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1 S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III
Salt Lake, Calcutta, 700091, India
2 Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf
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Abstract. – Brownian-dynamics computer simulations show a dynamical crossover in a
strongly interacting colloidal suspension consisting of oppositely driven particles, wherein a
uniform state transforms, with increasing driving force, into a locally demixed state character-
ized by strongly anisotropic stripe-like domains which are homogeneous in the direction parallel
to the drive but have finite spatial extent of a double-correlation length in the transverse direc-
tion. A phenomenological dynamic density-functional theory has been proposed which accounts
for such a strongly anisotropic state as arising from an instability of a homogeneous state.

Introduction. – Nonequilibrium phase transitions are ubiquitous in nature, since they
occur in simple and complex fluids [1–3], in granular matter [4], in enormously complicated
biological systems [5, 6] as well as in pedestrian dynamics [7]. In order to understand the
principles of such phase transformations, simple lattice models of driven diffusive systems
have been studied [4, 8, 9] extensively in the recent past. However, most of the realizations
in nature are off-lattice, implying a much richer scenario of nonequilibrium transitions. Here,
phenomenological treatments have had considerable success [1], but full microscopic theories
involving the interparticle interactions as the only input are still missing.

Mesoscopic colloidal suspensions [10] represent excellent realizations of driven diffusive
systems with a number of advantages: The samples are well characterized and the effective
particle interactions can be tailored. Moreover, external driving fields can be applied in
a controlled way [11]. The mesoscopic length scales and the slow relaxation times of the
order of milliseconds open the way for a direct experimental investigation in real space and
real time which is impossible for molecular systems. For instance, colloidal samples can be
confined between glass plates to two dimensions [12] such that their individual trajectories
can be followed by video microscopy [13]. For equilibrium phase transformations, colloids
have played an explicit role as model systems for condensed matter in general, and it can be
expected that they will play a similarly dominant role for nonequilibrium phase transitions.

In this paper we examine a particular kind of nonequilibrium segregation in a driven
two-component colloidal mixture by theory and simulation. In our two-dimensional model,
the two components are driven in opposite directions by constant external forces. Using
Brownian-dynamics simulations, we observe a dynamical crossover upon increasing the driving
force. Above a critical drive, the system proceeds from a uniform mixed fluid into a state
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characterized by strongly anisotropic stripe-like domains in the direction parallel to the driving
field. We further show that this phenomenon can be understood from a dynamical density-
functional theory that takes the repulsive interparticle interaction explicitly into account. The
dynamical segregation is triggered by the interparticle interactions and only occurs in strongly
interacting and overdamped Brownian fluids, even without any hydrodynamic interactions. It
is therefore qualitatively different from previous studies of segregation transitions which are
either generated by hydrodynamic flow [14–16] or by a finite inertia of the particles as relevant
in granular matter [17,18] and pedestrian models [7]. Reference [3] reports Brownian-dynamics
computer simulations on a similar system where first-order laning transition is observed for
very strong driving force, the extent of the segregated stripes perpendicular to the drive being
macroscopic, i.e., comparable to the system size. Here we focus on the low driving-force regime
in order to have a better understanding of the mechanism of such lane formation. In what
follows we first describe results from computer simulations of our model. Then we construct a
dynamical density-functional theory to account for the stability of the inhomogeneous phase.

Brownian computer simulation. – We simulate 2N = 500 colloidal particles in a square
cell of length �, having periodic boundary conditions with a fixed number density ρ0 = 2N/�2

and at a fixed temperature T . The effective pair potential between two colloidal particles at
a separation r is modeled as a screened Coulomb interaction [10]

V (r) = V0σ exp[−κ(r − σ)/σ]/r, (1)

where V0 is an energy scale, σ is the length scale, defining the range of the interaction, and
κ the reduced inverse screening length. In this work the energy is chosen to be V0 = 10kBT ,
where kBT is the thermal energy, and κ = 4.0 is fixed.

The dynamics of the colloids is completely overdamped Brownian motion. We neglect
hydrodynamic interactions which is justified for small colloidal volume fractions. We solve
numerically, using the technique of Ermak [19,20] over a time-step ∆t, the stochastic Langevin
equations for the colloidal trajectories �ri(t) (i = 1, . . . , 2N):

γ
d�ri
dt

= −�∇�ri

∑
j �=i

V (|�ri − �rj |) + Fi�ey + �F
(R)
i (t). (2)

