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Phase behavior and structure of star-polymer—colloid mixtures
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We calculate the phase diagrams of mixtures between hard-sphere colloids and star-polymers of arm
numbersf=2,6,32 for different star-polymer—colloid size ratios €4<0.6 using an effective
one-component description for the colloids in the presence of the stars. We map the full
two-component system onto an effective one-component system by inverting numerically the
Ornstein—Zernike equation for binary mixtures, supplemented by the Rogers—Young closure, in the
low-colloid density limit. The free energy for the fluid and crystalline phase is calculated by using
both hard-sphere perturbation theory and thermodynamic integration of simulation data. We find
stable fluid—fluid demixing transitions for low arm numbérs2,6 above a critical value of the size

ratio q. below preempted by a fcc-solid. For the linear polymer lirhit,2, the critical size ratio is

found to beq.~0.4, in agreement with other approaches to colloid-polymer mixtures. Increasing
the arm number, the region of stability of the demixing transition with respect to crystallization of
the colloids shrinks, and, grows. A comparison between the one- and two-component descriptions
that demonstrates the consistency between the two routes is also carried 8002CAmerican
Institute of Physics.[DOI: 10.1063/1.1474578

I. INTRODUCTION multicomponent description of real systems unfeasitdae
possibility is to considemodelmixtures and two examples
Multicomponent mixtures display an enormously richerthat have been intensively investigated in the recent past
phase behavior than one-component systems. A typical puligixtures of hard sphereolloids) and free, nonadsorbing
substance consisting of spherically symmetric moleculeghains on the one hari,and the binary hard sphere mixture
without internal degrees of freedom, displays a generic phas@HS) of two species with a variable size ratio on the
behavior on the temperature-pressure plane that featuregher’=® Many of the theoretical investigations of the
three phases: a gaseous and a liquid @hesufficiently  colloid—polymer(CP) mixture have been based on effec-
strong attractions between the molecules are present a tive, one-componentlescription of the hard colloids, for
crystal! Moreover, the Gibbs phase rélasserts that there is which an additional, attractive depletion potential is intro-
only one point in the phase diagram at which these three cafluced after the polymer has been integrated out. This is the
be found in simultaneous coexistence with one another. Conwell-known Asakura—Oosaw@O) model®*in which the
sequently, investigations of the bulk thermodynamics of onepolymers are figured as penetrable spheres experiencing in
component systems focus on the calculation of the freezingaddition a hard-spheréHS) interaction with the colloids. A
and liquid-gas coexistence curves, as well as on the propefumber of theoretical investigations on the AO mogie
ties in the neighborhood of the critical point associated withhaye revealed that the system displays a demixing transition
the latter. In multicomponent mixtures, the additional free-that accompanies the freezing of the hard colloids. However,
dom provided by the flexibility of changing the concentra- the former becomemetastablavith respect to the lattét for
tion of any of the constituent species at will, opens up theyglymer-to-colloid size ratiosj<q,=0.45. For size ratios
possibility of various types of phase transitions, such as, €.9q>q_, the system displays three phases: a colloid-poor/
vapor-liquid, demixing, crystallization of any of the number polymer-rich and colloid-rich/polymer-poor fluid, as well as
of the components, alloy formation, etc. Thereby, new topoy solid phase, in which the colloids form a fcc-crystalline
logical features in the phase diagram, including regions ofrrangement with the polymers diffusing in it. However, for
multiphase coexistence, lines of critical points and criticaly<q_ a single, mixed fluid and a crystal phase exist. These
end points show up. Itis therefore not much of a surprise thafingings are in semi-quantitative agreement with experimen-
the structure and thermodynamics of multicomponent Mixyy|  resylts!® In the BHS system, two-component
tures are studied in much less detail than those of pure suljmylationd” have shown that the demixing transition in the
stances. _ _ fluid phase is either metastable with respect to crystallization
In soft matter physics, on the other hand, mixtures argy i is completely absent, depending on the size r&tiale
the rule, not the exception. To complicate matters even furq e that in all cases mentioned above, freezing refers to the
ther, typical soft matter systems include components with g, g6 hard spheres only: the crystallization of both compo-
vast separation of length scales, a feature that makes a trigants and the associated formation of binary alloys takes
place at size ratios close to unity and its investigation by
3Electronic mail: joachim@thphy.uni-duesseldorf.de theoretical methods is highly nontrivi&l %t

0021-9606/2002/116(21)/9518/13/$19.00 9518 © 2002 American Institute of Physics

Downloaded 17 Mar 2009 to 134.99.64.184. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 116, No. 21, 1 June 2002 Star-polymer—colloid mixtures 9519

A theoretical understanding of tienetgstability of the  TABLE I. The fit parameters\, «, 7 for the effective star—colloid interac-
demixing transition in two-component mixtures is provided tion of Eq.(6) and the star—star interaction E§) obtained from molecular

by the depletion potentiathat effectively acts between the simulation.

larger components of the mixture when the smaller ones are ¢ A(f) L o
thermodynamically traced oéf.Depletion is caused by the 0.46 058 103
fact that the small components have more free space avail- 6 034 0.73 114
able to them when two large particles are brought close to 32 0.24 0.84

contact than when they are far apart. Hence, an entropic ef

fective attraction appears between the colloids. The proce-

dure of tracing out the small components facilitates the the-

oretical studies but it is subject to two strong constraintgn Sec. lll. Concerning the fluid—fluid demixing transition,

arising from the definition of the effective interactiéh, the full, two-component system has been solved in Ref. 26

namely(i) the overall thermodynamics of the mixture must, using fluid-integral equations and Monte Carlo simulations.

evidently, remain invariant in switching from one description Good agreement with experimental measurements has been

to the other andii) the correlation functions of the large found there.

component should also be the same in both descriptions. We consider a binary system witl; colloidal spheres
The purpose of this paper is twofold: on the one hand, byf diametero, (radiusR.) and N star polymers, character-

examining mixtures of colloids with star-polymers of vari- ized by a diameter of gyratiom, (radius of gyratiorR,) and

able arm-numbef, we provide a natural bridge between the an arm numberf. The total particle number isN=N.

