978)

around the molecular surface. With cations specifically

adsorbing onto the DNA surface present in the solution,

however, the scenario changes; the DNA molecules can be

fully neutralized (Wilson and Bloomfield, 1979; Widom and

Baldwin, 1980; Heath and Schurr, 1992) or even over-

charged (Pelta et al., 1996). The interaction potential is thus

additionally influenced by the amount and type of counter-

ions present in the solution.
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To condense DNA in an aggregate, either osmotic stress

(Rau et al., 1984) or counterions specifically adsorbing on

DNA have to be applied as condensing agents (Bloomfield,

1996). The latter can be, e.g., salts with Mn21, Cd21,

spermidin, protamine, or cobalt hexammine (Bloomfield,

1996) cations, which are known to preferentially adsorb in

the DNA grooves (Tajmir-Riahi et al., 1993; Fita et al., 1983;

Hud et al., 1994; Shui et al., 1998). The sensitivity to the type

of counterion for DNA aggregation (Bloomfield, 1996) is

manifest in the fact that other counterions, such as, e.g., Ca21

or Mg21, which are known to exhibit a high affinity to

phosphates and thus predominantly adsorb on the strands,

do not induce DNA aggregation. A model should thus

incorporate/reproduce these subtle effects and be able to

explain the mesomorphism (Podgornik et al., 1998) of DNA

aggregates stemming from the presence of different types of

counterions.

Once the interaction of DNA molecules is derived by

means of some theory, one can turn to the next step and

calculate the properties of DNA assemblies. The structural

organization and properties of such condensates in vivo are

largely unknown but have been, in the last several years,

under investigation in in vitro experiments (Robinson, 1961;

Wilson and Bloomfield, 1979; Livolant and Bouligand,

1986; Livolant, 1991; Rau and Parsegian, 1992a,b; Rill et al.,

1991; Ma and Bloomfield, 1994). Simple model systems

able to predict the spatial as well as the orientational struc-

ture of these condensates are highly desirable for a better

elucidation of the mechanisms occurring in vivo. Previous

work has shown (Kornyshev and Leikin, 1998a) that it is

a reasonable approximation/simplification to focus on co-

lumnar assemblies, neglecting possible tilting effects, as we

will explain later. Most of the work relied on approximating

DNA as homogeneously charged rods (Grønbech Jensen

et al., 1997; Ha and Liu, 1997; Podgornik and Parsegian,

1998; Shklovskii, 1999; Nguyen et al., 2000). Only when

taking into account, however, the helicity of DNA mole-

cules, a relevant feature for the properties of such a columnar

DNA assembly emerges: a nontrivial interplay between the

torsional and translational degrees of freedom.

A mean-field calculation of this problem was presented in

Lorman et al. (2001), whereas the full statistical mechanical

problem of columnar DNA assemblies was recently solved

in Harreis et al. (2002) using a pair potential for the DNA-

DNA interaction devised in Kornyshev and Leikin (1997).

The motivation for the present article is twofold: first, we

give more details and background for the calculations

already published in Harreis et al. (2002). In this work, it

was found that the dependence of the optimal azimuthal

orientation angle of two DNA molecules on their inter-

axial separation gives rise to azimuthal frustrations in an

aggregate, thereby inducing phase transitions between

different ordered orientational structures. Furthermore,

depending on the type and amount of counterions condensed

on the DNA surface, strong attractions were found, resulting

in DNA bundling transitions. More importantly, the second

motivation for the present work is to discuss the effect of

discretized charges along the DNA strands and the effect of

the dielectric jump at the DNA surface on the phase

behavior. We find that although the phase boundaries shift

quantitatively, especially at high densities, the global

topology of the phase diagrams remains unaffected. This

gives evidence for the fact that the topology of the phase

diagram itself is generic, i.e., will be stable also with respect

to further changes in the interaction, including, for example,

hydration forces that are sometimes modeled through

a distance-dependent dielectric constant eð~rrÞ (Lee et al.,

2002).

THE MODEL

DNA is a helical biomolecule with two charged phosphate strands helically

winding around a core region consisting of nucleotide basepairs. The two

strands are not symmetrically distributed around the molecule’s core region,

but rather are separated by an azimuthal angle of 2f̃s � 0.8 p, see Fig. 1

for an illustration. Under physiological conditions, DNA is present in the

B-DNA conformation, a right-handed helical molecule (Saenger, 1984). In

B-DNA, there are N ¼ 10 nucleotides per helical turn with a helical

pitch length of H� 34 Å. Each nucleotide contains a negatively charged

phosphate group, giving rise to a total charge of q ¼ �10 e per helical pitch,

which translates into a surface charge density of s¼ 16.8mC/cm2. To model

the interaction, we envision the molecules as long, rigid cylinders with

a hard-core radius of a ¼ 9 Å. Strictly speaking, this approximation is only

appropriate for DNA fragments of contour lengths up to the persistence

FIGURE 1 Illustration of two model DNA molecules at an interaxial

separation R. The molecules are assumed to be rigid, long cylinders of radius

a with a helical pitch length of H � 34 Å. In between the two DNA helices

a major and a minor groove are formed, due to the asymmetry in the

azimuthal angle between the two helices, 2fs � 0.8. See text and Fig. 2 for

an explanation of the angles f1 and f2.
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length Lp, which is typically found to be 500 Å–1000 Å (depending on the

ionic strength; see Kornyshev and Leikin, 2000). Samples of parallel packed

arrays have, however, been prepared for contour lengths of up to 100 Lp
(Rau et al., 1984; Podgornik et al., 1996). In our model the phosphate

backbone is accounted for by continuous helical line charges located on the

surface of the DNA hard-core cylinder. We also calculated pair interactions

for discrete charge patterns on the DNA surface, as we will discuss in detail

later. Each DNA duplex furthermore carries a compensating positive charge

stemming from the adsorbed counterions, which are modeled in the same

way as the phosphate backbone as continuous line charges. The degree of

charge compensation will be referred to as 0\ u\1, whereas the fractions

of condensed counterions in the minor and major grooves, and on the two

strands, are accounted for by f1, f2, and f3, respectively, where f1 1 f2 1 f3 ¼
1 holds. The nonadsorbed, mobile counterions in solution screen the

Coulomb interactions between the helices, causing at large separations an

exponential decay of the latter with the Debye screening length k�1.

We wish, at this point, to discuss advantages and drawbacks of the

present model that is characterized by a Debye-Hückel approach combined

with the ion condensation model. Quite generally speaking, the two great

advantages of the resulting Yukawa-type interaction are its great simplicity

and its remarkable flexibility. Although not all situations, especially those of

small separations might be accurately described quantitatively, possible

deviations can be compensated by introducing the concept of effective,

renormalized charges, as has been shown, for example, in Löwen (1994a). In

the specific case of DNA-DNA interactions, previous work (Allahyarov and

Löwen, 2000) has investigated the question of DNA-DNA interaction in the

framework of the primitive model of electrolytes. The authors thereby relied

on microscopically resolved molecular dynamics simulations. The DNA

molecules were modeled, as in the present study, as rigid cylinders having all

structural parameters of B-DNA. More specifically, in the reference cited,

the double helical charge pattern was incorporated via discrete charges

exhibiting an effective diameter, placed on the cylindrical surfaces of the

DNA molecules. The solvent was accounted for by its dielectric constant (e)

as in the present work, but counter- and salt ions were explicitly included. It

has been found in this reference that Yukawa-like effective interactions,

resulting from a canonical tracing out of the microions, are capable of

describing the potentials for DNA interaxial separations R [ 25 Å. The

authors furthermore showed that the behavior for interaxial separations R\
25 Å could be equally well described by a Yukawa potential; nevertheless,

a different, separation-dependent effective charge has to be introduced for

this range. To quantitatively reproduce the DNA-DNA pair potential, one is

thus dealing with a Yukawa potential with a distant-dependent effective

charge which saturates for R[25 Å. It will, in general, be different from the

input value of the Yukawa segment model as employed in the present work.

It has thus to be expected that the R-dependent part of the pair interaction as

shown in the present work will be affected by this charge renormalization.

The angular part of the interaction will not be influenced, however, except

for a scaling by an overall trivial factor, since the interaction is short-ranged

and, as will be shown in what follows, the phase behavior is dominated by

the nearest-neighbor interactions. The most important predictions of this

study will not be affected: it is the location of the minimal azimuthal

orientational angle between two DNA molecules that governs the

frustrations and thus the equilibrium structure in the DNA aggregate.

