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Phase behavior and structure of star-polymer–colloid mixtures
J. Dzubiella,a) C. N. Likos, and H. Löwen
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1,
D-40225 Düsseldorf, Germany

~Received 18 January 2002; accepted 8 March 2002!

We calculate the phase diagrams of mixtures between hard-sphere colloids and star-polymers of arm
numbersf 52,6,32 for different star-polymer–colloid size ratios 0.2<q<0.6 using an effective
one-component description for the colloids in the presence of the stars. We map the full
two-component system onto an effective one-component system by inverting numerically the
Ornstein–Zernike equation for binary mixtures, supplemented by the Rogers–Young closure, in the
low-colloid density limit. The free energy for the fluid and crystalline phase is calculated by using
both hard-sphere perturbation theory and thermodynamic integration of simulation data. We find
stable fluid–fluid demixing transitions for low arm numbersf 52,6 above a critical value of the size
ratio qc below preempted by a fcc-solid. For the linear polymer limit,f 52, the critical size ratio is
found to beqc'0.4, in agreement with other approaches to colloid-polymer mixtures. Increasing
the arm number, the region of stability of the demixing transition with respect to crystallization of
the colloids shrinks, andqc grows. A comparison between the one- and two-component descriptions
that demonstrates the consistency between the two routes is also carried out. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1474578#
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I. INTRODUCTION

Multicomponent mixtures display an enormously rich
phase behavior than one-component systems. A typical
substance consisting of spherically symmetric molecu
without internal degrees of freedom, displays a generic ph
behavior on the temperature-pressure plane that feat
three phases: a gaseous and a liquid one~if sufficiently
strong attractions between the molecules are present! and a
crystal.1 Moreover, the Gibbs phase rule2 asserts that there i
only one point in the phase diagram at which these three
be found in simultaneous coexistence with one another. C
sequently, investigations of the bulk thermodynamics of o
component systems focus on the calculation of the freez
and liquid-gas coexistence curves, as well as on the pro
ties in the neighborhood of the critical point associated w
the latter. In multicomponent mixtures, the additional fre
dom provided by the flexibility of changing the concentr
tion of any of the constituent species at will, opens up
possibility of various types of phase transitions, such as, e
vapor–liquid, demixing, crystallization of any of the numb
of the components, alloy formation, etc. Thereby, new to
logical features in the phase diagram, including regions
multiphase coexistence, lines of critical points and criti
end points show up. It is therefore not much of a surprise
the structure and thermodynamics of multicomponent m
tures are studied in much less detail than those of pure
stances.

In soft matter physics, on the other hand, mixtures
the rule, not the exception. To complicate matters even
ther, typical soft matter systems include components wit
vast separation of length scales, a feature that makes a

a!Electronic mail: joachim@thphy.uni-duesseldorf.de
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multicomponent description of real systems unfeasible.3 One
possibility is to considermodelmixtures and two example
that have been intensively investigated in the recent past4 are
mixtures of hard spheres~colloids! and free, nonadsorbing
chains on the one hand,5,6 and the binary hard sphere mixtur
~BHS! of two species with a variable size ratio on th
other.7–9 Many of the theoretical investigations of th
colloid–polymer~CP! mixture have been based on aneffec-
tive, one-componentdescription of the hard colloids, fo
which an additional, attractive depletion potential is intr
duced after the polymer has been integrated out. This is
well-known Asakura–Oosawa~AO! model,10,11 in which the
polymers are figured as penetrable spheres experiencin
addition a hard-sphere~HS! interaction with the colloids. A
number of theoretical investigations on the AO model12–15