CP-mixture(corresponding to linear chaink=1 andf=2)  +Ns. Let qg=04/0 be the size ratio ang.=N./V and

and to the BHS(formally f—=). To this end, we derive ps=Ns/V the number densities of the colloids and stars,

depletion potentials between the colloids that, depending ofespectively. We now define the packing fractions,

f, interpolate between interactions similar as in the AO- -

model and the BHS-depletion interacti&t?* On the other Ne=—=PeTe (1)

hand, we systematically investigate the consistency between 6

the one- and two-component descriptions, since our startingf the colloids, and

point are the three interaction potentials acting between the

two components. We trace out the phase diagrams of the ns:zpsgg 2

mixture for various combinations of star arm numbffalso 6

called functionalities and star-colloid size ratios. We find of the stars in the volum¥. We investigate the thermody-

that already abové=10, the generic behavior of the BHS- namics of the mixtures on the basis of pair potentials be-

model with an absence of a demixing transition is reached. Aween the two mesoscopic components, having integrated

brief account of this work has already been publishedout the monomer and solvent degrees of freedom. Thus,

elsewheré? three pair potentials are used as inputs for theory or simula-
The rest of the paper is organized as follows: In Sec. Iltion. The colloid—colloid interaction at center-to-center dis-

we give a review of the two-component description of star-tancer is taken to be that of hard sphergsS),
polymer—colloid mixtures. Different methods of mapping _
o for r<oyg;

this onto an effective one-component system are discussed V()=
. . . cC -
and compared in Sec. lll. The resulting phase diagrams are 0
presented in Sec. IV and a comparison between the two- and
one-component descriptions in Sec. V. In Sec. VI we drav\be
our conclusions, and in the Appendix we present some tectl—e
nical details regarding the calculation of the Gibbs free en

else. )

The pioneering work in deriving the effective interaction
tween two stars in a good solvent was performed by Wit-
n and Pincué’ There, it was shown that the interaction
diverges logarithmically with star-star separatioasr — 0.
ergy. A full expression, valid for arbitrary separation has been de-
rived theoretically and verified by neutron scattering and mo-
lecular simulation, where the monomers were explicitly

We start with the description of the full two-component resolved?®?® The star—star pair potential is given by an ul-

mixture of star-polymers and hard spherical colloids. Thetrasoft interaction which is logarithmic for close approaches
applied interactions and resulting structural quantities are inand shows a Yukawa-type exponential decay at larger
put for the mapping onto an effective one-component systerdistance$®:°

II. TWO-COMPONENT DESCRIPTION

+(1+\f12)"t for r<oy;

(1+f/2) 2 (%) exp{ fr—og

r
204

—In

r
5 s
Ved )= JgkeT 12 @

else,
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with kg being Boltzmann’s constant afddthe absolute tem- obtained by fitting to computer simulation results, see Refs.
perature. Computer simulations have sh&hat the so- 26 and 35 and Table I. Usingrg(f=2)=1.03 we obtain for
called corona-diameters remains fixed for all considered the second virial coefficient of polymer solutions the value
arm numbersf, being related to the diameter of gyration 52/R3=5-591 in agreement with the estimate 5_BZ/R3
throughos=0.660 . The theoretical approach giving rise to < 5.9 from renormalization group and simulatiofis.

Eq. (4) does not hold for arm numbeifss 10, because the Equationg5) and(4) above vyield the correct behavior of
Daoud-—Cotton model of a stéron which the Yukawa form  the overall prefactor for small and large valuesf ofespec-

of the decay beyond overlaps is based, is not valid for Smalﬂively. Equation (5) vields the prefactor 5/18 fof=1, in

f. In these cases, the interaction inclines to a Shorter'rang%reement with the predictiony( 1)/ of Witten and
decay forr > 0. This is consistent with approaches in Which g, 27 504 forf = 2 the value 0.786, which is very close to
at the_llngar polymerzhglnt a Gaussian behawor of the Pallihe exact value 0.8 calculated by means of renormalization
potential is predicted®=>* Only the large distance decay of group techniques by des CloizeatbMoreover, von Ferber
the star—star interaction is modified for sméllits form at et al. have demonstrat&ithat it is in very goo,d agreement
close approaches has to remain logarithffiiaccordingly, with .up to three-loop calculations fdras high as 6. Equa-

the following star—star pair potential for arm numbdrs . - o .
=10, replacing the Yukawa by a Gaussian decay, has bediP" (4), on the other hand, satisfies thi&”scaling of the

put forward3® prefactor for highf -values?’ Extensions to polydisperse star-
polymers have been also worked diit.

| r 1 . An analytic form for the star-polymer—colloid pair po-
=In| —|+ == for r<soyg; : . . :

5 o os] 21°0% tential can be found by integrating the osmotic pressure of
Vsdr)=7gkeTT 1 (5)  one star along the spherical surface of a colloid, following an

Sazexd - 2(r2—o?)] else, idea put forward by Pincu¥. This can be achieved for arbi-
70 trary curvatures of the colloid but the analytical result below
where 7(f) is a free parameter of the order ofR}/and is s accurate for size ratiog=0.7 and reads as

for r<2=
©  for r<—;
2

Oc 2
V(1) =AkgT¥2—= 27 (4 1 Ic o5t o (6)
2r| &—In o —Ug 1) ¢ > for 5 =r< >

&El1—erf(2kz)]/[1—erf(kog)] else,

wherez=r — /2 is the distance from the center of the star1,2,..,v, respectively, enclosed in the macroscopic volume
polymer to the surface of the colloid. The constants are V. The partial densityp; of speciesi, is given by p;
B 5 o1 =N, /V. The pair structure of the system is fully described
1= (1+2«%0%) (7) by v(v+1)/2 independent correlation functiors;(r), i
and <j=1,2,..,v, because symmetry with respect to exchange
of the indices dictates;;(r)=h;;(r). Associated with the
Vmé total correlation functions are the direct correlation functions
KO (dcf's) ¢jj(r). For the same reasons, there exist on(y

In Eq. (6) above A (f dr(f fit t btained +1)/2 independent dcf’s. The Fourier transformshgyf(r)
n Eq. (6) above,A(f) andk(f) are fit parameters, obtaine andc,(r) are denoted b%j(k) and, (K), respecively.

from computer simulations where the force between an iso- The OZ relation for one-component svstems at densit
lated star and a hard flat wall is calculated, see Refs. 26 ar}d . ; por y iy
. . akes in Fourier space the algebraic form,

35. k is in order of 14, see the values in Table I, whereas

geometrical arguments yield a limit,,=5/36~0.14 for very

large f. . oo Rk =T(k)+T(k)ph(k), )
Access to the thermodynamics of the mixture is obtained

by solving the Ornstein—Zernik@0Z) equations for binary

mixtures using the two-component Rogers—YodRY) clo-  whereh(k) andT(k) are the Fourier transforms of the total
sure. The RY form is reliable for the one component starand direct correlation functioris(r) andc(r), respectively.

polymer systet and shows a spinodal instability in highly The generalization of the OZ relation for multicomponent
asymmetric hard sphere mixturéket us give a brief outline  mixtures reads 4%

regarding integral equation theories for multicomponent
mixtures. Consider, in general, mcomponent liquid mix- 5 5 5 ~
ture, consisting of N;,N,,...,N, particles of species H(k)=C(k)+C(k)-D-H(k), (10

&= exp( ko) 1-erf(koy)]. (8)