Furthermore, the phase diagrams in the case of repulsive interactions exhibit

very small density jumps at the phase transitions, implying that the same

effective charge, thus the same pair potential, can be employed in both

phases. Although the absolute values of the free energies of the various

phases will be affected by charge renormalization, the comparisons between

those, and hence the location of the phase boundaries, will not. In the case of

attractive interactions between two DNA molecules, the attractions occur

only at a specific mutual azimuthal orientation. Since, as we have argued

above, the latter remains unmodified by charge renormalization, it can be

concluded that the same statement holds for the phase diagrams caused by

these attractions. We could, as we will discuss in the following sections,

furthermore illustrate that the predicted phase diagrams are, in their essential

features, qualitatively robust against variations of the underlying pair

potential, such as inclusion/exclusion of the dielectric jump at the DNA

surface. We thus have good grounds to believe that although corrections to

the pair potential are necessary, the predictions regarding macroscopic

behavior are robust. Thus, the current approach captures the essential

physics governing the biological phenomena at hand.

In our model, we study formally the two extreme cases of dielectric

constants e1and e in the DNA core and in the solvent, respectively. The first

case is thatweassumenodielectric jumpat all,e/e1¼1,whereas theother limit

is e/e1¼‘. In thefirst case, it ismore convenient to formulate the interaction in

terms of a Yukawa-segment model, whereas the second case has been

elaborated in a practical form by Kornyshev and Leikin (1999). The

motivation to study different e/e1 is to check effects of the discontinuity

formally. In reality one would expect e/e1�‘ since the dielectric constant of

bulkwater isveryhigh.Close to theDNAsurfaces,however, it is not at all clear

whether the effect of a dielectric discontinuity as described by macroscopic

electrostatics is justified. More realistic dielectric effects were taken into

account by a space-dependent dielectric constant eð~rrÞ (Lado et al., 1998). One
could surmise that if the resulting interaction and phase behavior is similar for

the two limiting cases e/e1¼1and e/e1¼‘, dielectric effects on thismolecular

scale are not actually very important at all. This in turn gives evidence for at

least qualitative stability of our results under application of more realistic

interactions stemming from more refined molecular calculations.

The main characteristics of the model DNA molecules are illustrated in

Fig. 1. For clarity, possible condensed counterion strands have been omitted

in the illustration. The azimuthal orientation of molecule i is referred to by its
azimuthal angle fi, which is defined in the following way. A plane (shaded

gray in Fig. 1) perpendicular to the parallel axes of the two DNA molecules

hits the dark colored 59–39 strand (Sinden, 1994) of eachmolecule at the point

indicated by the vector originating from molecule’s i axis, which we may

formally call spin. The angle fi formed by this vector and some arbitrary

reference direction on the plane, taken, for clarity, to be the vector connecting

the two molecules’ axes, is the azimuthal orientation angle of molecule i. We

assume that the DNA molecules are parallel, as depicted in Fig. 1, which is

justified by reasons given in A Theory for DNA Assemblies. If we

furthermore assume the molecules to be infinitely long and their charge

distributions to be described by helical line charges as illustrated in Fig. 1,

their mutual state can be described by two parameters: their interaxial

separation R as well as their mutual azimuthal orientation, f¼ f1� f2. The

problem thus reduces to an effective two-dimensional problem of x-y spins

interacting via a potential U(R,f). We further illustrate this point in Fig. 2,

which depicts the gray-shaded plane included in Fig. 1 inmore detail. It has to

be noted that the problem may only be viewed as effectively spatially two-

dimensional under the assumption of continuous line charges. For discrete

charge patterns, the orientationsf1 andf2 both enter the pair potential. Let us

assume discrete charges to illustrate the validity of this statement. The two

molecules shall be separated by a vectorR, as shown inFig. 2,withmolecule 1

at an angle f1 and molecule 2 at an angle f2 relative to R in a given plane P
that perpendicularly cuts the molecular axes. The points where the 59–39
strands of molecules 1 and 2 hit the plane P shall be denoted by p1 and p2,

FIGURE 2 A plane perpendicular to the parallel axes of two DNA

molecules separated by vector R hits the DNA strands denoted by the white

circles with a minus inside; 2f~s is the azimuthal width of the minor groove.

The vectors joining the axes with the points where the 59–39 strand (Sinden,
1994) hits the plane may be formally called spins. The angle f between the

two spins characterizes the mutual azimuthal orientation of the molecules.

Columnar DNA Aggregates 3609
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respectively. Both in p1 and p2 discrete charges are located as is the case in

Fig. 2. Were the interaction only to depend on the mutual azimuthal

orientation, f¼ f1 � f2, a configuration with both molecules turned by Df

should yield the same interaction. Obviously, after turning bothmolecules the

59–39 strands will hit P in new locations pn1 and p
n
2. This means altered charge

distances in the contribution of plane P to the total DNA-DNA interaction.

Since the total interaction is the sum of the contributions of all charges

(planes), the interaction might still be conserved if another plane along the

molecule contributed the same value after the rotation as P did before the

rotation and vice versa. The only plane capable to switch configurationwithP

through a rotation by Df is a plane P9 shifted by Dz¼H Df/2p relative to P
along the molecular axes. The 59–39 strands will then cut through P9 in p19¼
p1 and p29¼ p2.With a discrete charge pattern, however, chargeswill only be

located in p19 and p29 ifDz is commensurate with the rise of the charge pattern

along the molecular axes, or in other words, if Df¼ n 2p/N holds, with neN
andN the number of DNA charges per helical pitch and strand. If on the other

hand, continuous line charges are used, the original plane P and P9 are

equivalent without any further condition and contribute the same amount to

the interaction. The only requirement to bemet is that themolecules be at least

one helical pitch long, so that the existence of P9 is guaranteed. The mutual

azimuthal angle f can, for continuous line charges under the additional

condition of infinitely longmolecules, equivalently be thought of as a relative

vertical shift z¼ Hf/2p of the two molecules. We will come back to a more

detailed discussion on discrete charge patterns versus continuous line charges

at a later point in the next section.

THE PAIR POTENTIAL

As already sketched in the Introduction, the pair potential will

be considered under different assumptions concerning di-

electric jump and charge distributions. The approach is, on

a general level, based on the linear screening theory picture,

yielding a Yukawa-like, screened Coulomb interaction for

any pair of charges on the two molecules (Schneider et al.,

1985, 1986, 1987). We will first resort to considering the case

of no dielectric jump and refer to this situation as the Yukawa-
segment-model potential. The Yukawa-segment idea has

been tested against microion resolved simulations in Löwen

(1994a,b) and has been used for calculating dynamical

correlations in Tobacco-Mosaic Virus suspensions and phase

diagram calculations of the latter inKirchhoff et al. (1996) and

Graf and Löwen (1999), respectively. Here, the Yukawa-

segment approach furthermore allows for testing the influence

of a discrete charge pattern as opposed to continuous line

charges. The second case includes the dielectric jump at the

DNA surface, yet necessitates continuous line charges. We

will refer to it in the following as Kornyshev-Leikin potential.

Yukawa-segment-model potential

The canonical starting point for the Yukawa-segment-model

is to exactly mimic the discrete number of charges present in

real DNA molecules. The second generic case, opposed to

the former, is to assume the charge distributions to be

continuous line charges. Although the first approach might,

at first sight, seem superior to the latter, it has to be kept in

mind that the �real� charge distribution will definitely be not

pointlike, but rather smeared on the whole phosphate group,

two charges of which are closely neighbored, so that a

modulated continuous line charge distribution should be the

most realistic way of modeling the DNA charge distribution.

Such an approach, however, requires an input from quantum

chemical calculations and is therefore beyond the scope of

the present study. We will now first illustrate the general

approach to the calculation of the pair potential and then

come back to a discussion of the differences between the

discrete and the continuous charge distribution version.

We assume linear screening to act between any two charge

elements qi and qj on the continuous helical line charges

of the DNA molecules, yielding a Yukawa interaction

(Schneider et al., 1985, 1986, 1987),

VðrÞ ¼ qiqj

er
expð�krÞ: (1)

Here, k¼ l�1
D is the inverse Debye screening length and e¼

81 is the dielectric constant of the solvent (water). To access

the total pair interaction of two DNA molecules, we have

to integrate along each pair of interacting helical line

charges (strands) (or sum in the case of discrete charge

patterns).
Let molecule 1 be at the origin of the coordinate system

and molecule 2 at R ¼ Rx, see Fig. 2. In its most general

form, a helix, parameterized by its helical angle u,
furthermore depends on a set Pf g of additional parameters.