have revealed that the system displays a demixing trans
that accompanies the freezing of the hard colloids. Howe
the former becomesmetastablewith respect to the latter14 for
polymer-to-colloid size ratiosq<qc>0.45. For size ratios
q.qc , the system displays three phases: a colloid-po
polymer-rich and colloid-rich/polymer-poor fluid, as well a
a solid phase, in which the colloids form a fcc-crystallin
arrangement with the polymers diffusing in it. However, f
q,qc , a single, mixed fluid and a crystal phase exist. The
findings are in semi-quantitative agreement with experim
tal results.16 In the BHS system, two-componen
simulations17 have shown that the demixing transition in th
fluid phase is either metastable with respect to crystalliza
or it is completely absent, depending on the size ratio.18 We
note that in all cases mentioned above, freezing refers to
large hard spheres only: the crystallization of both com
nents and the associated formation of binary alloys ta
place at size ratios close to unity and its investigation
theoretical methods is highly nontrivial.19–21
8 © 2002 American Institute of Physics
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9519J. Chem. Phys., Vol. 116, No. 21, 1 June 2002 Star-polymer–colloid mixtures
A theoretical understanding of the~meta!stability of the
demixing transition in two-component mixtures is provid
by the depletion potentialthat effectively acts between th
larger components of the mixture when the smaller ones
thermodynamically traced out.22 Depletion is caused by th
fact that the small components have more free space a
able to them when two large particles are brought close
contact than when they are far apart. Hence, an entropic
fective attraction appears between the colloids. The pro
dure of tracing out the small components facilitates the t
oretical studies but it is subject to two strong constrai
arising from the definition of the effective interaction,22

namely~i! the overall thermodynamics of the mixture mu
evidently, remain invariant in switching from one descripti
to the other and~ii ! the correlation functions of the larg
component should also be the same in both descriptions

The purpose of this paper is twofold: on the one hand,
examining mixtures of colloids with star-polymers of va
able arm-numberf , we provide a natural bridge between th
CP-mixture~corresponding to linear chains,f 51 and f 52!
and to the BHS~formally f→`!. To this end, we derive
depletion potentials between the colloids that, depending
f , interpolate between interactions similar as in the A
model and the BHS-depletion interaction.23,24 On the other
hand, we systematically investigate the consistency betw
the one- and two-component descriptions, since our star
point are the three interaction potentials acting between
two components. We trace out the phase diagrams of
mixture for various combinations of star arm numbersf ~also
called functionalities! and star-colloid size ratios. We fin
that already abovef >10, the generic behavior of the BHS
model with an absence of a demixing transition is reached
brief account of this work has already been publish
elsewhere.25

The rest of the paper is organized as follows: In Sec
we give a review of the two-component description of st
polymer–colloid mixtures. Different methods of mappin
this onto an effective one-component system are discu
and compared in Sec. III. The resulting phase diagrams
presented in Sec. IV and a comparison between the two-
one-component descriptions in Sec. V. In Sec. VI we dr
our conclusions, and in the Appendix we present some te
nical details regarding the calculation of the Gibbs free
ergy.

II. TWO-COMPONENT DESCRIPTION

We start with the description of the full two-compone
mixture of star-polymers and hard spherical colloids. T
applied interactions and resulting structural quantities are
put for the mapping onto an effective one-component sys
Downloaded 17 Mar 2009 to 134.99.64.184. Redistribution subject to AIP
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in Sec. III. Concerning the fluid–fluid demixing transition
the full, two-component system has been solved in Ref.
using fluid-integral equations and Monte Carlo simulatio
Good agreement with experimental measurements has
found there.

We consider a binary system withNc colloidal spheres
of diametersc ~radiusRc! andNs star polymers, character
ized by a diameter of gyrationsg ~radius of gyrationRg! and
an arm numberf . The total particle number isN5Nc

1Ns . Let q[sg /sc be the size ratio andrc[Nc /V and
rs[Ns /V the number densities of the colloids and sta
respectively. We now define the packing fractions,

hc5
p

6
rcsc

3 ~1!

of the colloids, and

hs5
p

6
rssg

3 ~2!

of the stars in the volumeV. We investigate the thermody
namics of the mixtures on the basis of pair potentials
tween the two mesoscopic components, having integra
out the monomer and solvent degrees of freedom. Th
three pair potentials are used as inputs for theory or sim
tion. The colloid–colloid interaction at center-to-center d
tancer is taken to be that of hard spheres~HS!,

Vcc~r !5H ` for r<sc ;

0 else.
~3!