Downloaded 17 Mar 2009 to 134.99.64.184. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 116, No. 21, 1 June 2002 Star-polymer—colloid mixtures 9521

where H(k) and C(k) are vX » symmetric matrices with N

(@) — 1.=007
elements, -y ns=o,14 1
~ ~ ~ - T T P =021
[FA(k1;=h;k) and [C(k)];=T;Kk), (11) : l o
andD is avX v diagonal matrix of the partial densities, < 10F ! ]
[Dlij=pid; - (12 | ‘\‘
Equation (10) above generates(v+1)/2 independent 5p \ 1

algebraic equations for the/(v+1) unknown functions
ﬁij(k) andc;; (k). The system becomes in principle solvable
if one provides additionab(»+ 1)/2 closure equationde-
tween these functions. For example, the Rogers—Young clo-
sure generalization to multicomponent mixtures reads as

exd yi;(Nf(r)]-1
fi;(r)
(i=1,2,..,v and i<}), (13)

whereg;; (r) =h;;(r)+1, v;;(r)=h;;(r) —c;;(r), andv;;(r)
is the pair interaction between speciesndj. The “mixing
function” f;;(r) is given by

fij(r)Zl—eX[:(—aijr). (14)
05p—————t——

Usually, asingle self-consistency parametes;; =:a is em- 0 5 10 15
ployed for all components, so thaf(r)=f(r), as there is a
single thermodynamic consistency requirement to be fulgig, 1. (s Radial distribution functions antb) static structure factors for
filled, i.e., the equality of the “virial” and “fluctuation” total  the colloids, obtained by the OZ-equations for binary mixtures closed with
compressibilities of the mixture. Yet, multiparameter generthe RY-closure. Shown are examples for arm numbeB2, size ratiog
alizations of the RY closure have also been propden; =05 and a fixed colloid packing fraction,=0.1, while the star polymer

. . . T packing fractiony; is increased. Fofys=0.24 the system is in the immedi-
voking the partial compressibilities of the individual compo- ate vicinity of the spinodal line marked by the divergence ofkheO limit
nents. Fora=0 one recovers the Percus—Yevi@RY) and  of the corresponding structure factor.
for a= the hypernetted chaifHNC) multicomponent
closures’® For a HS mixture, the PY closure is analytically
solvable?*~=46 .

The RY-closurdEgs.(10)—(14)] for the two-component the sta_r—densny, forces the system to dev_elop long-range
mixture, using the interactions given by Eq8)—(6) as in- flyctuatlons and eventually to_dem|x, as witnessed by_ the
puts, was numerically solved by using the Picard-methodf“,vergence of the lovk-values in of the structure factor in
Monte Carlo simulations using the same interactions as in—F'g' 1(b). . . .
puts and measuring the structure factors at selected thermo- In order tp calculate the bqual lines, it is more conve-
dynamics points, yielded excellent agreement with the RW'e_nt tq con§|der the cqncgntraﬂon structure fa@gn(k),
closure. In our work the thermodynamic consistency of theWhICh is a linear comb_lnatlon of the three_partlal structure
RY closure was enforced with a single adjustable parametef?CtorS' The concentration structure factor is defined as

gij(r)=exd — Bu;;(r)]| 1+

.0

@, a simple scaling of the forny;; =a/_aij , (i,j=c,s) with Seor( K) =X2Ssc(K) + x2Sy k) — 2X X Sco(K), (15)
gij=(oi+ 0;)/2 showed only small differences compared to_ . . .
the unscaled form. with the concentrations;=N; /N, (i=c,s). The approach to

The structure of the binary mixture is described by thethermodynamms is then given through the sum fdfe,
three partial ~static structure factorsS;(k)=g; #g(xs,P,T)| 1t
+ Vpipjhij(K), withi,j=c,s. Indication of a demixing tran- X2 ' (16)
sition is the divergence of all structure factors at the long
wavelength limitk— 0, marking thespinodal lineof the sys-  Where g(xs,P,T)=G(xs,N,P,T)/N is the Gibbs free en-
tem. An example of a diverging structure factor is plotted ine€rgy G(xs,N,P,T) per particle and® denotes the pressure
Fig. 1 together with the corresponding radial density distri-of the mixture. In order to simplify the notation, we set
bution ge.(r). For a fixed arm numbef=232, size ratioq  =Xs; clearly, x;:=1—Xx. We solved the OZ-equations for
=0.5 and colloid density;.=0.1 we plot the colloid corre- different combinations of the parametdrandq covering a
lation functions for increasing star polymer packing fraction.wide range in the density planey{, s). Once the concen-
As can be seen in Fig.(d), the rising contact valug..(o.) tration structure factor, Eq16), is known as function ok
signals an effective attraction between the colloids, inducedior a fixed pressure the Gibbs free energy can be calculated
by the star polymers. This is a signature of the depletiorPy two simple integrations. In Fig.(@), an example for the
effect, to be discussed in detail below. Further increasing ofecond derivativey”(x) is plotted for constant pressuf

lim Seor(K) =kgT
k—0
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where we omitted® andT from the argument list, as we are
working at fixedT along an isobar. If no stars are present in
the system X=0) the Gibbs energy per particle reduces to
the chemical potential of hard spheres at the given pressure
P. To determine this, we apply the Carnahan—Staffirex-
pressions for the pure hard-sphere equation of state. If no
colloids are presentx=1), the Gibbs free energy per par-
ticle is equal to the chemical potential of the stars at the said
pressureP. To determine the chemical potential of the stars
for a given pressure, we calculated the equation of state of a
pure star-polymer system with the one-component OZ-
equation closed with RY. Fdr=2, where the star—star inter-

x action potential is ultrasoft, it is accurate to employ a mean-
field approximatiof®>® (MFA) for the direct correlation
R function of the polymers,cs(r)=—pBVs{r), where g
30 -\\\ N‘“’““‘**j =(kgT) L. For larger arm numbers the MFA becomes less
‘\\ -——- Bg(x) accurate. In the MFA, use of the compressibility sum rule
)N = Bpg(x) leads to the simple, quadratic expression for the excess
—~ 20| I Helmholtz free energ¥ ., of the star-polymer syster,
& N po, (x)
& S Fex P2 1
fo=? o f BV d’r=5 BV 0)pZ, (18
10 | N
_____________________ SN with the Fourier transfornV (k) of the functionV(r).
0 r""'l_ - : ‘ From Eq.(18) above, we obtain the excess star chemical
0 02 04 06 08 1 potential Bus ex=dfex/ Ips=BVs0)ps and the total star
X chemical potential in the MFA as
FIG. 2. (a) Example of the Gibbs free energy(x) (dashed ling plotted ,BMS=|n(pSUS)+BVSS(0)ps- (19