This set of parameters Pf g ¼ ða; l; ðrx; ryÞ; DuÞ consists

of the helix radius a, the helical rise l ¼ H/2p, the position
(rx,ry) of the helix axis in the x-y plane and the angular offset
Du of the helix, indicating where the helix starts to rise from

the x-y plane. Making use of the special conditions present in

our case, namely that we only consider molecules residing on

the x-axis and that all helices exhibit the same radius as well

as the same helical rise, Pf g can be reduced to only consist

of rx and Du, Pf g ¼ (rx,Du). The corresponding helix

parameterization for one single helix reads as

Hðu; fPgÞ ¼ ð2a cosu� rx; 2a sinu; lðu� DuÞÞ: (2)

The angular offset Du is set to f1 for the first strand on the

first molecule. Thereby the angular offsets of all other strands

involved are uniquely determined by the DNA geometry, for

example, the second DNA phosphate strand on molecule 1

has Du ¼ 2f̃s1f1, the counterion strand in the minor

groove is characterized by Du ¼ f̃s1f1 and the counterion

strand in the major groove has Du ¼ p � 2f̃s1f1 as

angular offset. The charge strands on molecule 2 follow the

same logic, except that their respective offsets have a term of

f2 instead of f1, since the rotation of molecule 2 has to be

accounted for; see again Fig. 2 for an illustration. The

interaction between one strand on molecule 1 and another

strand on molecule 2 is given by

U1;2ðR;fÞ ¼
ð
d
3
r d

3
r9du1 du2 V jr� r9jð Þ

3 d r�Hðu1; Pf g1Þð Þd r9�Hðu2; Pf g2Þð Þ;
(3)
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which is a diverging quantity, since the integral in Eq. 3

includes the two infinitely long strands. What we are inter-

ested in for our purpose is the interaction that segments of

a given length L experience. As the Yukawa-type interaction

between all charge segments decays exponentially and since,

due to the periodicity, all helical pitches are the same, we

may to this end, proceed in the following way. On molecule

1 one pitch length H serves as integration interval, whereas

on molecule 2 we integrate from �‘ to ‘. Practically, due to
the exponential decay in the potential, convergence of the

integral is obtained after a maximum of 10 pitch lengths H
has been integrated. The result is the interaction energy of

one pitch on strand 1 with the total length of molecule 2.

Multiplication of this quantity with the number of pitches

L/H to be taken into account for a length L yields the

interaction of a segment of length L on strand 1 with

a segment of length L on strand 2, whereby endpoint effects

are ignored via the integration from �‘ to ‘.
The total interaction of a segment of length L on molecule

1 with one on molecule 2, then, is the sum over the

interactions of all strands on molecule 1 with all strands on

molecule 2, including the DNA phosphate strands as well as

the condensed counterion strands:

UðR;fÞ ¼ +
i6¼j

Ui;jðR;fÞ; (4)

where the symbolic notation above implicitly assumes i to
be taken from the set of all strands on molecule 1 and j
correspondingly from molecule 2. Inserting the Yukawa-

segment interaction, Eq. 1 in Eq. 4 and carrying out the r and
r9 integrations in Eq. 3, together with the above consider-

ation on the integration intervals, yields the expression

UðR;fÞ ¼ L

H
+
i 6¼j

ð2p

0

ð‘

�‘

du1 du2

3
fifjðuNeÞ2

e
��Hðu1; Pf giÞ �Hðu2; Pf gjÞ

��
3 exp �k

��Hðu1; Pf giÞ �Hðu2; Pf gjÞ
��� �
: (5)

Here and in Eq. 4, the index i is taken from the set i2 {s1
(1), s2

(1),

c1
(1), c2

(1)} and j covers j 2 {s1
(2), s2

(2), c1
(2), c2

(2)}, whereas Pf gi
shows the dependence of the given strand on the specific

geometrical parameters determining its parameterization. By

sk
(l) the kth phosphate strand on the lth molecule is denoted,

whereas ck
(l) describes the corresponding counterion strand.

In sk
(l) the counterion strands which are condensed on the

phosphate strands are included, since they only trivially

renormalize the charge carried by the phosphate strands. This

enters into the charge fraction parameters fi and fj in the

following way:

f ð1Þ;ð2Þs1;s2 ¼ ð1� f3Þ (6)

f
ð1Þ;ð2Þ
c1 ¼ f1 (7)

f
ð1Þ;ð2Þ
c2 ¼ f2; (8)

where f1, f2, and f3 are the fractions of counterions condensed
in the minor and major grooves, and on the two strands,

respectively, satisfying f1 1 f2 1 f3 ¼ 1.

The differences of a discrete charge potential to a

continuous line charge potential can be estimated by tuning

the number of charges per pitch length, N. As we discussed
in The Model, for discrete charges the interaction does

depend on both molecules’ orientations f1 and f2 and not

only on the difference f ¼ f1 � f2 as it is the case for

continuous line charge distributions. For discrete charge

patterns, this opens up two different routes: The first and

simpler is to set f1 ¼ 0 and look at U(R,f1 ¼ 0,f2), whereas

the second and more refined one is to vary f1 and f2 to then

consider U(R,f) at f¼f91 � f92, where f91 and f92 have

been obtained as energetically optimal combination for

a given mutual azimuthal orientation f of the two DNA

molecules.

The first approach is taken in Fig. 3, where the pair

interaction per persistence length Lp, U(R,f1 ¼ 0,f2), is

displayed as a function of the azimuthal orientation angle f2

with f1¼ 0 fixed, at two fixed interaxial separations, R¼ 2.1

nm and R ¼ 2.5 nm, for N ¼ 10 and N ¼ 20 charges, as well

as for a continuous line charge. The counterion condensation

parameters are f1¼ 0.3, f2¼ 0.7, and f3 ¼ 0. It can be seen

that already for N ¼ 20 the obtained potential curve is

indistinguishable from that for the continuous line charge

potential at both interaxial separations. For N ¼ 10 charges,

on the other hand, deviations exist predominantly for R¼ 2.1

nm, but have decreased to a minuscule level for R ¼ 2.5 nm.

A more detailed structure of the pair potential as a function of

the azimuthal orientation is apparent for the smaller separa-

tion. The differences mainly pertain to the region around the

maximum and the two minima. The position of the global

minimum, however, the most important parameter for the

behavior in an assembly, is practically unchanged. This

assertion is only based on the observation of the potential at

two fixed interaxial separations. Its main point, however, is

sustained by the data shown in the inset of Fig. 4, where we

show the optimal azimuthal orientation angle f2,opt, again at

f1 ¼ 0 fixed, as a function of the DNA-DNA interaxial

separation R. The corresponding potential is shown in the

main graph of Fig. 4. The detailed behavior of the optimal

azimuthal alignment angle is different for N ¼ 10 charges

from that for N ¼ 20 charges and continuous line charges,

whereas the latter are indistinguishable from one another.

The key points for the behavior in an aggregate, however,

remain unchanged for all cases: first, the optimal angle is

nonzero for all interaxial separations smaller than R*� 30 Å

and second, for very small intersurface separations the

optimal angle is ;0.42 p.
The second approach to discrete charge patterns is to

calculate the interaction for all combinations of f1 and f2

and then to minimize the obtained potential energy on curves

Columnar DNA Aggregates 3611

Biophysical Journal 84(6) 3607–3623



of constant f¼ f1� f2. This is the more realistic version of

the approach shown above, yet it is still an approximation for

an aggregate since the optimized combinations of f1 and f2

for a given f will not be possible with respect to all

neighbors of a given DNA molecule. In Fig. 5 we compare

this approach for N ¼ 10 discrete charges at an interaxial

separation R¼ 2.1 nm with the one presented above and with

the continuous line charge version. We again have u ¼ 0.9,

f1 ¼ 0.3, f2 ¼ 0.7, and f3 ¼ 0 for the counterion condensation

parameters. The resulting potential curve is the lowest in

energy, as one should expect from the procedure applied.

The structure is close to the one induced by continuous line

charge distributions and the minima are found at exactly the

same loci as when keeping f1 fixed at f1 ¼ 0; they are thus

practically at the same positions as for the continuous line

charge version. Again, from the analysis of one single

interaxial separation we thus conjecture that the overall

behavior of the pair potential will not present significant

deviations from the reference continuous charge case. This

statement is confirmed by analyzing the inset of Fig. 6, where

we show the optimal azimuthal angles as a function of the

interaxial separation R for the three different approaches to

the charge distributions. Again, the dependence of the

optimal azimuthal angle on the interaxial distance is very

similar for the three cases studied, which will induce similar

angular frustration behavior in an assembly. In detail, the

optimal angle curve is closer to the one for a continuous

charge distribution in the case where both angles f1 and f2

are free to rotate and the energetically optimal combination

yielding the desiredmutual azimuthal orientationf¼f1�f2

is chosen, as compared to the case where f1 is set to zero.