The pioneering work in deriving the effective interactio
between two stars in a good solvent was performed by W
ten and Pincus.27 There, it was shown that the interactio
diverges logarithmically with star-star separationr as r→0.
A full expression, valid for arbitrary separation has been
rived theoretically and verified by neutron scattering and m
lecular simulation, where the monomers were explici
resolved.28,29 The star–star pair potential is given by an u
trasoft interaction which is logarithmic for close approach
and shows a Yukawa-type exponential decay at lar
distances,28,30

TABLE I. The fit parametersL, k, t for the effective star–colloid interac-
tion of Eq.~6! and the star–star interaction Eq.~5! obtained from molecular
simulation.

f L( f ) kss tss

2 0.46 0.58 1.03
6 0.34 0.73 1.14

32 0.24 0.84 ¯
Vss~r !5
5

18
kBT f3/2H 2 lnS r

ss
D1~11Af /2!21 for r<ss ;

~11Af /2!21 S ss

r DexpF2
Af ~r 2ss!

2ss
G else,

~4!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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with kB being Boltzmann’s constant andT the absolute tem-
perature. Computer simulations have shown29 that the so-
called corona-diameterss remains fixed for all considere
arm numbersf , being related to the diameter of gyratio
throughss.0.66sg . The theoretical approach giving rise
Eq. ~4! does not hold for arm numbersf &10, because the
Daoud–Cotton model of a star,31 on which the Yukawa form
of the decay beyond overlaps is based, is not valid for sm
f . In these cases, the interaction inclines to a shorter-ran
decay forr .ss . This is consistent with approaches in whic
at the linear polymer limit a Gaussian behavior of the p
potential is predicted.32–34 Only the large distance decay o
the star–star interaction is modified for smallf ; its form at
close approaches has to remain logarithmic.27 Accordingly,
the following star–star pair potential for arm numbersf
&10, replacing the Yukawa by a Gaussian decay, has b
put forward,35

Vss~r !5
5

18
kBT f3/25 2 lnS r

ss
D1

1

2t2ss
2 for r<ss ;

1

2t2ss
2 exp@2t2~r 22ss

2!# else,

~5!

wheret( f ) is a free parameter of the order of 1/Rg and is
ta

d
iso
a

as

e

ta
y

en
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obtained by fitting to computer simulation results, see Re
26 and 35 and Table I. Usingtss( f 52)51.03 we obtain for
the second virial coefficient of polymer solutions the val
B2 /Rg

355.59, in agreement with the estimate 5.5,B2 /Rg
3

,5.9 from renormalization group and simulations.34

Equations~5! and~4! above yield the correct behavior o
the overall prefactor for small and large values off , respec-
tively. Equation ~5! yields the prefactor 5/18 forf 51, in
agreement with the prediction (g21)/n of Witten and
Pincus,27 and for f 52 the value 0.786, which is very close t
the exact value 0.8 calculated by means of renormaliza
group techniques by des Cloizeaux.36 Moreover, von Ferber
et al. have demonstrated37 that it is in very good agreemen
with up to three-loop calculations forf as high as 6. Equa
tion ~4!, on the other hand, satisfies thef 3/2-scaling of the
prefactor for highf -values.27 Extensions to polydisperse sta
polymers have been also worked out.38

An analytic form for the star-polymer–colloid pair po
tential can be found by integrating the osmotic pressure
one star along the spherical surface of a colloid, following
idea put forward by Pincus.39 This can be achieved for arbi
trary curvatures of the colloid but the analytical result belo
is accurate for size ratiosq&0.7 and reads as35
Vsc~r !5LkBT f3/2
sc

2r 5
` for r ,

sc

2
;

j22 lnS 2z

ss
D2S 4z2

ss
2 21D S j12

1

2D for
sc

2
<r ,

ss1sc

2
;

j2@12erf~2kz!#/@12erf~kss!# else,

~6!
me

ed

ge

ns

y

al

nt
wherez5r 2sc/2 is the distance from the center of the s
polymer to the surface of the colloid. The constants are

j15~112k2ss
2!21 ~7!

and

j25
Apj1

kss
exp~k2ss

2!@12erf~kss!#. ~8!

In Eq. ~6! above,L( f ) andk( f ) are fit parameters, obtaine
from computer simulations where the force between an
lated star and a hard flat wall is calculated, see Refs. 26
35. k is in order of 1/sg , see the values in Table I, where
geometrical arguments yield a limitL`55/36'0.14 for very
large f .

