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Dynamical instabilities are discussed for strongly interacting colloidal suspensions which
are driven into nonequilibrium by an external field in the limit where hydrodynamic
interactions can be neglected. Brownian dynamics computer simulations indicate that
stripe-like patterns of particles driven alike are spontaneously formed if the external drive
exceeds a critical strength. Recent previous studies of stripe formation obtained for
symmetric equimolar mixtures in the steady state are reviewed. These results are then
extended in two directions: first, we show that stripe-like segregation occurs also in
asymmetric mixtures and observe an additional compression/expansion effect in the stripes
composed of the small/large particles. Second, we study the relaxation into the stripe-
patterned steady state starting from a uniform demixed state and show that different
transient processes such as jamming, anisotropic coarsening and void formation are
relevant on the route into the stratified steady state.

I. Introduction

Almost fifty years ago, it was realized by Whitmore1 that adding a second colloidal component to a
sedimenting suspension with a different buoyant mass causes an increase in the settling speed. This
finding can be attributed to an instability with respect to vertical density variations which was
macroscopically confirmed by Weiland et al.,2 and classified by Batchelor and van Rensburg.3 A
closer inspection of the patterns induced via the instability reveals that these are very complex and
complicated structures which are mainly generated by the hydrodynamic backflow (for other more
recent backflow effects during sedimentation, see ref. 4). Hydrodynamic interactions between the
different sedimenting particles are indeed the clue to explain the physical origin of this instability.3,5

Namely the instability even occurs at low particle volume fractions where the particles are non-
interacting via direct interaction forces.
In this discussion paper, we study a complementary case of strongly interacting colloids without

hydrodynamic interactions in an external driving field as e.g. gravity. The motivation to do so is
twofold: first, such an extreme situation is realized in highly charged and strongly deionized sus-
pensions which exhibit strong correlations even at very low colloidal volume fractions where
hydrodynamic interactions do not play a dominant role. Second, more fundamentally, in the
absence of any hydrodynamic flow effect, the physics is expected to be simpler such that a full
characterization of the dynamical instabilities becomes feasible. In fact, for a highly correlated
system, the thermal energy is small compared to a typical interaction energy such that a dynamical
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instability can be simply understood by a competition of two effects: the internal interaction forces
between the particles and the external driving force. Once the situation is clarified, one may add
hydrodynamic interactions at a later stage to check their influence on nonequilibrium pattern
formation.

In order to keep the situation simple, we restrict ourselves to two-component mixtures which are
driven by different but constant (i.e. space- and time-independent) forces. One immediate reali-
zation is gravity but an electric field or gradients of laser-optical fields are also conceivable. Our
studies here are completely based on nonequilibrium Brownian dynamics computer simulations.
We find a nonequilibrium segregation transition from a uniform mixed state to a nonuniform state
characterized by a stripe-like pattern of particles driven alike.

Similar stripe-like nonequilibrium segregation phenomena have been observed experimentally
and studied theoretically in different systems, all of them are qualitatively different from our
situation:

(i) As already discussed, in hydrodynamically driven low-density suspensions, the hydrodynamic
interactions enforce the instability which could then be even perpendicular to the drive.2,3,5–8

(ii) In granular matter and particle–gas suspensions, there is a significant inertia which is negligible
for colloids. Stripe-like segregation phenomena under shear and/or gravity have been detected in
various publications.9–12

(iii) In pedestrian dynamics, similar models are used, most of them involve an inertia and are thus
different from the completely overdamped Brownian dynamics of colloids. The stripe-like pattern
formation has the intuitive meaning of lane formation in pedestrian zones.13–15

The paper is organized as follows: In section II, we describe the general model and the simulation
technique used. In section III, we review recent results obtained for the nonequilibrium lane for-
mation process. Original results are contained in section IV and V where the case of asymmetric
mixtures is studied and the relaxation into the steady state involving stripe-patterns is investigated.
We find a compression effect in the lanes consisting of small particles and an expansion effect in
those lanes possessing big particles and identify different transient structures such as voids, jammed
states and anisotropic coarsening on the way into the completely stratified steady state. We finish
with remarks on an experimental verification in section VI and give a list of open questions in
section VII.