As far as the behavior of the pair interaction at optimal

azimuthal angle, shown in the main graph of Fig. 6, is

concerned, both discrete charge versions fall on the same

line, which shows a deviating course from the continuous

version’s behavior in the close-interaxial separation regime,

whereas it approaches the continuous case’s curve fast for

larger R and both lines agree for R[ 25 Å. We repeated the

analysis of Figs. 5 and 6 for N ¼ 20 charges. Here, no

difference to the continuous charge distribution results could

be discerned.

We can thus conclude that, first, the behavior of a DNA

assembly will most probably not qualitatively differ for

a discrete charge model with the real DNA charge number

N ¼ 10 and a continuous line charge model. The results will,

however, in a quantitative manner depend on the underlying

pair potential, especially for high concentrations, since, in

Figs. 4 and 6 we found that for very close intersurface sepa-

rations the pair interactions differed for a discrete and a

continuous charge pattern on the DNA surface. Second, since

already for N ¼ 20 the results are indistinguishable from

the ones for continuous line charges, we can furthermore

surmise that a modulated continuous line charge distribution,

as briefly discussed above to be the most realistic model,

FIGURE 3 Yukawa-segment pair potential per length Lp as a function of the azimuthal orientation angle f2 with f1 ¼ 0 fixed, at interaxial separations (a)
R ¼ 2.1 nm and (b) R ¼ 2.5 nm, for u ¼ 0.9 and f1 ¼ 0.3, f2 ¼ 0.7, and f3 ¼ 0. At both interaxial separations the potential is displayed for N ¼ 10, N ¼ 20

charges as well as for continuous line charges.

FIGURE 4 Yukawa-segment pair potential per length Lp as a function of

the interaxial separation R of two DNA molecules, at the optimal angle

f2,opt(R), depicted for N¼ 10, N¼ 20 charges as well as for continuous line

charges. The dependence of the optimal angle on the interaxial separation R

is shown in the inset.
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would not significantly differ even on the level of the pair

potential. According to this reasoning, we will henceforth

focus on continuous line charges, thereby avoiding the

problem that for discrete charge patterns the potential de-

pends on both molecules’ azimuthal orientations f1 and f2,

which significantly complicates matter for the strict analysis

of an assembly.

Let us now investigate the effect of different amounts and

types of counterions adsorbed on the DNA molecular

surface. The type of counterion is herein modeled by the

ratio of adsorbed charges in the minor and major grooves, as

well as on the strands to the DNA phosphate backbone

charge. We restrict our analysis to the most relevant cases:

we will investigate u ¼ 0.9 (meaning that 90% of the DNA

charge is compensated by adsorbed counterions) with

counterions adsorbing predominantly in the major groove,

represented by charge fractions f1 ¼ 0.3, f2 ¼ 0.7, and f3 ¼ 0,

as well as with counterions exhibiting a high affinity to

phosphates and thus condensing on the strands: f1 ¼ 0, f2 ¼
0, and f3 ¼ 1. A charge compensation value of u ¼ 0.9 is

known to be typical for DNA condensation (Kornyshev and

Leikin, 1999; Bloomfield, 1996). Furthermore we calculate

the potential for u ¼ 0.7, which is a lower bound still

occurring in DNA aggregation phenomena. Here, we also

assume f1¼ 0.3, f2¼ 0.7, and f3¼ 0. In Fig. 7 the potential is

displayed as a function of the azimuthal angle f for two fixed

interaxial separations, R ¼ 2.5 nm and R ¼ 3.0 nm, for f1 ¼
0.3, f2 ¼ 0.7, f3 ¼ 0, and u ¼ 0.9 and u ¼ 0.7. For both

amounts of adsorbed counterions, the potential curves

qualitatively agree. Due to the higher degree of charge

compensation, however, the u ¼ 0.9 potential values are

smaller. In a subsequent step we minimize the potential with

respect to the azimuthal alignment angle f, obtaining

U(R,fopt). The result is displayed in Fig. 8. Both potentials

being induced by situations where the majority of counter-

ions condenses in the major groove are strongly attractive,

with the one for u ¼ 0.9 exceeding the one for u ¼ 0.7. The

potential stemming from a situation with all counterions

condensed on strands, on the other hand, is purely repulsive.

What is the origin of this qualitative difference? The

mechanism can be thought of as a zipper (Kornyshev and

Leikin, 1999). Having a high charge compensation in the

major groove creates a big charge separation: a negative

helical line charge is located at the phosphate backbone

position; a positive helical line charge rests in the adjacent

major groove. With two opposing DNA molecules appro-

FIGURE 5 Yukawa-segment pair potential per length Lp as a function of

the azimuthal orientation angle f (solid line, continuous line charge

distribution), as a function of f ¼ f1 � f2 with the optimal combination of

f1 and f2 as described in the text (dashed line, N¼ 10 discrete charges) and

as function of f2 with f1 ¼ 0 fixed (dotted line, N ¼ 10 discrete charges).

All interactions are at an interaxial separation R ¼ 2.1 nm, for u ¼ 0.9 and

f1 ¼ 0.3, f2 ¼ 0.7, and f3 ¼ 0.

FIGURE 6 Yukawa-segment pair potential per length Lp as a function of

the interaxial separation R of two DNA molecules, at the optimal azimuthal

orientation angle fopt (solid line, continuous line charge distribution), at the
optimal angle fopt ¼ (f1 � f2)opt with the optimal combination of f1 and

f2, as described in the text (dashed line, N ¼ 10 discrete charges) and as

function of f2 with f1 ¼ 0 fixed (dotted line, N ¼ 10 discrete charges). All

interactions are for counterion condensation parameters u¼ 0.9 and f1¼ 0.3,

f2 ¼ 0.7, and f3 ¼ 0. The dependence of the optimal angle on the interaxial

separation R is shown in the inset.

FIGURE 7 Yukawa-segment pair potential for two segments of length Lp
as a function of the mutual azimuthal orientation angle f of two DNA

molecules, at fixed interaxial separations as indicated in the legend, for u ¼
0.9 and u ¼ 0.7. f1¼0.3, f2 ¼ 0.7, and f3 ¼ 0 were used for the fractions of

condensed counterions in the minor and major groove and on the strands, at

different interaxial separations, as indicated in the legend.
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priately oriented, this allows for positive and negative

charges to directly face each other as complementary parts in

a zipper, creating a strong attraction between the two

molecules. If counterion condensation solely occurs on

strands, this mechanism is absent, creating a purely repulsive

potential, as seen in Fig. 8 in the case of u ¼ 0.9, f1 ¼ 0, f2 ¼
0, and f3 ¼ 1. In any case, the potential quickly decays

toward zero for increasing interaxial separations so that in an

assembly the dominant contributions to the total potential

energy will stem from the nearest neighbors. The optimal

angle, as a function of the interaxial separation, plotted in the

inset of Fig. 8, is practically unaffected by this mechanism:

in all three cases displayed, the optimal angle is nonzero for

interaxial separations smaller than R* � 28.25 Å, and zero

else. Furthermore, a very similar increase from zero at R* to

fopt(R ¼ 20 Å) � 0.47 p is observed in all cases.

Let us finally remark that the Yukawa-segment model has

the advantage of being very general and flexible. Any

linearized field theory necessarily ends up with an effective

Yukawa-type interaction. If hydration effects are included

within a field theoretical description, the leading term for the

effective interaction has again a Yukawa form. The electro-

static effects are well-described even at strong coupling

provided the charges and screening lengths are suitably

renormalized, as recently demonstrated in microion-resolved

computer simulations of two parallel DNA strands (Alla-

hyarov and Löwen, 2000).