There are different forces acting onto the colloidal particles: The first term is the force at-
tributed to inter-particle interactions. Next is the constant external field acting in the y-
direction of the simulation cell. The particles are oppositely driven: Fi = F > 0 for (+)
particles and Fi = −F for (−) particles. Half of the particles are of type (+), the other half
is of type (−) such that their partial number densities are ρ0+ = ρ0− = ρ0/2. We denote the
dimensionless drive parameter by F ∗ = Fσ/kBT . Finally, random forces �F (R)

i describe the
kicks of the solvent molecules acting onto the i-th colloidal particle. These kicks are Gaussian

random numbers with zero mean, �F (R)
i = 0, and variance

(
�F

(R)
i

)
α
(t)

(
�F

(R)
j

)
β
(t′) = 2kBTγδαβδijδ(t− t′). (3)

The subscripts α and β stand for the two Cartesian components. The friction constant γ
is assumed to be the same for both types of particles. We choose ∆t = 0.003τB, where
τB = γσ2/V0 is a typical Brownian timescale. After an initial relaxation period of 20τB,
the steady-state statistics has been gathered. In order to detect anisotropic correlations, we
measure the steady-state structure factors of a given species Sk(qk) in the k = x, y direction
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Fig. 1 – Simulation snapshots for different external forces: a) F ∗ = 1.0, b) F ∗ = 6.0, c) F ∗ = 10.0. The
particles are rendered as spheres with diameters σ. (+)-particles are dark gray, while (−)-particles
are light gray. The arrows indicate the x- and y-directions.

from the steady-state configurations:

Sk(qk) =
〈

1
N ρ(qk)ρ(−qk)

〉
(4)

with ρ(qk) =
∑N

j=1 exp[iqkkj ], where ki = xi, yi are the x and y coordinates of the i-th particle.
Here, two particles of the same species are considered for averaging if their distance projected
to the perpendicular direction of k = x, y is smaller than a suitable length s. If s is too small,
the finite time of the simulation allows no good statistics. If s is too large, all correlations
in the k-direction will vanish on average. We find that a suitable choice is s = 5ρ−1/2

0 . We
have checked carefully that the choice of s has no influence on the qualitative behavior of the
structure factors, except a slight shift in the peak heights. The brackets 〈· · ·〉 in eq. (4) denote
averaging over time, all slabs with width s and the particle types. N is the average number
of particles of the considered type contained in one of these slabs serving as a normalization
factor.

We report in particular observations for ρ0σ2 = 0.3. The snapshot in fig. 1a) shows that
the two species [+,−] remain mixed in a homogeneous state for low F ∗ = 1.0. However,
around a critical drive, F ∗ = 6.0, the system tends to get into a highly anisotropic structure,
shown in fig. 1b): droplets of similarly driven particles, highly elongated along y and having
characteristic transverse dimension ∼ 1/q0, are formed. This gets much more pronounced for
higher drivings, see fig. 1c). The lanes of similarly driven particles proliferate parallel to the
y-direction. These observations are supported by Sx(qx) and Sy(qy) data as well. Sx(qx) in
fig. 2a) shows a growing low qx peak beyond F ∗ = 6.0 roughly at half of the correlation peak
maximum implying that the substructure is a doubled-correlation length in the x-direction.

The continuous growth of the peak at q∗x ≈ 1 of Sx(qx) of our simulation data signals the
onset of strongly anisotropic spatial correlations. The onset seems to be a sharp crossover
between a spatially homogeneous system and a system with a “worm-like” structure of strongly
anisotropic spatial correlations. The low peak slightly shifts to lower qx as F ∗ increases. The
substantial homogenization in the y-direction, characterized by the growth of a qy = 0 peak,
is observable in the structure factor Sy(qy) in fig. 2b). The simulations are thus suggestive of
structural inhomogeneity being supported in the system above a critical F ∗. The critical field
F ∗

c is estimated by the F ∗ where the low qx peak in Sx(qx), shown in fig. 2a), first appears. A
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Fig. 2 – Structure factors Sx(qx) and Sy(qy) as defined in eq. (4) for different external forces for a
density ρ0σ

2 = 0.3. The inset in a) shows the curvature a (crosses) of a parabolic fit to Sx(qx) in an
interval q∗x ∈ [0 . . . 3]. The zero point of the linear fit (dashed line) defines the critical force, which is
F ∗

c = 4.7 for this particular density.

parabolic function āq2x + b̄qx + c̄, with ā, b̄, c̄ as the parameters, is fitted to the data of Sx(qx)
in the interval q∗x ∈ [0, 3]. For F < Fc the curvature ā is positive, while for F ∗ > Fc the peak
has a negative curvature. Hence, the zero of the curvature in the parabolic fit is a reliable
estimate for the onset of anisotropic spatial correlations. An example of the curvature ā vs.
the force results is shown in the inset of fig. 2a) for a density ρσ2 = 0.3. We remark that the
critical forces obtained for anisotropic coarsening are significantly smaller than those required
for the full first-order lane formation as obtained in ref. [3]. Thus the crossover found here is a
precursor to the lane formation [3], the latter being preceded by strongly anisotropic domain
formation at much lower F ∗.