II. The model and the simulation technique

In our model,16 we consider an asymmetric binary colloidal mixture comprising N1+N2 Brownian
colloidal particles in an area S (i.e. in d ¼ 2 spatial dimensions). N1 particles are of type 1, the other
N2 are of type 2 with partial number densities r1 ¼ N1/S and r2 ¼ N2/S. The colloidal suspension
is held at a fixed temperature T via the bath of microscopic solvent particles. Two colloidal particles
interact via a set of effective Yukawa pair potentials

VijðrÞ=kBT ¼ U0sijexp½�kðr� sijÞ�=r; ð1Þ

where (ij) ¼ (11), (12), (22). Here r is the center-to-center separation, U0 is the interaction strength
measured in terms of the thermal energy kBT and k is the inverse screening length.

The set of diameters, sij , is additive and given by

s11 ¼ s ð2Þ
s22 ¼ qs11 ¼ qs ð3Þ

s12 ¼ ðs11 þ s22Þ=2 ð4Þ

In the following, s will serve as a length scale. The screened Coulomb interaction models bidisperse
charge-stabilized suspensions confined to two dimensions.17–19

The dynamics of the colloids is completely overdamped Brownian motion. The friction constant
is x( j) ¼ 3pZsjj ( j ¼ 1,2) with Z denoting the shear viscosity of the solvent. The constant external
force acting on the ith particle of species j, ~FF

ð jÞ
i , has the same direction but different amplitude for

the both constituents of the binary mixture. It is ~FF
ð1Þ
i ¼ F ð1Þ~eey and ~FF

ð2Þ
i ¼ F ð2Þ~eey where~eey is a unit

vector along the y-direction of the system.

100 Faraday Discuss., 2003, 123, 99–105



The stochastic Langevin equations for the colloidal trajectories~rr
ð jÞ
i ðtÞ ( j ¼ 1,2) (with i ¼ 1,...,N1

for j ¼ 1 and i ¼ 1,...,N2 for j ¼ 2) read as

xð jÞ
d~rr

ð jÞ
i

dt
¼ �~HH

~rr
ð jÞ
i

XNj0

k¼1

Vjj0 ~rr
ð jÞ
i �~rr

ðj0 Þ
k

��� ���� �"

þ
XNj

k¼1;k 6¼i

Vjj ~rr
ð jÞ
i �~rr

ð jÞ
k

��� ���� �#
þ ~FF

ð jÞ
i þ ~KK

ð jÞ
i ðtÞ; ð5Þ

where j0 is the complementary index to j ( j0 ¼ 1 if j ¼ 2 and j0 ¼ 2 if j ¼ 1). The right-hand-side
includes all forces acting on the colloidal particles, namely the force resulting from inter-particle
interactions, the external constant force, and the random forces ~KK

ð jÞ
i describing the collisions of the

solvent molecules with the ith colloidal particle of species j. The latter are Gaussian random

numbers with zero mean, ~KK
ð jÞ
i ¼ 0, and variance

~KK
ðkÞ
i

� �
a
ðtÞ ~KK

ðnÞ
j

� �
b
ðt0Þ ¼ 2kBTxð jÞdabdijdkndðt� t0Þ: ð6Þ

The subscripts a and b stand for the two Cartesian components. Note that within this simple
Langevin picture, hydrodynamic interactions are ignored.
We solve the Langevin equations of motion by Brownian dynamics simulations20–22 using a finite

time-step and the technique of Ermak.23,24 We use a square cell of length ‘ with periodic boundary
conditions. The typical size of the time-step was 0.003tB , where tB ¼ x(1)s2/U0kBT is a suitable
Brownian timescale. We simulated typically 2� 104 time steps which corresponds to a simulation
time of 60tB .

III Review of recent studies

Previous studies have focused on the steady state of an equimolar symmetric mixture. In this case,
N1 ¼ N2 x

(1) ¼ x(2) ¼ x and V11(r) ¼ V22(r) ¼ V12(r) ¼ V(r). Using extensive Brownian dynamics
computer simulation studies, Hoffmann and co-authors16 have found that a strongly interacting
suspension exhibits lane formation if the external drive |F(2)�F(1)| exceeds a critical value. The
lanes involve particles either of type 1 or of type 2 which are sliding against each other in the field
direction. In the lane involving 1 particles only, all these particle are drifting with a global velocity
F ð1Þ~eey=x while opposite regions which involve 2 particles are streaming with the overall velocity
F ð2Þ~eey=x. The width of the lanes perpendicular to the drive direction involves several particle layers
and is comparable to the size of the simulation box. This implies that lane formation is a macro-
phase separation. By subtracting the overall velocity using a Galilei transformation one readily sees
that within the completely separated lanes, equilibrium Boltzmann statistics is realized. The system
just separates into two different equilibrium states which are drifting relative to each other. In
reducing the external drive one observes a significant hysteresis indicating that lane formation is a
nonequilibrium first-order transition. A simple phenomenological theory describing lane formation
as a competition between pair interaction forces and the external force was also proposed in ref. 16.
This theory predicted the trends correctly for varying particle density, for varying temperature and
for different ranges 1/ks of the interparticle interactions.
We further remark that lane formation is a very general and robust phenomenon: it was shown16