Kornyshev-Leikin potential

The Kornyshev-Leikin approach rewrites the result of linear

screening theory in terms of a helical Fourier expansion

(e1 � e) (Kornyshev and Leikin, 1997, 1998a,b). The pair

interaction potential per unit length features a hard-core

repulsion for interaxial separations R # 2a, and for R[ 2a
reads as:

uðR;fÞ
u0

¼ +
‘

n¼�‘

f1u1 ð�1Þnf2u� ð1� f3uÞcosðnf~s
Þ

h i2

3
ð�1ÞncosðngDzÞK0ðknRÞ �Vn;nðknR; knaÞ

ðkn=kÞ2½K9nðknaÞ�2:
(9)

The total interaction U(R,f) per segment of length L is

simply U(R,f) ¼ Lu(R,f). In Eq. 8 Dz denotes a vertical

displacement, equivalent to the azimuthal alignment angle

f¼ (2p/H)Dz. Furthermore, u0 ¼ 8ps2/ek2 (� 2.9 kBT/Å at

physiological ionic strength), and kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 n2g2

p
. The

function Vn,m(x,y) is given by

Vn;mðx; yÞ ¼ +
‘

j¼�‘

Kn�jðxÞKj�mðyÞ I9jðyÞ
K9jðyÞ

�
;

�
(10)

with the modified Bessel functions Kn(x) and Ij(y). The

primes denote derivatives. As can be seen, the dependence of

the pair potential on the mutual orientation angle f is

affected by the distributions fi, i ¼ 1,2,3 of the condensed

counterions (Kornyshev and Leikin, 1999). The dependence

on the interaxial separation R is exponential. Keeping only

the n ¼ 0 term in the sum of Eq. 8 yields a pair potential of

homogeneously charged cylinders, depending on R only.

Summing up to jnj ¼ 2 results in the approximation u(R,f)
ffiC(R)� A(R)cosf1 B(R)cos 2f. Already at this level does
the interaction potential u(R,f) show a peculiar dependence

on the mutual azimuthal orientation angle, being a remark-

able effect of DNA double-strandedness, as discussed above

in the previous subsection. Here, A(R), B(R), and C(R) [
0 depend on the parameters of DNA structure as well as on

the distribution of adsorbed ions, and A(R)[ B(R) at large
interaxial separations R. This potential has two symmetric

azimuthal minima at f̂f6 6¼ 0 for distances smaller than

a critical one at which A(R) ¼ 2B(R), and one minimum at

f̂f ¼ 0 for larger R. It thus already captures, to quite a good

degree, the essential features of the full interaction potential

as observed in the previous section in the framework of the

Yukawa-segment model.

Let us now investigate the full potential. Due to rapid

convergence of the sum in Eq. 8, truncation after the jnj ¼ 5

terms suffices for the evaluation of the fully converged pair

interaction potential. In Fig. 9 we show the KL potential

U(R,fopt) at optimized azimuthal alignment angle, fopt, as

plotted for the YS case in Fig. 8. It can be seen that the results
are very similar to the ones discussed above for the YS
potential. Counterion condensation on strands ( f1 ¼ 0, f2 ¼
0, and f3 ¼ 1) gives rise to an exclusively repulsive potential,

whereas condensation of a majority of the counterions in the

major groove ( f1 ¼ 0.3, f2 ¼ 0.7, and f3 ¼ 0) results, at both

charge compensations u ¼ 0.7 and u ¼ 0.9, in an attractive

pair interaction. Differences in the KL approach to the YS

FIGURE 8 Yukawa-segment pair potential for two segments of length Lp
as a function of the interaxial separation R of two DNA molecules, at the

optimal angle fopt(R), depicted for different values of the counterion

condensation parameter and for different counterion adsorption patterns.

The dependence of the optimal angle on the interaxial separation R is shown

in the inset.
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approach can, however, also be inferred from a comparison

of Fig. 8 and Fig. 9. These refer to the behavior at small

intersurface separations. In the case of the YS model, the

interaction decays monotonically to the contact value at R ¼
20 Å. Here, for the KL potential, however, the potential

drops to its minimum value close to surface contact, but then

rises again upon further approach. Furthermore a quantitative

difference can be seen for u ¼ 0.7 and f1 ¼ 0.3, f2 ¼ 0.7,

f3¼ 0, since in the KL case the attraction for this combination

of parameters is much weaker than it was found to be for the

YSmodel. Both observations can be attributed to the fact that

in the KL case the dielectric jump is taken into account with

e/e1 ¼ ‘, where e is the dielectric constant of the solvent

(water) and e1 is the dielectric constant of the DNA core. This

allows for image charges at the DNA surface, bringing about

a short-ranged repulsive part in the interaction, as evidenced

in the potential curves in Fig. 9. Nonetheless, this short-range

repulsion does not affect the behavior of the optimal angle as

a function of the interaxial separation as compared to the one

found in the YS case. We show the corresponding data in the

inset of Fig. 9. The same functional form as for the YS
potential is obtained, except for the fact that R*

KL � 29.5 Å

is found to be slightly larger than R*
YS � 28.25 Å in the YS

case.

We now have two realizations of the linear Debye-Hückel

potential for the DNA interaction at hand stemming from

different levels of modeling realized in the Debye-Hückel

framework, which show differences with respect to the short-

range behavior. In the following section we will present

a theory to investigate the statistical properties of a columnar

DNA assembly. We will thereby rely on the two YS and KL
potentials as discussed above. The interesting question to be

pursued apart from the main objective, being the general

properties of such assemblies, is if and how the differences in

the pair potentials affect the behavior of the assembly.

A THEORY FOR DNA ASSEMBLIES

In the previous sections we showed that under the

assumption of continuous line charges and infinitely long,

rigid, parallel DNA molecules, the pair interaction potential

U(R,f) of two DNA molecules only depends on the

interaxial separation R and the mutual azimuthal orientation

angle, f. The problem of statistical properties of columnar

aggregates of long rigid DNA molecules may thus be

mapped on a two-dimensional problem of particles that we

may formally refer to as x-y spins, interacting via this

unusual potential U(R,f) (see Fig. 2; see also Kornyshev and
Leikin, 1997). We repeat from previous subsections that the

dominant contributions to the potential U(R,f) arise from the

nearest neighbor interactions, as the R-dependent parts of the
potential exponentially decrease with R. Before going into

more detail on the theory for DNA assemblies we can, on the

basis of the knowledge of the pair potential, already surmise

a general trend in the behavior: we know that the potential

has two symmetric azimuthal minima at f̂f6 6¼ 0 for distances

smaller than a critical one and one minimum at f̂f ¼ 0 for

larger R. Although the f̂f ¼ 0 case is compatible with any

lattice, f̂f 6¼ 0 results in frustrations of positional and

orientational order (Strey et al., 2000). Due to the R-f
coupling in the interaction potential, one may expect peculiar

positional and orientational structures in the aggregate,

a feature known as the mesomorphism of DNA assemblies

(Podgornik et al., 1998). Carrying the formal analogy to spin

systems further, we may refer to the orientational structure in

the assembly also as spin or magnetic structures.

Lattice sums

For all cases studied in this article, the pair interaction

U(R,f) is greater than kBT, so that the energy needed to

destroy the translational or orientational order in an assembly

must be more than several kBT at room temperature. Hence

focusing on the ground state analysis of the basic structures

of the assembly provides the representative thermodynamic

states. This reasoning is further sustained by evidence from

polymer crystallization, stating that upon compression the

effective persistence length (this persistence length has to be

distinguished from a smaller correlation scale which is

decreasing due to deflections of the polymer within the tube;

see Vroege and Lekkerkerker, 1992) of polymers increases,

bringing them into columnar alignment at high packing

fractions. Since, as we already argued above, the problem is

effectively two-dimensional, we consider the five two-

dimensional Bravais lattices, i.e., the hexagonal (HEX ),
square (SQ), rectangular (REC), rhombic (RHO), and

oblique (OBL) lattices to assess the representative thermo-

dynamic states. As for the exploration of the ordered spin

structures, we are, in principle, facing infinitely many

degrees of freedom: every DNA molecule in the lattice has

a continuous spectrum of possible orientations. We can,

FIGURE 9 Kornyshev-Leikin pair potential as a function of the interaxial

separation R of two DNA molecules, at the optimal angle fopt(R), depicted
for different values of the counterion condensation parameter and for

different counterion adsorption patterns. The dependence of the optimal

angle on the interaxial separation R is shown in the inset.
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however, make use of a pair potential property that we noted

in The Pair Potential, namely, that the pair interaction drops

exponentially as a function of the interaxial separation R.
Assuming that its range would solely encompass interactions

contained in a fundamental unit cell (elementary plaquette),

the approach could be much simplified in the following way.

We restrict our analysis to finding the minimal energy state

of this fundamental unit cell alone. This is achieved by

minimizing the energy of the plaquette with respect to all

spin angles residing on the elementary plaquette. Since no

interactions beyond unit cells are assumed to be present,

periodical repetition of this minimized unit cell along the

lattice directions guarantees to give the ground state of the

whole lattice. Due to the exponential decay of the R-de-
pendent factors in the pair interaction potential this already

presents an amazingly good approximation for our purposes.