Access to the thermodynamics of the mixture is obtain
by solving the Ornstein–Zernike~OZ! equations for binary
mixtures using the two-component Rogers–Young~RY! clo-
sure. The RY form is reliable for the one component s
polymer system40 and shows a spinodal instability in highl
asymmetric hard sphere mixtures.7 Let us give a brief outline
regarding integral equation theories for multicompon
mixtures. Consider, in general, an-component liquid mix-
ture, consisting of N1 ,N2 ,...,Nn particles of species
r

-
nd

d

r

t

1,2,...,n, respectively, enclosed in the macroscopic volu
V. The partial densityr i of species i , is given by r i

5Ni /V. The pair structure of the system is fully describ
by n(n11)/2 independent correlation functionshi j (r ), i
< j 51,2,...,n, because symmetry with respect to exchan
of the indices dictateshi j (r )5hji (r ). Associated with the
total correlation functions are the direct correlation functio
~dcf’s! ci j (r ). For the same reasons, there exist onlyn(n
11)/2 independent dcf’s. The Fourier transforms ofhi j (r )
andci j (r ) are denoted byh̃i j (k) and c̃i j (k), respectively.

The OZ relation for one-component systems at densitr
takes in Fourier space the algebraic form,

h̃~k!5 c̃~k!1 c̃~k!rh̃~k!, ~9!

whereh̃(k) and c̃(k) are the Fourier transforms of the tot
and direct correlation functionsh(r ) andc(r ), respectively.
The generalization of the OZ relation for multicompone
mixtures reads as41

H̃~k!5C̃~k!1C̃~k!•D•H̃~k!, ~10!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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9521J. Chem. Phys., Vol. 116, No. 21, 1 June 2002 Star-polymer–colloid mixtures
where H̃(k) and C̃(k) are n3n symmetric matrices with
elements,

@H̃~k!# i j 5h̃i j ~k! and @C̃~k!# i j 5 c̃i j ~k!, ~11!

andD is a n3n diagonal matrix of the partial densities,

@D̃# i j 5r id i j . ~12!

Equation ~10! above generatesn(n11)/2 independent
algebraic equations for then(n11) unknown functions
h̃i j (k) and c̃i j (k). The system becomes in principle solvab
if one provides additionaln(n11)/2 closure equationsbe-
tween these functions. For example, the Rogers–Young
sure generalization to multicomponent mixtures reads as

gi j ~r !5exp@2bv i j ~r !#F11
exp@g i j ~r ! f i j ~r !#21

f i j ~r ! G
~ i 51,2,...,n and i< j !, ~13!

wheregi j (r )5hi j (r )11, g i j (r )5hi j (r )2ci j (r ), andv i j (r )
is the pair interaction between speciesi and j . The ‘‘mixing
function’’ f i j (r ) is given by

f i j ~r !512exp~2a i j r !. ~14!

Usually, asingle self-consistency parametera i j 5
..a is em-

ployed for all components, so thatf i j (r )5 f (r ), as there is a
single thermodynamic consistency requirement to be
filled, i.e., the equality of the ‘‘virial’’ and ‘‘fluctuation’’ total
compressibilities of the mixture. Yet, multiparameter gen
alizations of the RY closure have also been proposed,42 in-
voking the partial compressibilities of the individual comp
nents. Fora50 one recovers the Percus–Yevick~PY! and
for a5` the hypernetted chain~HNC! multicomponent
closures.43 For a HS mixture, the PY closure is analytical
solvable.44–46

The RY-closure@Eqs.~10!–~14!# for the two-component
mixture, using the interactions given by Eqs.~3!–~6! as in-
puts, was numerically solved by using the Picard-meth
Monte Carlo simulations using the same interactions as
puts and measuring the structure factors at selected the
dynamics points, yielded excellent agreement with the
closure. In our work the thermodynamic consistency of
RY closure was enforced with a single adjustable param
a; a simple scaling of the forma i j 5a/s i j , (i , j 5c,s) with
s i j 5(s i1s j )/2 showed only small differences compared
the unscaled form.