against the star polymer concentrativg X in star-polymer colloid mix-

tures forf=2, size ratiog=0.5 and a fixed pressurﬁz 28. g(x) is ob-

tained from integration of the differential equatiqi6), where S.,(k x=0) anda(x=1) are known for every pressukeand an
=0x) is calculated from the OZ-equatiofsircles. The second derivative g( ) g( ) yP

g”(x) is interpolated by a cubic spline interpolati¢splid line). The inset accurate integration o§”(x) can be performed. Once the
showsg(x) after subtracting a linear function, and demonstrates the convexXact free energy is known, all other quantities of interest
concave parts of this functiofb) Partial chemical potentials of the colloids can be calculated, for instance the partial chemical potentials
mc(x) and of the Star#s(z)t.tﬁlokt)ted a(ljga_insge gtaf goncf”tratk():;m :‘ed we(x) and ug(x) of colloids and stars, respectively, which
ﬁsg;?sp:cﬁr:letgetrﬁ: zﬁlme).mical zot(;l:\rt]ia?sngfs coIIoidg1 r::m)c(zl sta;rgs(,);)espae?:tiSely. e needed to perform the mapping of the phase dla_grz_ims
(b), the total densityo3(x) along the isobar is plotted as well. from the two-component to the one-component description
in Sec. lll. Examples of so-determined partial chemical po-
tentials are shown in Fig.(B). Some technical details on the
solution of the differential Eq(16) are presented in the Ap-
pendix.
Inside the spinodal line, the limit§;(k—0) attain non-

Through the procedure described above, the boundaries

E,BPO’SIZB, arm numberf=2, and size ratiag=0.5. The
Gibbs free energy is then obtained by integratigit(x)

along isobars. 1g(x) has concave part§i.e., if g"(x)<0 hysical, negative values associated with the physical insta-

for some x-regiorl, the system phase-separates and th(gility of the mixture against phase separation. Consequently,
boundaries are calculated by the common tangent construc-

. . a solution of the integral equations is not possible there, and
tion on theg(x) versusx curves. This common-tangent con- 9 d b

. . : . above the critical pressure*, the concentration structure
struction guarantees that partial chemical potentials of every worS (x,k=0) is unknown in some intervaix(P). In
'COl s N .

component have the same value on both coexisting phaset?].e example of Fig. @), the interval is 0.9:x<0.95. Thus

As it is performed on an isobar, and for fixed temperature is necessary to ir.1ter,pola@c (x.k=0) .to obta.in fhe se(‘:-

the pressure and temperature are also the same between th%)d derivativeg”(x) for all x oan(;I this is shown as a solid

phases and all conditions for phase coexistence are fquiIIecii).ne in Fig. 2a). This way thé integration of Eq16) can be
The constants of integration for the calculationggi) . i !

. . . performed. We emphasize that the interpolation is simply
fchrough the differential Eq(16) are determmed_by formula_t done in order to facilitate the integration. The resulting bin-
ing a boundary-value problem as follows. Since the Gibbs . . . . .

. . . . odal lines are independent of the precise interpolation
free energy is an extensive function but in its list of natural : . .
. . ) scheme, as long as the integral equation theories are capable
variables {(,P,x,T) only one extensive variableN) ap-

pears, Euler's theorem asserts that the funaiierG/N must of reaching the precise spinodal, i.e., the points in which the
have {he forn? k— 0 limit of the structure factor diverges. Since this is not

strictly the case, and sometimes we have to stop slightly
g(X)=(1—X) me(X) +Xug(X), (17 before the spinodal is reached, there are small inaccuracies
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induced by the interpolation procedure that grow with theV, symmetrically around their center of mass that coincided
width of the intervalAx where no solutions of the integral with the cube center. ThuR;,=R,—R; is the vector con-
equation theories can be found. necting the sphere centers aRg=|R;4| is the mutual sepa-

In the vicinity of the critical point? =0.3, the missing ration distance of the colloids. In addition, we introdudéd
interval Ax is very small and the interpolation is reliable. star polymers in the same box. As there are only two colloi-
Here the binodals should be accurate, while for higher presdal spheres, we are dealing with the lirpit— 0, therefore
sures(packing fractionsy.< s and 5.> g ) the binodals the packing fractiomsz(w/G)(Ns/V)aS of the stars in the
are more approximate but show reasonable behavior. Fdyox can be identified with the reservoir packing fractigip
highly asymmetric systemgy&0.18) it becomes more and introduced in the preceding section.
more difficult to get solutions of the integral equations inthe  We performed standariV T-Monte-Carlo simulations,
vicinity of the spinodal line and the calculation of binodals is holding the positions of the colloidal spheres fixed and tak-
not possible. ing statistics on the stars, for various different separations

The results for the phase boundaries in theR;, between the colloids. We employed the pair potentials
(n¢,ms)-plane have been presented in Ref. 26. There, semgiven by Eqs(4) and(5) for the interaction between the stars
guantitative agreement with experimental results, withou{depending on their arm numbeand by Eg.(6) for the
use of fit parameters in the theory, has been found. Since thateraction between stars and colloids. Due to the second
chemical potential of the stars in both coexisting phases isolloid, the radial symmetry of the density distribution of the
the same, it is possible to imagine now that both are broughdgtars around one colloid is broken. A nonvanishing force is
into partial contact with a reservoir of stars, in which thenow acting on each of the colloid in direction of their con-
stars have this common value of the chemical potential. Theecting vectoR,,=R,—R;, because of depletion or aggre-
word “partial” here means that the contact is assumed togation of the stars between the colloids, dependent of the
materialize through a semipermeable membrane that allondistanceR;, between them. The resulting force in directions
the passage of star-polymers but not of colloids through itperpendicular to their connecting vector remains zero. After
Let »L be the packing fraction of the star-polymers in thea sufficiently long equilibration time, the fordg acting on
reservoir. Since the reservand the two coexisting phases one of the colloids has been measured by performing the
all have the same value for the partial chemical poteptigl  statistical average
it follows that a representation of the phase diagram in the Nq
(_77C , 7_75)—plane can be transfgrmed, without Io§s of informa- Fl(R12)=< _ E Ve Vsc(|R1_rj|) _ (20)
tion, into the (., us)- Or, equivalently, the {4, ¢)-plane. A =1 1
comparison to the effective-one component description re-
sults where the phase diagrams are plotted in thén Eq.(20) abover;, j=1,2,..,Ns, stand for the positions
(7¢,75)-plane will be shown in Sec. V. of the star polymers, whereas the symbol-)R12 denotes a

constrained statistical average over the star polymers only,
IIl. MAPPING ONTO AN EFFECTIVE ONE-COMPONENT when the two colloids are held at separatiB,. Due to
SYSTEM symmetry, for the force on the second colloid it holds
—F1(R1p») and the magnitude of the depletion
is given by