Since strictly speaking the range of the potential may extend

beyond nearest neighbor interactions in some cases, we adopt

a perturbation approach in the following way: the whole

lattice is generated by periodical repetition of the elemen-

tary plaquette structure, involving two or three degrees of

freedom depending on the lattice type under exploration, but

interactions of higher order neighbors are nonetheless in-

cluded in the calculation of the lattice sums.

The algorithms employed for generating the ordered spin

structures on the whole lattice building on the fundamental

unit cell differ depending on the lattice type. They are

schematically illustrated in Fig. 10. One of the spins in the

elementary plaquette is chosen as reference (f ¼ 0). This

leaves two degrees of freedom (f1, f2) in the case of the

HEX lattice, and three degrees of freedom (f1, f2, and f3)

for the REC and SQ lattices. The HEX lattice can be build up

by periodically reflecting the unit cell across its edges, as is

shown in Fig. 10 a. The same holds for the REC lattice with

three free orientations per plaquette; see Fig. 10 b. In the case
of the RHO and OBL lattices, however, employing the same

procedure as for the REC lattice with three free spin angles

per plaquette does not produce identical plaquettes: due to

the fact that the geometrical symmetry of the unit cell is

broken (a short and a long diagonal exist), mirror reflections

across the edges generate different plaquettes on the whole

lattice. The lattice may nonetheless be filled with identical

plaquettes by employing two algorithms which are depicted

in Fig. 10, c and d. In the first, spins of orientation f1 and f2

are placed along the edges, whereas the third free orientation

angle is chosen to be f3 ¼ f2 – f1. The whole lattice is then

populated by successive mirror reflections ensuring that pairs

of spins across all diagonals have the same relative angle of

f2 – f1.

The second algorithm is illustrated in Fig. 10 d. Again,
spin angles of values f1 and f2 are chosen along the edges,

whereas f3 is assigned a value of f11 f2. The lattice is then

built up by increasing the angular value by f2 along the

oblique direction and by f1 along the horizontal lattice

direction. The resulting lattice exhibits unit cells in which all

pairs of spins across short diagonals have an angle difference

of f1 – f2, whereas pairs of spins across long diagonals are

separated by an angular difference of f1 1 f2.

Lattice sums are then calculated and a minimization of the

lattice energy with respect to the orientational degrees of

freedom {fi}, the geometrical degrees of freedom (being the

size ratios b/c for the REC lattice and/or the geometrical

angle v for RHO and OBL lattices; see Fig. 10), is carried

out. The result of the minimization procedure is the

optimized lattice-sum energy, UX(F,r), where X stands for

the lattice type, and F ¼ (f1,f2, . . . ,fN), denotes the

configuration of the N spins in the system.

Three examples of lattice sums for fixed DNA density

pra2 and fixed salt concentration ns at a charge compensa-

tion u ¼ 0.9 and f1 ¼ 0, f2 ¼ 0, and f3 ¼ 1 are displayed in

Fig. 11, a–c. They depict the total energy stemming from the

lattice sum as contour plots as a function of f1 and f2. They

are representative of three different phases emerging for

these parameters. The meaning of the three phases will be

explained in detail in the next section. It can be clearly

discerned from the contour plots that a certain symmetry

prevails in the aggregate with respect to f1 and f2 whereby

the symmetry axis is the line f1 ¼ f2. The location of the

minima evolves from f1 ¼ 0.21 p, f2 ¼ 0.42 p (Fig. 11 a)
via f1 ¼ 0.46 p, f2 ¼ 0.46 p (Fig. 11 b) to f1 ¼ p/3, f2 ¼
2p/3 (Fig. 11 c), whereby lattice sums at correspondingly

symmetric angles are found to have equally low values.

The two-dimensional DNA-concentration r is varied

within 0# ra2 # 1=ð2 ffiffiffi
3

p Þ, the upper limit being the close-

packed configuration in a HEX lattice. We vary the salt

concentration ns in the assembly within 0.0001 mol/l# ns #
3mol/l, including strongly deionized situations and physio-

logical salt concentrations. For the lower limit of the two-

dimensional DNA concentration the following remark is in

order. The molecules remain parallel down to density ra2 �
0.1, corresponding to interaxial separations R � 34 Å, at

which the cholesteric phase (CP) appears (Livolant and

Bouligand, 1986; Livolant, 1991; Durand et al., 1992;

FIGURE 10 A schematic view of generating candidate ordered spin

phases of the system. (a) for the HEX lattice; (b) for the REC and SQ lattices;

and (c) and (d ) for the RHO and OBL lattices.
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Podgornik et al., 1996). A theory of the CP is beyond the

scope of this work, thus we draw our phase diagrams down

to ra2 ¼ 0, with the reminder that for large interaxial

separations the CP is stable. Although the CP is not included

in the present theory, we have, for low two-dimensional

DNA concentration, to take into consideration the low-

density two-dimensional fluid. We achieve this by the

following scheme: for every screening parameter k which is

associated with a given phase point ( r,ns), we map the

interaction potential for f ¼ 0, given by Eq. 5 or Eq. 8,

respectively, onto an effective hard-disk interaction poten-

tial, making use of the Barker-Henderson rule (Hansen and

McDonald, 1986), providing us with the effective hardcore

diameter d(k). Using the known result (p/4)rmd(k)
2 ¼ 0.691

for the melting density rm of hard disk systems (Mitus et al.,

1997), the melting line can be estimated.

Volume and kinetic energy terms

To access the full thermodynamics of the DNA solution-salt

mixture, we have to add the contributions to the free energy

stemming from the counter- and co-ions, with numbers N6

and concentrations c6, respectively. In a simplified picture,

they can be thought of as the entropic, ideal-gas-like con-

tributions of the free, noncondensed counterions (kinetic

energy terms) and the interaction of the DNAmacroions with

their associated double-layer of salt microions. These

degrees of freedom contribute an extensive term, indepen-

dent of particle coordinates and momenta, to the free energy

of the system, with terminology footing on the volume terms’

extensivity. Although the volume terms lack the dependence

on the current phase point of the system, they still represent an

important contribution to the total free energy of the system,

as they constitute a nontrivial, nonvanishing density-de-

pendent term in the Hamiltonian. They are of importance in

a wide number of multicomponent systems: Ashcroft and

Stroud (1978) noted their influence on mixtures with quan-

tum and classical components, Rowlinson (1984) pointed out

their relevance in general terms, Grimson and coworkers

(Canessa et al., 1988; Grimson and Silbert, 1991) analyzed

their influence on charged colloids, and they were calculated

by Graf and Löwen (1998) for charge-stabilized colloidal

suspensions; see also van Roij (van Roij et al., 1999) and

Denton (1999). For charged cylindrical molecules Graf

and Löwen (1999) calculated the contributions from volume

and kinetic energy terms to be

Fc ¼ F
0

1 1F
0

� 1Fcoh; (11)

where F0
6 ¼ N6kBT lnðc6L3

6Þ � 1
� 	

are the ideal gas con-

tributions (with L6 being the thermal de Broglie wave-

lengths of the counter- and co-ions) and

Fcoh ¼ � 1

2

2NaðZeÞ2k
eLpð11 kaÞ 1

kBTVðc1 � c�Þ2
c1 1 c�

� �
; (12)

is a cohesive term. In Eq. 11, e is the electron charge, Zjej ¼
2paLps(1� u) is the uncompensated DNA charge, c1¼ Zr/
Lp 1 ns and c� ¼ ns. Finally, V is the volume of the system

and k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðZr=Lp12nsÞe2=ðekBTÞ

p
for monovalent salt

ions.

The total Helmholtz free energy for a given lattice type X
is then given as the sum of the lattice sum of the DNA

assembly, UX, and the volume and kinetic energy terms of

the salt solution, Fc: F ¼ UX 1 Fc.

FIGURE 11 Lines of constant energy as stem-

ming from lattice sum calculations of DNA-salt

mixtures for the KL model as a function of the

azimuthal angles f1 and f2, with u ¼ 0.9 and f1 ¼
f2 ¼ 0, f3 ¼ 1. Magenta indicates low energies

whereas red encodes high energy values. The lattice

here is HEX. (a) pra2 ¼ 0.44, ns ¼ 0.2 mol/l; (b)

pra2 ¼ 0.60, ns ¼ 0.2 mol/l; and (c) pra2 ¼ 0.75,

ns ¼ 1.7 mol/l.
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THE PHASE DIAGRAM

We now apply the considerations of the previous section to

the calculation of the phase diagrams of columnar DNA

assemblies. Let us focus on the YSmodel for the moment and

then turn our attention to the KL model. The first choice of

parameters we investigate corresponds to the adsorbed

counterions being exclusively condensed on strands, i.e,

f1¼ f2 ¼ 0 and f3 ¼ 1. In this case the DNA-DNA interac-

tion is purely repulsive; see, for example, Figs. 8 and 9.