The structure of the binary mixture is described by t
three partial static structure factorsSi j (k)5d i j

1Ar ir j h̃i j (k), with i , j 5c,s. Indication of a demixing tran-
sition is the divergence of all structure factors at the lo
wavelength limitk→0, marking thespinodal lineof the sys-
tem. An example of a diverging structure factor is plotted
Fig. 1 together with the corresponding radial density dis
bution gcc(r ). For a fixed arm numberf 532, size ratioq
50.5 and colloid densityhc50.1 we plot the colloid corre-
lation functions for increasing star polymer packing fractio
As can be seen in Fig. 1~a!, the rising contact valuegcc(sc)
signals an effective attraction between the colloids, indu
by the star polymers. This is a signature of the deplet
effect, to be discussed in detail below. Further increasing
Downloaded 17 Mar 2009 to 134.99.64.184. Redistribution subject to AIP
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the star-density, forces the system to develop long-ra
fluctuations and eventually to demix, as witnessed by
divergence of the lowk-values in of the structure factor in
Fig. 1~b!.

In order to calculate the binodal lines, it is more conv
nient to consider the concentration structure factor,Scon(k),
which is a linear combination of the three partial structu
factors. The concentration structure factor is defined as

Scon~k!5xs
2Scc~k!1xc

2Sss~k!22xcxsScs~k!, ~15!

with the concentrationsxi5Ni /N, (i 5c,s). The approach to
thermodynamics is then given through the sum rule,7,47

lim
k→0

Scon~k!5kBTF]2g~xs ,P,T!

]xs
2 G21

, ~16!

where g(xs ,P,T)5G(xs ,N,P,T)/N is the Gibbs free en-
ergy G(xs ,N,P,T) per particle andP denotes the pressur
of the mixture. In order to simplify the notation, we setx
[xs ; clearly, xc512x. We solved the OZ-equations fo
different combinations of the parametersf andq covering a
wide range in the density plane (hc ,hs). Once the concen-
tration structure factor, Eq.~16!, is known as function ofx
for a fixed pressure the Gibbs free energy can be calcul
by two simple integrations. In Fig. 2~a!, an example for the
second derivativeg9(x) is plotted for constant pressureP̄

FIG. 1. ~a! Radial distribution functions and~b! static structure factors for
the colloids, obtained by the OZ-equations for binary mixtures closed w
the RY-closure. Shown are examples for arm numberf 532, size ratioq
50.5 and a fixed colloid packing fractionhc50.1, while the star polymer
packing fractionhs is increased. Forhs50.24 the system is in the immedi
ate vicinity of the spinodal line marked by the divergence of thek→0 limit
of the corresponding structure factor.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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[bPsc
3528, arm numberf 52, and size ratioq50.5. The

Gibbs free energy is then obtained by integratingg9(x)
along isobars. Ifg(x) has concave parts,@i.e., if g9(x),0
for some x-region#, the system phase-separates and
boundaries are calculated by the common tangent cons
tion on theg(x) versusx curves. This common-tangent con
struction guarantees that partial chemical potentials of ev
component have the same value on both coexisting pha
As it is performed on an isobar, and for fixed temperatu
the pressure and temperature are also the same betwee
phases and all conditions for phase coexistence are fulfi

The constants of integration for the calculation ofg(x)
through the differential Eq.~16! are determined by formulat
ing a boundary-value problem as follows. Since the Gib
free energy is an extensive function but in its list of natu
variables (N,P,x,T) only one extensive variable (N) ap-
pears, Euler’s theorem asserts that the functiong5G/N must
have the form,2

g~x!5~12x!mc~x!1xms~x!, ~17!

FIG. 2. ~a! Example of the Gibbs free energyg(x) ~dashed line! plotted
against the star polymer concentrationx5xs in star-polymer colloid mix-

tures for f 52, size ratioq50.5 and a fixed pressureP̄528. g(x) is ob-
tained from integration of the differential equation~16!, where Scon(k
50,x) is calculated from the OZ-equations~circles!. The second derivative
g9(x) is interpolated by a cubic spline interpolation~solid line!. The inset
showsg(x) after subtracting a linear function, and demonstrates the con
concave parts of this function.~b! Partial chemical potentials of the colloid
mc(x) and of the starsms(x), plotted against the star concentrationx for the
same parameters as in~a!. At the boundaries ofx50 andx51, g(x) ~dashed
line! is equal to the chemical potentials of colloids and stars, respectivel
~b!, the total densityrsc