to occur also in three spatial dimensions, and the qualitative features do not depend on details of
the interparticle interactions. The external field can also be slowly oscillating in time without
destroying formation of lanes.
Just below the critical strength needed to generate lane formation, there is a precursor of ani-

sotropic coarsening which is presumably second order and involves stripe-like patterns (or
‘‘worms’’) with a width of one single particle perpendicular to the field while they are quite
extended in the y-direction parallel to the field. This has been detected by calculating strongly
anisotropic structural correlations in further Brownian dynamics computer simulations by
Chakrabarti and co-authors.25 Furthermore it can be understood as a dynamical instability from
an instability analysis of a dynamical density functional theory. This theory yields quantitative
agreement with the simulation data. The physical picture arising for lane formation is a
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competition of two effects: first, entropy of mixing would like to destabilize any 1–2-interface and
generates a mixed uniform state for small external fields. On the other hand, field-induced collisions
between 1 and 2 particles amplify a lateral segregation between different particle species, an effect
which is dominant for large driving strengths.

As lane formation occurs for highly correlated systems it is tempting to ask whether it also
happens for colloidal solids. In two spatial dimensions, for a symmetric mixture without any drive,
stable solids possess a randomly occupied hexagonal lattice structure. In ref. 26 it was shown that,
under the influence of an external driving field, the solid exhibits a reentrant freezing phenomenon.
It first melts mechanically via the external field and then recrystallizes into two phase separated 1
and 2 solids using a similar lane formation process in the solid phase.

Let us now briefly discuss the effect of relative tilted external forces, i.e. the case of non-parallel
~FF ð1Þ and ~FF ð2Þ. Based on general reasoning and computer simulations, it was shown in refs. 26 and
27 that lane formation does also occur for external forces tilted relative to each other. The direction
of the lanes, however, is now parallel to the difference vector ~FF ð2Þ � ~FF ð1Þ. Finally let us mention a
recent simulation study of Ramaswamy et al.28 with non-symmetric interactions (i.e. V12(r) 6¼
V11(r) ¼ V22(r)) which revealed nontrivial nonequilibrium melting and freezing cycles.

IV. Asymmetric mixtures

In this section, we show that lane formation also occurs in asymmetric mixtures. Our simulation
studies involve the following parameter combinations for the model proposed in section II:
N1 ¼ 100 large particles and N2 ¼ 500 small particles are in a square box. The total particle
number density is rs2 ¼ 1.5. The parameters for the Yukawa pair potential are: U0 ¼ 2.5 and
ks ¼ 4. The size asymmetry q ¼ s22/s11 is 0.5.

Four simulation snapshots in the steady state for increasing external forces are shown in Fig. 1.
While in Fig. 1(a) an equilibrium snapshot of a demixed uniform is shown in the absence of any
drive, an increasing drive forces the system into a stripe-like structure which becomes more pro-
nounced the larger the drive is. For strong drive (Fig. 1(d)), there is clear separation between big
and small particles, both of them are contained in lanes.

Although the formation of lanes is qualitatively similar to the case of symmetric mixtures, there
is an additional effect visible in the snapshot of Fig. 1(d): The lanes involving the small particles are
compressed while the lanes involving the big particles are more dilute as compared to their mixed
state (see Fig. 1(a)). This is due to the fact that a driven big particle excludes small particles from a
‘‘ tube ’’ around it. We speculate that one may even achieve a phase separation where the small
particles undergo a freezing transition in their lanes.