Rz

In this section we proceed with a mapping of the two- Fa(Ri) =
component mixture onto an effective one-component systerfPce: FaedR12).
of colloids only, in which the star-polymers have been traced R;—R,
out. The result of this integration is an effective colloid—  FaefRi2)= —5—Fi(Ryo). (22)
colloid interaction in which the bare, hard-sphere potential of 12
Eq. (3) is “dressed” by a depletion interaction that has its ~ The depletion force acts for distandgg,> o only; for
origins in the star polymers. The star—star and star—colloi¢loser approaches, the bare, HS-interaction takes over.
interactions enforce spatial correlations of the latter wherfged R12) <O denotes attractions between the colloids, medi-
they are brought close to two colloidal hard spheres held a&ted by the stars. Indeed, for colloid separatiéhs= o
separationR;, from one another, and it is precisely these Such attractions are expected to show up, as in this case the
correlations that determine the form of the depletion potentwo colloids are hit asymmetrically by the stars from the
tial. We thus present different methods in obtaining theoutside, and the unbalanced osmotic pressure of the latter
depletion potential and compare between those. Inherent ipushes the hard spheres together. The total effective force
the derivation of a depletion potential is the omission ofacting on the first colloid in the presence of the stars is
many-body forces effectively acting between the colloidsFer(Ri2) =Frs(R12) +F1(R12) and can be figured as the gra-
when the stars have been thermodynamically traced‘dat. dient of an effective potential that is a sum of the bare, hard-
It will be shown that these play only a minor role, though. sphere interaction and thiepletion potential Ve R12),

A. Computer simulations F1(R12) = — Vg, Vei(R12)

~ The most accurate way to calculate the effective interac- = — Vi, [Veo(Rio) + Vaed Ri) . (22)

tion between two colloids in presence of the star polymers is

to employ direct computer simulatio®$:°® To this end, we In Fig. 3, we show representative examples for the re-

placed two colloidal particles with coordinat® and R, sulting depletion force- 4. R1,) for various different func-
along the body diagonal of a cubic simulation box of volumetionalities and size ratios. The figure shows also a compari-
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FIG. 3. Depletion forces for different
functionalitiesf and size ratiog). (a)
f=2; (b) f=6; (c) f=32. The sym-
bols denote simulation results, the

o - .
315 _ solid lines the force resulting from the
& o inversion of the RY-closure and the
25 ©.g=0.6,1'=080 broken lines the results of the superpo-

sition approximation. The denoted val-
ues of the reservoir star-polymer pack-
ing fractions, g, were chosen to be
close to the demixing critical point in
the fluid phase.

I Ll 12 13 14
r/c,

son with results of the inversion of OZ-equations, see SecC. Superposition approximation
1B and of the superposition approximation, Sec. Il C.
The disadvantage of the use of simulations for calculating,
depletion forces is the need of many long runs for high
resolved curves with good statistics. Referring to this fig-
ure, we note that forf=2 we recover essentially the

A third way to the depletion potential is offered by the

calledsuperposition approximatioiSA) of Attard®? If

the exact star-polymer density distributipg(r,;R4,R,) at

r, around two colloids held fixed at positiori®; and R,

. . . were known, then the depletion force in the low-density limit
Asakura—Oosawa-resuft, with the depletion force being could be calculated by an integration over the contributions

purely attractive, Fig. @). Increasing the star functionality, of the force between star-polymers and a colloid in direction
however, leads to an oscillatory behavior of the effective R,=R,~R,. As a matter of fact, the density
12— Z2 1- ’

force, which is caused by the increasingly strong correlation . : : -
' . . r1;R1,Ry) is proportional to the three-body, star-colloid—
effects between the stars, see Figd) &nd 3c). This char- Ps(r1iR1,Ro) is prop Y

> DEES _ olloid distribution functiorg)(r,,R;,R,). Since the latter
acteristic Is akin to the fgaturesg)gof the depletion force founcrs in general unknown, in the SA it is factorized as a product
in binary hard-sphere mixturé$> Star polymers act as de-

) ) X of pair distribution functions, as explained below.

pletmg agents that interpolate between the linear polymer Let us consider two colloids in a distang,, as de-

behavior and the hard-sphere one. picted in Fig. 4. We put the origin of our coordinate system
in the center of one of the two colloids surrounded by star-

B. Inversion of the OZ equation for binary mixtures polymers with densityps(r,;R;,R;). The depletion force

. . . . acting on the left sphere is given by the general relation,
An alternative route to the depletion potential, which g 9 b 9 y 9

. ) X . . (20). Taking into account thatVg VsJ(|Ri—r

does not require the use of computer simulations, is offere a. (20 g . Ry sd[Ry 1.|) .
by the so-called inversion of the full, two—component__Vf1VSC(|R1_r1|)’ settingR, =0, performing the statisti-
integral-equation theory-results in the limit of low colloid cal average there, and projecting on B direction accord-

density?>961 Indeed, it follows from exact diagrammatic iNd to Ed.(21), we obtain the depletion force as
expansions in the theory of liquitfsthat the radial distribu-

. . . . . ) * zdvsc(rl)

tion functiong(r) attains in the low-density limit the form Faed R12) = —ZWJ Mg 4N

g(r)=exdg —pBuv(r)], with v(r) denoting the pair potential 0 !

acting between the constituent species of the fluid. Thereby, 1

the effective potentiaVl/.4(r) acting between the colloids and X f_ 1Ps(r1;R1,Rz)wdw, (24)

depending parametrically on the star-reservoir packing frac-

tion 75 can be obtained by solving the two-componentwherew = cosé.

Ornstein—Zernike equations with the Rogers—Young closure  The superposition approximation amounts to replacing
for given star packing fractio’ and at the limity.—0. The  the exact densitys(r;;R1,R>) of the stars in the presence
so-obtained colloid—colloid radial distribution function of the two colloids by the product of the bulk star dengity
0cc(r) can be then inverted employing the exact relation

above and yielding the effective potential as

BVen(r) == lim In[gee(r; 7c, 75)]. (23 R R )
7c—0

In Fig. 3 we show results for the effective for€gg(r)
=—VVgi(r) derived fromBV4(r) obtained by the procedure
outlined above, in comparison with the simulation results of
Sec. lll A. Excellent agreement between the two is found, for
all (q,f) parameter combinations considered. Small devia-
tions for distances near contact o could be corrected by
introducing a simple scaling for the consistency parameter

i=alo;, (i,j=c,s) with an auxiliary ratio parameter FIG. 4. A sketch of two colloids in a distand®,,. The origin of the
aij=aloij, 1,]=C, y P coordinates lies in the center of the left sphargr;;R;,R,) is the star-

q'=os/o.=0.5 used for all size ratiog and all arm num-  poymer density at,, in the presence of the two colloids at positidRg
bersf. andR,.
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times the two radial distribution functions on the stars in the 1
presence of twasolatedcolloids, one with its center &R,
and one with its center &,. Hence, in the SA one writes