3(x) along the isobar is plotted as well.
Downloaded 17 Mar 2009 to 134.99.64.184. Redistribution subject to AIP
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where we omittedP andT from the argument list, as we ar
working at fixedT along an isobar. If no stars are present
the system (x50) the Gibbs energy per particle reduces
the chemical potential of hard spheres at the given pres
P. To determine this, we apply the Carnahan–Starling48 ex-
pressions for the pure hard-sphere equation of state. If
colloids are present (x51), the Gibbs free energy per pa
ticle is equal to the chemical potential of the stars at the s
pressureP. To determine the chemical potential of the sta
for a given pressure, we calculated the equation of state
pure star-polymer system with the one-component O
equation closed with RY. Forf 52, where the star–star inter
action potential is ultrasoft, it is accurate to employ a me
field approximation49–53 ~MFA! for the direct correlation
function of the polymers,css(r )52bVss(r ), where b
5(kBT)21. For larger arm numbers the MFA becomes le
accurate. In the MFA, use of the compressibility sum ru
leads to the simple, quadratic expression for the exc
Helmholtz free energyFex of the star-polymer system,52

f ex[
bFex

V
5

rs
2

2 E bVss~r !d3r[
1

2
bṼss~0!rs

2 , ~18!

with the Fourier transformṼss(k) of the functionVss(r ).
From Eq. ~18! above, we obtain the excess star chemi
potential bms,ex5] f ex/]rs5bṼss(0)rs and the total star
chemical potential in the MFA as

bms5 ln~rssg
3!1bṼss~0!rs . ~19!

Through the procedure described above, the bounda
g(x50) andg(x51) are known for every pressureP and an
accurate integration ofg9(x) can be performed. Once th
exact free energy is known, all other quantities of inter
can be calculated, for instance the partial chemical poten
mc(x) and ms(x) of colloids and stars, respectively, whic
are needed to perform the mapping of the phase diagr
from the two-component to the one-component descript
in Sec. III. Examples of so-determined partial chemical p
tentials are shown in Fig. 2~b!. Some technical details on th
solution of the differential Eq.~16! are presented in the Ap
pendix.

Inside the spinodal line, the limitsSi j (k→0) attain non-
physical, negative values associated with the physical in
bility of the mixture against phase separation. Consequen
a solution of the integral equations is not possible there,
above the critical pressureP* , the concentration structur
factor Scon(x,k50) is unknown in some intervalDx(P). In
the example of Fig. 2~a!, the interval is 0.9,x,0.95. Thus,
it is necessary to interpolateScon(x,k50) to obtain the sec-
ond derivativeg9(x) for all x, and this is shown as a soli
line in Fig. 2~a!. This way, the integration of Eq.~16! can be
performed. We emphasize that the interpolation is sim
done in order to facilitate the integration. The resulting b
odal lines are independent of the precise interpolat
scheme, as long as the integral equation theories are cap
of reaching the precise spinodal, i.e., the points in which
k→0 limit of the structure factor diverges. Since this is n
strictly the case, and sometimes we have to stop slig
before the spinodal is reached, there are small inaccura

x/
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 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



he
l

e.
re

F
d
he
is

he
m

ou
t

s
g

he
Th

t
ow

i
he
s

th
a

re
th

o
te
e
–

l o
its
lo
e

d
se
en
h
t
o

id
.
.

ac
s

e

ed

loi-

ak-
ons
als
rs

ond
e
is

n-
-
the

ns
fter

the

nly,

ds
n

ver.
di-

the
he
tter

orce
is
-
rd-

re-

ari-

9523J. Chem. Phys., Vol. 116, No. 21, 1 June 2002 Star-polymer–colloid mixtures
induced by the interpolation procedure that grow with t
width of the intervalDx where no solutions of the integra
equation theories can be found.

In the vicinity of the critical pointhc* .0.3, the missing
interval Dx is very small and the interpolation is reliabl
Here the binodals should be accurate, while for higher p
sures~packing fractionshc,hc* and hc.hc* ! the binodals
are more approximate but show reasonable behavior.
highly asymmetric systems (q&0.18) it becomes more an
more difficult to get solutions of the integral equations in t
vicinity of the spinodal line and the calculation of binodals
not possible.