Dynamical density-functional theory. – We now develop a dynamical density-functional
theory to account for the stabilization of the inhomogeneous steady states beyond a critical
drive strength as suggested by the simulations. We start from the continuity equation of the
inhomogeneous time-dependent density fields ρ±(�r, t):

∂ρ±(�r, t)
∂t

= −∇ ·
[
�j

(1)
± (�r, t) +�j(2)± (�r, t) +�j(3)± (�r, t)

]
, (5)

where we include three different types of currents: �j(k)
± (�r, t) (k = 1, 2, 3). The first term,

�j
(1)
± (�r, t), is a diffusive current generated by a chemical potential gradient in the system. In
the framework of dynamical density-functional theory it is modeled as [21]

�j
(1)
± (�r, t) = − D

kBT
ρ±(�r, t)∇δF [ρ+, ρ−]

δρ±(�r, t)
, (6)

where D = kBT/γ is the diffusion coefficient. The free-energy density-functional, F [ρ+, ρ−],
for a strongly correlated system can be expressed for weak inhomogeneities around a homo-
geneous state as [22]

F [ρ+, ρ−]
kBT

=
∑
k=±

∫
d2rρk(�r ) log[2ρk(�r )/ρ0]− 1

2

∫
d2r d2r′c(|�r − �r ′|)∆ρ(�r )∆ρ(�r′ ) (7)
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with ∆ρ(�r ) = ρ+(�r )+ρ−(�r )−ρ0. Here c(r) is the fluid direct correlation function, determined
by the interparticle interactions V (r) [22]. The second type of current, �j(2)± (�r, t), is directly
induced by the driving field in the y-direction. In a completely demixed state, we know that
the field induces a Brownian drift velocity of vd = F/γ, while in a completely mixed state the
flow is reduced due to mutual collisions between oppositely driven particles. Assuming that
there is no drift at all in the latter case and interpolating linearly between demixed and mixed
situations we obtain(1)

�j
(2)
± (�r, t) = ∓�ey 2vd

ρ0

[
ρ+(�r, t)(ρ0/2− ρ+(�r, t))− ρ−(�r, t)(ρ0/2− ρ−(�r, t))

]
. (8)

Finally, the third type of current, �j(3)± (�r, t), is also induced by the external drive, but it is
in the x-direction perpendicular to the field. The physics of this term can be understood
by Brownian collisions between + and − particles causing a displacement perpendicular to
the field. Were the difference of the density fields ρ+(�r, t) − ρ−(�r, t) homogeneous in the x-
direction, there would not be any net effect on average, so that �j(3)± would vanish. Hence, the
first nontrivial leading term contributing to �j(3)± (�r, t) is the gradient in the density difference
field. Furthermore, �j(3)± (�r, t) should scale with the local collision number per time. With
σ0 denoting a typical range of the interaction V (r) needed to perform a collision, the latter
quantity is proportional to vdσ0ρ+(�r, t)ρ−(�r, t). Consequently, we find

�j
(3)
± (�r, t) = ±�ex σ0vd

ρ+ρ−
ρ+(�r, t)ρ−(�r, t)

∂

∂x

[
ρ+(�r, t)− ρ−(�r, t)

]
, (9)

where the factor 1/(ρ+ρ−) serves to guarantee correct dimensions. Henceforth, we estimate
σ0 to be an effective hard-core diameter from the Barker-Henderson perturbation theory,
σ0 =

∫ ∞
0

[1− exp[−V (r)/kBT ]]dr. We finally remark that —as a symmetry requirement— all
currents remain unchanged under the interchange of the species, namely, ρ+(�r, t) ↔ ρ−(�r, t)
and F → −F .

A linear stability analysis for density perturbations in the steady state [2], proportional to
exp[iqxx+ iqyy + ωt], yields two possible dispersion relations:

ω∗
1 = 2F ∗q2x − [1− ρ0c̃(�q )]q2 − 6ivdσ0qy/D,

ω∗
2 = −[1− ρ0c̃(�q )]q2, (10)

where ω∗
1,2 = ω1,2σ

2
0/D denotes the dimensionless frequency and c̃(�q ) is the Fourier transform

of c(r). Steady-state bifurcations require the frequencies to be real which can be achieved by
qy = 0. Note that 1 − ρ0c̃(�q ), being the inverse of the static structure factor, is a positive-
definite quantity [22]. Hence, ω∗