Ps(rl;erRZ)%p;gcs(“l_ Rl|)gcs(|r1_R2|)i (25

where, evidentlyp.= (6 7%)/(wa?3) relates the reservoir den-
sity and packing fraction. The radial distribution functions
des(|r1—Ri|) above relate to a sea of stars in the presence of
a single colloid, hence they are readily available by the
—0-limit of the two-component integral equation theories.
Noting that|r;— Ry|=|r,|= VRZ,+ 12— Ry y0, We finally

obtain in the SA, -3

» ,dVsdry)
Fae Ri2) = — 27} J g Ges(ra)dry
0 1

1 1.5 2
rlo,

FIG. 5. Depletion potential¥/q.{r) for the colloids obtained by mapping
the two-component system on an effective one-component system by inver-

1
xJ gcs(‘/Riz'i”ri_ R12r1a))wdw- (26) sion of OZ-equations in the low-density limit. We plot the potential for
-1

different arm number§=2,6,32 for star polymer reservoir packing fractions

. . . . % near the critical point of fluid demixing. The size ratiogs-0.5.
In Fig. 3 we show results obtained from this appromma—"s P 9 q

tion, in comparison to direct simulation results and to the
inversion presented in the preceding subsection. It can be )
seen that superposition approximation reproduces the simd Simulation

lation results in the linear polymer limit,=2, very well. In In order to determine phase coexistence, it is necessary
this case, the star polymer are very soft, weakly interactingo calculate the Helmholtz free energy= F(N¢,V, 7). An
particles. Thereby, the cross-correlations between them arigccurate but computational expensive way is to perform ther-
ing from the interactionVs((r) are so weak that the super- modynamical integration of Monte Carlo simulation results,
position approximation is valid: the presence of a secondsing the hard-sphere system as reference; for a detailed de-

colloid results into a density profile for the stars that is Vel’yscription, see Refs. 14 and 59. The free energy can be inte-
well approximated by the product of those arising from twograted as

isolated colloids. However, for larger functionalities, where ; ;

the star—star interaction starts causing significant correlation F(Nc,V,75) =Fo(Nc,V,75=0)

effects between them, the resulting depletion interactions and 1 Ng

forces from the SA are less accurate. As expected, the SA +f d)\<2 Vdep{r)> . (27
underestimates the degree of oscillatory behavior of the 0 <] Ng V.7l \

force; in addition, the phase of those oscillations is in error. ) . o )

Thus, for large arm numbers, the superposition approximaX/hile using an auxiliary effective mtera_ctlwf;ﬁ.(r) between
tion is not an adequate tool for calculating accurately théh€ star-polymers and colloids in the simulation,

effective interaction. V(1) = V(1) + A Vged ). (28

Here, O<\=<1 is a dimensionless coupling parameter, inter-
IV. PHASE DIAGRAMS polating between the hard sphere reference interaction (
=0) and the effective potenti&x(r). For the free energy of

Due to the shortcomings of the superposition approxima-

r__
tion and the accuracy of the inversion of the RY-results, wethe hard sphere reference systéfp(N;,V, 7,=0), we use

have resorted to the latter procedure in order to calculate tht(l,:]e Camahan-Starling expressforior the fluid, and the

depletion potential. Some examples of this potential are pIot‘—aquatlon of state proposed by Halfor the solid phase. The

ted in Fig. 5 for different arm numbefsand reservoir pack- calculation for every point on the free energy curve was per-

ing fractions . of the stars. Employing this interaction, we formed withNs= 108 particles starting with a face-centered-

proceed with the calculation of the phase diagrams of Secublc configuration. After fitting polynomials to the function

lected star-polymer—colloid mixtures. The goal is to establis f(pe) :.F/V’ a common tangent construction was employed
the limits of stability of the demixing transition with respect 0 obtain the coexistence curves among all phases.

to the crystallization of the colloids. Thereby, we limited

ourselves to the common, fcc-structure for candidate colloi- .

dal crystals, which materializes for colloids in the absence OIB' Perturbation theory

stars (7s=0). Though competing crystal structures cannot A theoretical understanding of the effects of the deple-
be ruled out a priori, the quantitative features of the depletioriion potential can be reached within the framework of stan-
potential render the stability of more open crystal structuresgard perturbation theory, using the hard-sphere system as
such as the bcc-lattice, improbable. For the calculation of theeference. To first order in perturbation theory, the Helmholtz
phase diagrams, we combined simulations and perturbaticinee energy of a collection of colloids interacting by the hard-
theory, as explained below. sphere plus depletion potentials is giverfby
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BF  BF, simple approximations of the AO-model. Apparently, the
N—=—+ zﬁpcf go(r)¢(r)d (29 overall features of such mixtures and, in particular, the
(metgstability of the demixing transition are insensitive to
whereF, andgo(r) are the free energy and radial pair cor- the details of the interaction potentials. At size ratjo
relation function of the reference system, apft) the per- =05 we have a demixing binodal that is only slightly
turbing potential Ve {r) in this case. Barker and Henderson staple, a result in agreement with that of Ref. 14 in which it
developed a second order term, including two-bodyyas foundq,=0.45.

correlations’’ and refining thereby the perturbation theory  An increase of the functionality suppresses the stability

for the free energy into of the demixing binodals, a finding which is in line with the
BF  BF, general trend that, ak grows, star-polymers become more
N N_ + = chf go(r) ¢(r)d3r akin to hard spheres; in a mixture of hard spheres, no demix-
C

ing takes placé’'®>°For f=6, a stable demixing binodal
p 5 5 appears at larger size ratig=0.6, see Fig. ). This is to
“ 4\ ,chf Go(r) p=(r)d>r. (30 pe expected, as for largérthe star-polymers become more

0 akin to hard depletants and hence a depletion force of longer
In Eqg. (30) above, ¢p/dp), is the compressibility of the range is necessary in order to bring about phase separation in
reference system. For the reference free enéigywe used the fluid phase. For the ca$e- 32 we obtain demixing bin-
the expressions of Canahan—Starling and Hall, for the fluicdbdals that are always metastable with respect to freezing, in
and solid phase, respectively. The pair distribution functionshe domaing=0.7 in which the pair potentials are reliable.
0o(r) are provided by the parametrizations of Verlet andThe results show a clear trend from the AO-type behavior,
Weis® for the fluid phase and Kincaid and W&idor the  valid for f =2, to the BHS-behavior, valid fdr=32. In view
solid. Free energy calculations using EQO) were per- of the fact that the critical value, for f=6 seems to lie
formed by Dijkstraet al. for the effective Asakura—Oosawa slightly below 0.6 and is growing witli, we anticipate that
pair potential, modeling colloid—polymer mixtutésand for  star polymers withf =10 will not be able to bring about
the effective one-component system arising by integratingtable demixing transitions in a star-polymer—colloid mix-
out the small spheres in a binary hard sphere mixtiie. ture. Forq=0.2, shown in Figs. @), 6(h), and i), we
was found there that this approach yields excellent agreesbtain no stable demixing transitions for any of the three
ment for the fluid—solid boundaries compared to thermodyfunctionalitiesf =2, 6, and 32 that we checked. At small size

namical integration results. ratios, star-polymers are weak depletants, causing an attrac-
tion whose range is too short to bring about a thermodynami-
C. Results cally stable “liquid-gas” coexistence curve. Our findings are