The results for the phase boundaries in t
(hc ,hs)-plane have been presented in Ref. 26. There, se
quantitative agreement with experimental results, with
use of fit parameters in the theory, has been found. Since
chemical potential of the stars in both coexisting phase
the same, it is possible to imagine now that both are brou
into partial contact with a reservoir of stars, in which t
stars have this common value of the chemical potential.
word ‘‘partial’’ here means that the contact is assumed
materialize through a semipermeable membrane that all
the passage of star-polymers but not of colloids through
Let hs

r be the packing fraction of the star-polymers in t
reservoir. Since the reservoirand the two coexisting phase
all have the same value for the partial chemical potentialms ,
it follows that a representation of the phase diagram in
(hc ,hs)-plane can be transformed, without loss of inform
tion, into the (hc ,ms)- or, equivalently, the (hc ,hs

r)-plane. A
comparison to the effective-one component description
sults where the phase diagrams are plotted in
(hc ,hs

r)-plane will be shown in Sec. V.

III. MAPPING ONTO AN EFFECTIVE ONE-COMPONENT
SYSTEM

In this section we proceed with a mapping of the tw
component mixture onto an effective one-component sys
of colloids only, in which the star-polymers have been trac
out. The result of this integration is an effective colloid
colloid interaction in which the bare, hard-sphere potentia
Eq. ~3! is ‘‘dressed’’ by a depletion interaction that has
origins in the star polymers. The star–star and star–col
interactions enforce spatial correlations of the latter wh
they are brought close to two colloidal hard spheres hel
separationR12 from one another, and it is precisely the
correlations that determine the form of the depletion pot
tial. We thus present different methods in obtaining t
depletion potential and compare between those. Inheren
the derivation of a depletion potential is the omission
many-body forces effectively acting between the collo
when the stars have been thermodynamically traced out14,22

It will be shown that these play only a minor role, though

A. Computer simulations

The most accurate way to calculate the effective inter
tion between two colloids in presence of the star polymer
to employ direct computer simulations.54–58 To this end, we
placed two colloidal particles with coordinatesR1 and R2

along the body diagonal of a cubic simulation box of volum
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V, symmetrically around their center of mass that coincid
with the cube center. ThusR125R22R1 is the vector con-
necting the sphere centers andR125uR12u is the mutual sepa-
ration distance of the colloids. In addition, we introducedNs

star polymers in the same box. As there are only two col
dal spheres, we are dealing with the limitrc→0, therefore
the packing fractionhs5(p/6)(Ns /V)sg

3 of the stars in the
box can be identified with the reservoir packing fractionhs

r

introduced in the preceding section.
We performed standardNVT-Monte-Carlo simulations,

holding the positions of the colloidal spheres fixed and t
ing statistics on the stars, for various different separati
R12 between the colloids. We employed the pair potenti
given by Eqs.~4! and~5! for the interaction between the sta
~depending on their arm number! and by Eq.~6! for the
interaction between stars and colloids. Due to the sec
colloid, the radial symmetry of the density distribution of th
stars around one colloid is broken. A nonvanishing force
now acting on each of the colloid in direction of their co
necting vectorR125R22R1 , because of depletion or aggre
gation of the stars between the colloids, dependent of
distanceR12 between them. The resulting force in directio
perpendicular to their connecting vector remains zero. A
a sufficiently long equilibration time, the forceF1 acting on
one of the colloids has been measured by performing
statistical average

F1~R12!5K 2(
j 51

Ns

¹R1
Vsc~ uR12r j u!L

R12

. ~20!

In Eq. ~20! above,r j , j 51,2,...,Ns , stand for the positions
of the star polymers, whereas the symbol^¯&R12

denotes a
constrained statistical average over the star polymers o
when the two colloids are held at separationR12. Due to
symmetry, for the force on the second colloid it hol
F2(R12)52F1(R12) and the magnitude of the depletio
force,Fdep(R12), is given by

Fdep~R12!5
R12R2

R12
•F1~R12!. ~21!