V. Relaxation into the steady state

If the external field is suddenly turned on, the system relaxes from an initial homogeneous mixed
phase into a phase-separated phase provided the field strength is large enough. We have investi-
gated the transient dynamics of the relaxation process via Brownian dynamics computer simula-
tions involving N1+N2 ¼ 500 particles. The system was modeled to be an equimolar symmetric
mixture with interaction parameters U0 ¼ 2.5 and ks ¼ 4 with a total density of rs2 ¼ 1.0. The
magnitude of |F(2)�F(2)|s/kBT was 150 well beyond the critical force to get lane formation.16 The
external field was turned on at a time t ¼ 0. Four snapshots taken at four different times 0, 0.1tB ,
tB , and 10tB are presented in Fig. 2. In Fig. 2(a), the disordered completely mixed starting con-
figuration is shown. After turning on the field, two typical snapshots on the route towards lane
formation are shown in Fig. 2(b) and 2(c). Qualitatively, first of all one recognizes the existence of
voids which are transient structures as they disappear again in the relaxed steady state of fully
developed lanes, see Fig. 2(d). Furthermore there are two other transient effects: in Fig. 2(b),
jamming states are visible. Three examples of regions where jamming occur are indicated by the
circles in Fig. 2(b). These consist of oppositely driven fronts of the same particles which block each
other for a considerable amount of time. The jamming states are extended perpendicular to the
field. Although these jamming states have quite a long life-time, they are not stable in our study.
For dynamics in a confined strip, as e.g. realized in a pedestrian zone, these jamming states survive
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for ever and trigger the ‘‘ freezing by heating ’’ transition found by Helbing and coworkers.13

Finally, one can clearly see stripe-like structures of finite width in both directions: the width per-
pendicular to the field is about one particle diameter, while the lengths of the structure parallel to
the field are much greater. We call this structure anisotropic coarsening. Its direction is perpendi-
cular to the jamming configuration. This structure becomes more and more persistent as time
moves on, compare Fig. 2(b) with 2(c) for instance, and provides an ideal channel via which the
completely demixed steady state is achieved, see Fig. 2(d). Having the instability analysis of ref. 25
in mind, we think that the formation of ‘‘worms’’ is the most efficient channel towards lane
formation.

VI. Experimental verification

The instability discussed here occurs for strongly interacting particles even in the absence of
hydrodynamic interactions and has, to the best of our knowledge, not yet been detected in
experiments on colloidal suspensions. Particular candidates for such an experimental verification
are highly charged and strongly deionized bidisperse charged suspensions with a small volume
fraction such that hydrodynamic interactions do not play a dominant role. The detection of the
lanes may be difficult in scattering experiments in three dimensions but should be easier in confined
suspensions whose trajectories can be followed in real-space and real-time. As far as possible
external fields are concerned one can think about gravity first, or about electric fields and magnetic

Fig. 1 Simulation snapshots for a driven asymmetric mixture. The big particles are light grey spheres
while the small particle are dark grey spheres. The parameters for the reduced driving forces f (1) ¼ F(1)s/kBT
and f (2) ¼ F(2)s/kBT are: (a) f (1) ¼ f (2) ¼ 0, (b) f (1) ¼ f (2) ¼ 10, (c) f (1) ¼ f (2) ¼ 50, (d) f (1) ¼ f (2) ¼ 100.
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fields. In the latter case, the colloidal particle should possess a magnetizable core. Once the tran-
sition has been found experimentally, it would further be interesting to compare quantitatively the
location of the transition with the simulation predictions.

VII. Some open problems

We end with a list of open problems.
First, it might be interesting to investigate in more detail the limit of very low densities. A

reentrant behaviour is expected: for constant external field but increasing density, the system should
exhibit two transitions from homogeneous state towards lane formation and then back to the
homogeneous state.

Second, the extreme limit of very strongly asymmetric mixtures would be interesting to study in
an external field. The question is whether the small particles will after all penetrate in the lanes
formed by the big particles.

Third, on a next level of complexity, it would be interesting to put a phase-separating mixture
into an external field. Then there is competition between fluid–fluid demixing driven by equilibrium
thermodynamics and lane formation driven by the external field.

Finally it would be interesting to study the formation of worms more extensively. Finite system
size effects have to be analyzed in detail and the effect of periodic boundary conditions on the lane
formation in the simulation is not known exactly. Another scenario is a slowly growing

Fig. 2 Simulation snapshots for a driven symmetric mixture. The light grey spheres are pulled upwards while
the dark grey spheres are pulled downwards. The relaxation from an initially mixed state at t ¼ 0 is shown for
four different times: (a) t ¼ 0, (b) t ¼ 0.1tB , (c) t ¼ tB , (d) t ¼ 10tB . The regions indicated by the three circles
in (b) show jamming of the particles, which is a characteristic feature at the beginning of the relaxation.
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worm-length which diverges at the precursor similar to a percolation transition. In order to clarify
this in detail, more simulation studies and more microscopic and phenomenological theories are
needed.
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19 H. Löwen, J. Phys.: Condens. Matter, 1992, 4, 10 105.
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21 G. P. Hoffmann and H. Löwen, J. Phys.: Condens. Matter, 2000, 12, 7359.
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