As far as the star-polymer—colloid mixtures are con- consistent with earlier reﬁssults on, e.g., the hard-sphere-
cerned, we find from the comparison of the Helmholtz free"’mr"’mt've -Yukawa systeth®® and other model potentials,
energy calculated from the two different approaches dell which it was found that the liquid disappears when the
0,
scribed above, that the two are in excellent agreement as f gnae of the attractions becomes, roughly, less than 20% of
at of the repulsions.

as the solid branch of the free energy is concerned. This i Th h depletionlike pi
consistent with the findings in Refs. 14 and 59. For the fluid € mapping onto the one-component, depletionlike pic-
ture greatly facilitates the calculation of the phase diagrams,

branch, though, only the low density range coincide, for,
larger densities the free energy of the perturbation approaclq particular in the crystalline state. Nevertheless, performing

is always too large. This result is consistent with the fact thafh's mapping remains a matter of convenience; the physics

the first-order perturbation theory arises from the Gibbs— should ntot depend t?ntrghti p0|rr1]t of vt;ew %nd in pag'f#lar in
Bogolyubov inequality and hence the resulting free energ n exact mapping bo € phase boundaries and the corre-
can only by larger than the true one. Moreover, in the fluid ation functions of the colloids should be identical in both

phase, the hard-sphere radial distribution functigfr) se- pictures?? Since we have employed approximations at vari-
verely underestimates the contact value of the ¢{rg, thus ous stages, |_n .bOth the two-component and_ in the depletion
resulting in an internal energy that is significantly higherappr_oaches, It IS useful tf) perfor_m a comparison b_etween the
than the true one at intermediate and high fluid densities two in order to judge their severity. This is the subject of the

Thus, the Helmholtz free energy of the fluid is overesti- followmg section.

mated. In view of the inaccuracy of the perturbation theory

for the fluid phase, we resorted to the results of the Monte; cOMPARISON BETWEEN THE TWO- AND ONE-
Carlo simulation, whereas for the solid we employed theCOMPONENT DESCRIPTIONS

perturbation approach, in order to reduce the computatlonaA
effort.

In Fig. 6 we plot the phase diagrams for arm numbers  The determination of the partial chemical potentials in
f=2, 6, and 32 and size ratias=0.2, 0.5, and 0.6. Fof  the full two-component system described in Sec. Il enables
=2 we obtain phase diagrams that are very similar to theis to compare the results obtained there in thg, {s)- or
ones obtained for the AO-mod¥{This is interesting since in  systerrepresentation, with the results obtained in Sec. IV in
this work we are dealing with realistic polymer-polymer asthe (., 75)- or reservoirrepresentation. As we can see from
well as polymer—colloid interactions, that go beyond theEq. (17), the partial chemical potentials of the stars and col-

Phase behavior
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FIG. 6. Phase diagrams of star-polymer—colloid mixtures for different size ratios and different star functionalities. The circles indicatalatedgathase
boundaries from the one-component description, the squares from the full two-component description, see Sec. Il. The lines are a guide to swigye. The
lines denote stable phase transitions and the broken ones metastable demixing binodals. The first row shows the phase behavior foga 8ise (gtio
f=2; (b) f=6; (c) f=32. Forf=2 andf =6 the demixing transition in the fluid phase is stable, resulting into three distinct phasé¢&) gguid (L), and

solid (S). For f =32 the freezing transition preempts demixing, resulting into two stable phasesiHjudd solid(S). In the second row the phase behavior

for g=0.5 is plotted, again the arm number increases ftdyro (f), in analogy to the first row. Now only for=2 a stable demixing binodal is found. The
asterisks denote state points at which pairwise correlation functions were calculated. The last row shows the belpvid2foNo stable fluid—fluid
transition is observed for arm numbdrs 2 (g), f=6 (h), andf=232 (i).

loids can be simply obtained by the common tangent constar polymer reservoir density. Away from the critical point,
struction; the intersection of the tangent with the 0 or x the coexistence lines from the two-component approach are
=1 axis yield the partial chemical potential, or s, re-  too broad. The farther one is from the critical point, the more
spectively. Now, for every two coexistence points in thedifficult it becomes to reach precisely the spinodal of the
(n.,ms) ensemble we determine the corresponding chemicahixture and then the numerical inaccuracies caused by the
potentialug. The equation of state of the one component stainterpolation in the neighborhood of the spinodal become
polymer system determined by RY gives us the reservoimore and more relevant.

packing fraction to every chemical potential. We calculate
the transformed curves for a size ratigs 0.5 and arm num-
bersf=2, 6, and 32. The results of the mapping of the co-
existence points from the (,»s)-plane into the We now discuss the colloid—colloid correlation functions
(7¢,n%)-plane are shown in Figs(®-6(f) together with the in the fluid phase. We showed how to translate the star poly-
fluid-demixing binodals from the one-component approachmer densities on the phase boundaries to the corresponding
Regarding the critical points the agreement is very goodchemical potentials or reservoir packing fractions. Hence, we
Although many-body terms are neglected in the effectiveare able to compare the structure of the colloids in the one-
one-component descriptidft??we find a satisfactory agree- and two-component description on selected state points of
ment, both for the critical colloid density and for the critical the phase diagrams. In Fig. 7 we plot the pair distribution