Correspondingly, we find the system to crystallize into the

HEX lattice at all DNA densities. Hexagonal lattice

structures are evidenced in sperm nuclei and a number of

bacteriophages (Livolant, 1991) and were also observed in

vitro (Giannoni et al., 1969; Lerman et al., 1976; Livolant

et al., 1989). Adding to the repulsive R-dependent in-

teraction, the effect of the nontrivial R-f coupling is present,

giving rise to a large variety of orientational (spin, magnetic)

structures to occur due to the azimuthal frustration of the

system. The orientational structures are schematically shown

in Fig. 12 and the phase diagram of the DNA-salt mixture is

plotted in Fig. 13. Four different orientational phases can be

discerned. The FM phase is stable at low DNA concen-

trations. It is ferromagnetic: all DNA molecules have the

same azimuthal orientation. The AFP phase has a three-state

antiferromagnetic Potts (Yeomans, 1992) type of ordering,

with one-third of the spins pointing in a reference direction

f ¼ 0, one-third in the angle f0 and one-third in the angle

2f0, where f0 grows with DNA concentration. The phase

denoted AFI displays antiferromagnetic-Ising ordering, with

half of the DNA molecules having one azimuthal orientation

on one of the sublattices and a different orientation on the

other. Finally, the AFH phase has the orientational ordering

of the two-dimensional antiferromagnetic Heisenberg model,

with spins residing in the three sublattices of the hexagonal

lattice having mutual orientational angles of 1208 to one

another. The AFH phase is thus a special case of the AFP
phase. The transition between the FM and AFP phases is

second-order but the AFP! AFI and AFI! AFH transitions

are first-order with very narrow density gaps (Graf and

Löwen, 1998). As can be seen, for the average intermolec-

ular separations occurring in the FM phase, the optimal

azimuthal angle between the molecules is zero. The

nontrivial phases arise at higher densities of the aggregates,

as a result of the frustrated character of the f-dependence of
the pair potential. Similar mesophases were found recently

within the framework of a phenomenological Landau theory

(Lorman et al., 2001). Representative lattice sums for the

AFP, AFI, and AFH phases are shown in Fig. 11. Including

the two-dimensional fluid estimate into the calculation, parts

of the phase diagram at lower two-dimensional DNA

densities get preempted by the two-dimensional fluid, as is

shown in Fig. 14 a.
Changing the type of counterions present in the solution to

counterions with a preference to adsorb into the major

groove, i.e., choosing f1 ¼ 0.3, f2 ¼ 0.7, and f3 ¼ 0,

drastically changes the picture. As we showed in The Pair

Potential, the counterion condensation in grooves provides

a ‘‘zipper’’ mechanism, leading to an attraction between the

DNA molecules, since the positively charged sections of one

molecule can approach the negatively charged sections of

the other through an appropriate mutual orientation. This

attraction leads to nonconvex parts in the Helmholtz free

energy F(r,ns), causing an instability in this regime, as

nonconvexity means, via P ¼ �@F/@V, regions of negative
pressure in the system. Performing a double tangent con-

struction removes the nonconvex parts in the free-energy

FIGURE 12 The four stable magnetic phases. The arrows indicate the

azimuthal orientations of DNA molecules. The acronyms, using magnetic

terminology, stand for ferromagnetic (FM ), antiferromagnetic Ising (AFI ),
antiferromagnetic Potts (AFP), and antiferromagnetic Heisenberg (AFH).

FIGURE 13 Phase diagram of DNA-salt mixtures for the YS model as

a function of the DNA packing fraction pra2 and salt concentration ns in the

aggregate: u ¼ 0.9, f1 ¼ f2 ¼ 0, and f3 ¼ 1; the lattice here is HEX. Dashed
lines denote second-order magnetic transitions, solid lines first-order ones.
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curve and thereby yields broad phase coexistence tielines

between dense DNA aggregates and DNA free solutions,

connecting coexisting (r,ns) state points. See Appendix A

for a more detailed discussion. The occurrence of a broad

phase-coexistence regime can be seen in Fig. 14 b for the

case f1 ¼ 0.3, f2 ¼ 0.7, and f3 ¼ 0 for u ¼ 0.7. The oblique

tielines result from the requirement that the electrolyte

chemical potentials be equal at both coexisting phases, as is

explained in more detail in Appendix A. In the one-phase

region, a rhombic phase with an AFI-orientational structure

shows up for the density regime directly adjacent to the

phase coexistence line and a HEX crystal with AFPmagnetic

ordering appears at very high DNA concentrations. One

might have, a priori, conjectured that an SQ phase with

orthogonal magnetic order would win the game at high

concentrations in the solely attractive YS case, since the

angular part of the interaction favors �p/2 angular ordering

for small separations and would thus be nonfrustrated on

a SQ lattice; see Fig. 15. It has to be kept in mind, however,

that although one has, for a given packing fraction, four

neighbors closer in an SQ lattice than in a RHO or HEX
lattice at the same packing fraction, which is favorable

without repulsions, in aHEX lattice there are six neighbors at

a slightly larger distance. The same effect is present in a RHO
lattice, although there, the symmetry is broken with four

nearest and four next-nearest neighbors as in the SQ lattice

but with another nearest neighbor distance to next-nearest

neighbor distance ratio, which turns out to favor the RHO
lattice with the potential curve that we have in the YS case.

Increasing u to 0.9 does not qualitatively affect the phase

diagram. The DNA-aggregate coexistence with DNA-free

solutions turns out to be slightly broader, due to stronger

attractions prevailing in the pair potential. The results are

depicted in Fig. 14 c. We thus observe a significant

qualitative difference in the macroscopic behavior of DNA

columnar assemblies depending on the type of adsorbed

counterions. If they solely adsorb on strands, i.e., f1 ¼ f2 ¼
0 and f3 ¼ 1, all phase transitions occur in the azimuthal

variables. With counterions condensed in grooves, a DNA

bundling transition into a high DNA density rhombic phase

takes place. The crossover from one topology (no DNA

bundling) to the other (DNA bundling) can be estimated by

holding f1 ¼ 0.3 fixed and increasing f2 at the cost of f3. For
a charge compensation parameter u of, for example, u ¼ 0.7

it is found to occur at ( f2, f3) ¼ (0.63,0.07). Here, all phase

diagrams are plotted as a function of the electrolyte

concentration in the aggregate. Taking into account the

Donnan equilibrium (Rice et al., 1961), the phase diagrams,

recalculated as a function of the salt in the reservoir, are

qualitatively the same as the ones shown.

The same procedure is now applied to the KL pair

potential. Again, we first investigate u ¼ 0.9 and f1 ¼ f2 ¼
0 and f3 ¼ 1. The phase diagram is shown in Fig. 16 a. It is
apparently very similar to the corresponding phase diagram

of the YS model. The orientational structures found are the

same as in the latter case and even the loci of the phase

transitions are practically unchanged, except for the AFI !
AFH transition, which occurs for lower r and ns values. The
two-dimensional fluid regime is smaller, being sign of the

fact that the KL pair potential is steeper, i.e., stronger

FIGURE 14 Phase diagrams of DNA-salt mixtures for the YS model as a function of the DNA packing fraction pra2 and salt concentration ns in the

aggregate: (a) u ¼ 0.9, f3 ¼ 1; the lattice here is HEX. (b) u ¼ 0.7, f1 ¼ 0.3, and f2 ¼ 0.7; (c) u ¼ 0.9, f1 ¼ 0.3, and f2 ¼ 0.7. Dashed lines denote second-order

magnetic transitions, solid lines first-order ones. The geometrical transitions between different lattices in b and c are second order; the straight lines are tielines

between coexisting phases.

FIGURE 15 A possible SQ phase with orthogonal magnetic ordering.
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repulsive than the YS pair potential due to the image charge

effect included in the KL model. Switching to counterion

condensation in grooves, i.e., f1 ¼ 0.3, f2 ¼ 0.7, and f3 ¼ 0,

again broad phase coexistence regions of a high-density

DNA aggregate with a DNA free salt solution are observed;

see Fig. 16, b and c. For the case of the lower of the two

charge compensation parameters investigated, u ¼ 0.7, the

high-density DNA assembly does not coexist with a DNA-

free salt solution at all salt concentrations ns, but rather

coexists with a low-density HEX crystal with an imprinted

FM orientational structure in the low salt concentration

regime. This is, in this respect, qualitatively different from

the corresponding phase diagram found in the case of the YS
interaction. It is due to the much less attractive KL pair

potential, as can be seen from a comparison of the curves for

u ¼ 0.7 in Figs. 8 and 9. Due to the same reason the phase

coexistence region turns out to be narrower for u ¼ 0.7 than

it is for u ¼ 0.9, see again Fig. 16, b and c. The same

statement holds for a comparison of the KL phase diagrams

with the YS phase diagrams. Although in both cases the high-

density DNA assembly exhibits a RHO lattice with an AFI-
orientational order and then a transition to a HEX crystal

complemented by an AFP magnetic structure, the phase

coexistence region is significantly broader in the latter case.