2 remains negative for all �q = (qx, qy). The real ω∗
1 for

qy = 0 can change sign by virtue of the competition of two terms, indicating the steady-state
bifurcation of a homogeneous state to an inhomogeneous state [2]. Physically, the competition
is between the diffusive thermodynamic current which —via entropy of mixing— tries to
avoid any +− interface and the current �j(3)± (�r, t) which amplifies particle segregation in the
x-direction via collisions induced by the drive. Being the unstable wave vector in the y-
direction qy = 0 as in the simulations, the qx where ω∗

1 has a positive maximum will dominate
the growth of the inhomogeneous phase. The role of the correlations in stabilizing the patterns

(1)If a term vd/ρ0α �eyρ+(r, t)ρ−(r, t) with small α is added to the r.h.s. of eq. (8) in order to account
for nonzero flow in the mixed states, the requirement qy = 0 for real w1,2 still remains and the results are
unaffected.
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Fig. 3 – a) Dispersion curves for a density ρ0σ
2 = 0.3 and forces F ∗ = 6.25, 6.75, 7.2 and 7.75. The

curves move up with increasing external drive. The cross denotes the location of q0 corresponding
to the critical force F ∗ = 4.7 obtained from simulation. b) Critical drive F ∗

c vs. density ρ0σ
2. The

theoretical result (solid line) is compared to simulation results (crosses).

is apparent from the dispersion relations. In the high-temperature limit towards the ideal gas,
all correlations vanish. Then ω∗

1 does not show any maximum for a finite qx. Thus, the
structural inhomogeneity, characterized by a small and finite q0 in the x-direction, can be
supported only in a strongly correlated system.

In order to locate the unstable low-qx modes as the steady-state bifurcation takes place for
the finite-ρ0 cases, we approximate c(r) by that of an effective hard-disk fluid with effective
diameter σ0 for which analytical expressions are known [23]. The behavior of ω∗

1 as a function
of qx is shown in fig. 3a) for a given ρ0 and some typical values of F ∗: For very low F ∗,
ω∗

1 , despite having a maximum at a nontrivial qx, remains negative for all qx indicating the
stability of the homogeneous phase. As F ∗ increases, the maximum at the nontrivial qx,
q0, touches the zero axis at F ∗ = F ∗

c , indicating that a mode with wave vector q0 becomes
marginally stable. The homogeneous phase is unstable for F ∗ > Fc to density perturbations
with qx over a band of about q0, the growth being dominated by q0. We also observe from
fig. 3a) that both q0 and ω∗

1(q0) increase with F ∗ for F ∗ > F ∗
c . We determine graphically F ∗

c

as a function of ρ0, as shown by the solid line in fig. 3b). We note that F ∗
c increases with ρ0.

The critical fields F ∗
c for the crossover in the simulations, marked by the crosses in fig. 3b),

also show a very similar trend. Moreover, the increase in ω∗
1(q0) for F

∗ > F ∗
c is in qualitative

agreement with the growth of the low qx peak in Sx(qx) for F ∗ > F ∗
c in the simulations. We

further observe that q0 agrees well with the low qx peak position of Sx(qx) at the simulation
estimate of F ∗

c which corresponds to a double-correlation length. The simulation data show
a shift of the low qx peak to higher values within the noise, for F ∗ > F ∗

c , as in the theory.
Such similarities in the features lead us to link the dynamical instability found in our theory
to the onset of strongly anisotropic spatial correlations in the simulations.

Conclusions. – We summarize our findings: An equimolar mixture of oppositely driven
and strongly interacting colloidal particles proceeds from a homogeneous state to a stripe-
patterned state characterized by strongly anisotropic correlations. The stripes are homoge-
neous in the direction parallel to the drive but have finite spatial extent of a doubled-correlation
length in the transverse direction. Our dynamical density-functional theory yields the dynam-
ical instability as a steady-state bifurcation of the density field around the onset of structural
inhomogeneity in the simulations. This suggests the following mechanism of lane formation
of ref. [3]: The homogeneous state becomes unstable to inhomogeneities with anisotropic do-
mains via a steady-state bifurcation. Such domains proliferate to form lanes for very large
drive where nonlinearities could be important. Further works would be necessary to verify this
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conjecture. Qualitatively, we expect that the instability persists for asymmetric mixtures, for
different repulsive interactions V (r), for slowly oscillating external fields and for three spatial
dimensions. Our prediction can be verified in real-space experiments of highly charged and
strongly deionized colloidal mixtures, where the colloidal volume fraction is small so that hy-
drodynamic interactions do not play a dominant role. If the particles have the same charge but
a different mass, one should see the instability during sedimentation. Another realization is an
electric (or magnetic) field acting on a bidisperse charged mixture (with magnetizable cores).
We finally would like to point out that the dynamical density-functional theory presented
here to include explicitly the effect of particle interaction in a driven system should be useful
in understanding dynamical instabilities encountered in other systems, as, e.g., pedestrian
dynamics [24].
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