B. Structure
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7 lg simulations for the state point#\) and (D), where the fluid
of @ Ee— ol @ — demixing transition is not preempted by freezing. In the
3 - Z simulations the structure factor was calculated directly,
T * = H 3
% g using'
: ’ Sce(k)=Ng Hpc(k)po(—k)), (3D
1
0 . where p.(k) is the Fourier transform of the colloid one-
o e } 0 " 3 particle density operator and is defined®as
9 5 N¢
81 © @) = ik-r
7 4 Pc(k)_gl explik-ry), (32
6 ———- RY=2comp -
g j g ’ with the sum being extended over all positiansf the N,
o, w2 colloidal particles.
2 1 The simulations were performed using the same one-
(‘] . component effective interactions as the PY-calculations. First
0 e 3 0 L o 2 3 of all, the agreement between PY and simulations data dem-

onstrates that the PY-closure yields very good results for the
FIG. 7. Comparison of the pair correlations functigpg(r) for the colloids  structure in systems with a hard-sphere interaction dressed
at diffirent sga;e iﬁo(ig)tsz))_(gg}nde?r?;egeb)llett?c?nasigzlt(i;isn ftrt‘ﬁn Ptf;]zsi :';a' with a short-range attraction, as also seen in Refs. 14 and 70.
gg;n;)oﬁ:e?]t déscription MC sim%latiorﬁsc?lid Iineg are compared to PY Further, theSeo(k)'s resulting from the SOIUUOO of the two-
results (dashed lines Dotted lines present RY-results employing the full Component systertthrough the RY-closupeare indeed very
binary OZ-equations. similar to those arising from the solution of the effective
one-component systeithrough the PY-closujeat the cor-
responding thermodynamic points. This demonstrates the va-
function g.(r) and in Fig. 8 the associated static structureigity of the mapping procedure and also serves as an indirect
factors Scq(k) corresponding to four different state points proof that higher-order interactions, which have been ne-
(A)—(D) in the phase diagram Fig. 6. The size ratiogis glected in the one-component description, are not critidl.
=0.5 and the arm numbefsvary. The state pointA)—(C)  The structure factors at the thermodynamic poi#ts (B),
are chosen to be close to the fluid-fluid demixing Criticaland(c) show the typ|ca| enhancement for |d(M/a|ueS, due
point, while point(D) is deep in the stable fluid phase. For to their close distance from the demixing spinodal. The faster
the one-component system we use the Percus—Yé@¥k  djvergence of the RY-structure factor in comparison with the
closure, which is expected to be accurate for the short-rangegly- one is in line with the demixing spinodals and demon-

interactions between the colloids. For the two-componenkirates the superiority of the RY-closure with respect to PY
case, we use the RY-closure as described in Sec. Il. In addiegarding thermodynamic properties.

tion we compute the correlation functions with computer

VI. SUMMARY AND CONCLUDING REMARKS

We have traced out the phase diagram of star-polymer—
colloid mixtures, establishing the limits of stability of the
demixing binodals as functions of the star functionality and
the size ratio, for the case in which the star-polymers are
smaller than the colloids. We have demonstrated the equiva-
lence of a two-component approach with a depletion picture,

5.0
S0

05 - 20 0 = 20 in which the stars are further traced out. Star polymers have
ko, ko, been shown to fulfill their unique role as natural bridging
2 ) systems between soft polymetfor low f) and colloidal
© P . . )
, ® — e particles(at highf ). Hence, they can act as selective deplet-

ants between colloidal hard spheres. All our findings can be
experimentally checked by carefully preparing mixtures of
index-matched hard sphere colloids with monodisperse star-
polymers in good solvents.
The stability of the demixing with respect to freezing has
0 o 2 0 Lo 2 been recently studied in some generality in the framework of
‘ ‘ the model of nonadditive hard sphefé$3’Whether the
FIG. 8. Comparison of the static structure factsgs(q) for the colloids at ~ present system can also fit within this picture remains to be
different state point§A)—(D), denoted by the asterisks in the phase diagramseen. Our work is limited to star-colloid size ratios smaller
for q=05 in (d—~(f). Using the depletion potentials from the one- w54 ity since the star-colloid interactions employed here
component description MC simulatiorgsolid lineg are compared to PY . .
reslts (dashed lines Dotted lines present RY-results employing the full @€ derived under the assumption that the star never “crawls
binary OZ-equations. over” the colloidal hard spher&. The investigation of the

5.0
$.®
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opposite case, in which the small colloids can fully penetrate Bg"(x)={x3(1—x)[1+ (1—x)pﬁ (0)]
into the corona of the star-polymértss also a problem for e

the future. +x(1-x)31+xphsd 0)]
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order to circumvent this technical difficulty at the two
APPENDIX: ON THE x—0 AND x—1 LIMITS OF THE boundaries of integration and deal alwayS with finite Values,
GIBBS FREE ENERGY we split the Gibbs free energy per partigéx) into the ideal

art, gig(x), and the excess padey(x), as follows:
In this Appendix we present some technical details necP 9ia) Pae(x)

essary for the solution of the second-order differential Eq. ~ B89(X)=Bdia(X) + BJex(X)
(16). With the Gibbs free energy per particle, = (1= %) Bte.g(X) + XBts g X) + Bex( X)

G(x,T,P
g(x)= (T) (A1) =(1-x)In[(1-x)po]+xIn(xpad)
4h A Ag
we seek to solve the equatioh, + Bgex(X)+3(1—x)In o +3x1In >
Cc C
, kgT
g9 (X)=m, (A2) =(1—x)IN(1—x)+XxInx+ BgeyX) + C1x+ Cy,
where it is implied that the pressuReand the temperaturg (A9)
are constant. where A 4 are the thermal de Broglie wavelengths of the

The concentration structure factsy,(k) for a colloid-  colloids and stars, respectively, and in the last line we have
star mixture of partial concentrations andx, is defined as  simply introduced two constant§, and C; for a term in
g(x) that is linear inx and plays no role, neither in the

Scon(k)=i([xspc(k)_xcps(k)] argument that follows nor in the determination of phase
N boundaries. Taking the second derivative in E0) above,
X [Xspel = k) = Xeps( —K)]) we obtain
1 1 BY(X)= =+ —— +g" (%) (AL0)
=X {Pe(K) ol —K)) + X2 (ps(K)ps(—K)) GRO= ST I %)

1 Thus, the NM-divergence at x—0 and the
— 2XXs = {pc(K) ps —K)), (A3) 1/(1—x)-divergence atx—1 manifest also in Eq(A8)

N above, are seen to arise from the ideal part of the Gibbs free
where p.(K) is defined through Eq(32) and similarly for ~ €nergy. Hence, a second-order differential equation for which
p<(K). all terms that appear are free of divergences can be written,

We define the partial structure factog(k) asS;(k) ~ Which reads as

=3+ piphij(K), i,j=c,s. It can be showt’ that these ., 1 1 1
S;j(k)’s satisfy the equations, BYed X) = S (k=0) 1) (Al1)
1 We solved therefore numerically EGA11) for the determi-
XeSea(K) = —(pe(K) pe(—K)), A4 . . y = ;
eSec(K) N<p°( Jpe(=K)) (A4) nation of the functiong.(x); addition of the analytically
1 kn0\_/vn termgiy(x) delivers the total Gibbs free energy per
XsSss(K) = 1 {ps(K)ps(—K)), (A5)  particle.
1 IWe ignore here the possibility of formation of a quasicrystal because, in
\/XchScs( k)= N(Pc(k)Ps( - k)> (A6) practice, quasicrystal forming materials are usually ternary mixtures.
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