This behavior can be traced back to the pair potential in the

same manner as above, as the YS interaction has a stronger

attractive part and lacks the repulsive branch for close

intersurface separations. (See Figs. 8 and 9.) The bundling

transition induced by the strong zipper attractions will thus

favor smaller interaxial separations between the bundled

DNA molecules. We finally note that both the physical

situation and the mechanism of DNA condensation put

forward in this work are complementary to those studied by

Sottas et al. (1999). In the latter work, attention was focused

on very long, supercoiled DNA molecules in which the

helical charge pattern has not been explicitly considered.

Thereby, dispersionlike attractions have been introduced to

explain DNA condensation. Here, we deal with short,

straight DNA segments in which electrostatic attractions

stemming from appropriate azimuthal orientations provide

the dominant physical mechanism leading to attractions.

SUMMARY AND CONCLUDING REMARKS

Summarizing, we calculated the phase diagrams for columnar

DNA assemblies, building on different levels of approxima-

tion in the pair interaction potential. We found that details of

the interaction as manifest by the two potentials used for

calculating the phase diagrams are not destroying the topo-

logy of the phase diagrams. The resulting phase diagrams

showed significant agreement for the case of repulsive

interactions, induced by counterion condensation on strands.

For counterion condensation in the grooves, yielding strongly

attractive interactions, the phase diagrams qualitatively

agreed for the high charge compensation value, u ¼ 0.9,

whereas for a lower charge compensation of u ¼ 0.7, an

additional low-density HEX DNA phase was present in the

KL model phase diagram which was absent in the YS case.

In conclusion we could put forward qualitatively robust

predictions for the features and phase diagrams of columnar

DNA assemblies. An experimental verification of the pre-

dictions of the theory would be highly desirable. Such a

task, however, poses severe problems since the reliable

experimental data available, to date, pertain to highly

concentrated phases (Grimm and Ruprecht, 1991; Langridge

et al., 1960; Dover, 1977), corresponding to small interaxial

separations of the DNAmolecules. In this regime the number

of the basic assumptions inherent to the form of the pair

potential may be questioned. The Debye-Bjerrum approxi-

mation becomes inadequate; as well, the independence of

solvent dielectric constant on the aggregate density is

questionable at high aggregate densities. Furthermore effects

of nonlocal polarizability, and, more important, hydration

effects come into play. The increase of experimental

resolution in x-ray diffraction could open the way for the

study of less dense aggregates. Particularly challenging is the

predicted specific effect of cation adsorption on the phase

diagram. Since the adsorption isotherms and the distributions

FIGURE 16 Phase diagrams of DNA-salt mixtures for the KL model as a function of the DNA packing fraction pra2 and salt concentration ns in the

aggregate: (a) u ¼ 0.9, f3 ¼ 1; the lattice here is HEX. (b) u ¼ 0.7, f1 ¼ 0.3, and f2 ¼ 0.7; (c) u ¼ 0.9, f1 ¼ 0.3, and f2 ¼ 0.7. Dashed lines denote second-order

magnetic transitions, solid lines first-order ones. The geometrical transitions between different lattices in b and c are second order; the straight lines are tielines

between coexisting phases.
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of the adsorbed ions are poorly known, one should

concentrate here on qualitative effects, that is, the (dis)ap-

pearance of mesophases triggered by different DNA

condensing counterions.

Although in this work we focused on DNA as represen-

tative for helical (bio)molecules, the approach presented is,

in general, not at all restricted to DNA alone, but rather can

all types of molecules bearing helical charge patterns, such as

RNA, collagen, guanosine, viral particles (e.g., tobacco

mosaic virus), polysaccharide helices, and a-helical domains

of many proteins as well as microtubules be treated within

the same framework. Furthermore, the formalism used here

is not restricted to columnar assemblies, but rather can be

applied to other systems, such as bundles of a-helices, which
form domains in many proteins, interactions between

transmembrane a-helices and DNA-DNA interaction in

nucleosomes, where only locally a parallel alignment of

helical charge patterns may be assumed.

APPENDIX A: ON DETERMINING PHASE
COEXISTENCE REGIONS

The problem to be solved is the phase behavior of a two-component system,

with, in our case, one component being DNA, the other being salt with

numbers N1 and N2 respectively. The number of counterions is directly

coupled to N2 (as the salt co- and counterions are to each other) via the

condition of global charge neutrality. Assume the Helmholtz free energy

F(N1,N2, V, T ) to be known. Statistical mechanics and thermodynamics state

that the free energy shall be convex for the system to be stable. The route to

achieve this in simple one-component systems is the so-called double tangent

construction whereby the nonconvex parts are ‘‘bridged’’ by a tangent onto

the two points NA and NB where the concave parts of the free-energy curve

start. These two points are the delimiting loci of phase coexistence between

phase A at NA and phase B present at NB. The conditions to be fulfilled for

stability and which are, by construction properly incorporated in the double

tangent construction: equality of pressure, PA¼ PB and equality of chemical

potentials, mA ¼ mB in the two phases. Generalizing this for a two-

component system, a corresponding two-component double tangent

construction has to satisfy the following conditions: m1
A ¼ m1

B, m2
A ¼ m2

B,

and PA ¼ PB. The second of these three conditions can automatically be

fulfilled by operating on m2 ¼ const curves only.

It is thereby convenient to carry out a Legendre transformation to the

semigrand potential Y(N1,m2, V, T )¼ F(N1,N2,V, T )�m2N2 (Dijkstra et al.,

1999). It is understood that by keepingm2 fixed,N2 becomes a function ofN1.

We will henceforth omit the arguments V and T for simplicity. Consider now

m1 [
@F

@N1

����
N2

¼ @Y

@N1

����
m2

1
@Y

@m2

����
N1

@m2

@N1

����
N2

1
@m2

@N1

����
N2

N2:

(A1)

Since @Y=@m2jN1
¼ �N2 according to the definition of Y as Legendre

transform of F above, the last two terms cancel and we obtain:

m1 ¼
@Y

@N1

����
m2

: (A2)

In an analogous way we obtain

P ¼ � @Y

@V

����
N1 ;m2

: (A3)

Introducing now the semigrand potential density y(n1,m2) ¼ V�1Y(N1,m2,V )

with n1 ¼ V�1N1, it is straightforward to show that

m1 ¼
@y

@n1

; (A4)

P ¼ n1

@y

@n1

� y; (A5)

demonstrating that m1
A ¼ m1

B and PA ¼ PB is guaranteed by performing

a common tangent construction on the y–versus �n1 curves. In applying the

above considerations to the present case, we have the salt chemical potential

ms [ m2 and the DNA density r [ n1. In Fig. 17 the semigrand potential

surface y(r,ms) for the KL model is shown as a function of DNA density r

and salt chemical potential ms, for a charge compensation of u ¼ 0.9. The

counterion parameters are f1 ¼ 0.3, f2 ¼ 0.7, and f3 ¼ 0. One can clearly

discern the nonconvex parts which lead to phase coexistence. The double

tangent construction is performed on the curve displayed in Fig. 18 as

indicated by the dashed line. It shows the semigrand potential y(r,ms ¼
const) as a function of DNA density r at constant salt chemical potential,

ms ¼ const. Due to the broad nonconvex part, the broad phase coexistence

region emerges in the phase diagrams. The oblique tielines are obtained by

FIGURE 17 Semigrand potential per unit volume y(r,ms) as a function of

reduced DNA density and salt chemical potential, for the KL model and

parameters u ¼ 0.9, f1 ¼ 0.3, f2 ¼ 0.7, and f3 ¼ 0.

FIGURE 18 Semigrand potential per unit volume y(r,ms) on a line of

constant DNA chemical potential for the KL model as a function of the

reduced DNA density and for parameters u¼ 0.9, f1¼ 0.3, f2¼ 0.7, and f3¼
0. Also shown (dashed line) is the common tangent connecting the

coexisting phase points.
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calculating the salt concentrations nAs and nBs at the coexisting DNA densities

rA and rB.
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