The depletion force acts for distancesR12.sc only; for
closer approaches, the bare, HS-interaction takes o
Fdep(R12),0 denotes attractions between the colloids, me
ated by the stars. Indeed, for colloid separationsR12>sc

such attractions are expected to show up, as in this case
two colloids are hit asymmetrically by the stars from t
outside, and the unbalanced osmotic pressure of the la
pushes the hard spheres together. The total effective f
acting on the first colloid in the presence of the stars
Feff(R12)5FHS(R12)1F1(R12) and can be figured as the gra
dient of an effective potential that is a sum of the bare, ha
sphere interaction and thedepletion potential Vdep(R12),

F1~R12!52¹R1
Veff~R12!

52¹R1
@Vcc~R12!1Vdep~R12!#. ~22!

In Fig. 3, we show representative examples for the
sulting depletion forceFdep(R12) for various different func-
tionalities and size ratios. The figure shows also a comp
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 3. Depletion forces for different
functionalities f and size ratiosq. ~a!
f 52; ~b! f 56; ~c! f 532. The sym-
bols denote simulation results, th
solid lines the force resulting from the
inversion of the RY-closure and the
broken lines the results of the superpo
sition approximation. The denoted va
ues of the reservoir star-polymer pack
ing fractions,hs

r , were chosen to be
close to the demixing critical point in
the fluid phase.
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son with results of the inversion of OZ-equations, see S
III B and of the superposition approximation, Sec. III C
The disadvantage of the use of simulations for calculat
depletion forces is the need of many long runs for h
resolved curves with good statistics. Referring to this fi
ure, we note that forf 52 we recover essentially th
Asakura–Oosawa-result,14 with the depletion force being
purely attractive, Fig. 3~a!. Increasing the star functionality
however, leads to an oscillatory behavior of the effect
force, which is caused by the increasingly strong correlat
effects between the stars, see Figs. 3~b! and 3~c!. This char-
acteristic is akin to the features of the depletion force fou
in binary hard-sphere mixtures.24,59 Star polymers act as de
pleting agents that interpolate between the linear polym
behavior and the hard-sphere one.

B. Inversion of the OZ equation for binary mixtures

An alternative route to the depletion potential, whi
does not require the use of computer simulations, is offe
by the so-called inversion of the full, two-compone
integral-equation theory-results in the limit of low collo
density.25,60,61 Indeed, it follows from exact diagrammati
expansions in the theory of liquids43 that the radial distribu-
tion function g(r ) attains in the low-density limit the form
g(r )5exp@2bv(r)#, with v(r ) denoting the pair potentia
acting between the constituent species of the fluid. Ther
the effective potentialVeff(r) acting between the colloids an
depending parametrically on the star-reservoir packing fr
tion hs

r can be obtained by solving the two-compone
Ornstein–Zernike equations with the Rogers–Young clos
for given star packing fractionhs

r and at the limithc→0. The
so-obtained colloid–colloid radial distribution functio
gcc(r ) can be then inverted employing the exact relat
above and yielding the effective potential as

bVeff~r !52 lim
hc→0

ln@gcc~r ;hc ,hs
r !#. ~23!

In Fig. 3 we show results for the effective forceFeff(r)
52¹Veff(r) derived frombVeff(r) obtained by the procedur
outlined above, in comparison with the simulation results
Sec. III A. Excellent agreement between the two is found,
all (q, f ) parameter combinations considered. Small dev
tions for distances near contactr'sc could be corrected by
introducing a simple scaling for the consistency parame
a i j 5a/s i j , (i , j 5c,s) with an auxiliary ratio paramete
q85ss /sc50.5 used for all size ratiosq and all arm num-
bers f .
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C. Superposition approximation

A third way to the depletion potential is offered by th
so-calledsuperposition approximation~SA! of Attard.62 If
the exact star-polymer density distributionrs(r1 ;R1 ,R2) at
r1 around two colloids held fixed at positionsR1 and R2

were known, then the depletion force in the low-density lim
could be calculated by an integration over the contributio
of the force between star-polymers and a colloid in direct
of R125R22R1 . As a matter of fact, the densit
rs(r1 ;R1 ,R2) is proportional to the three-body, star-colloid
colloid distribution functiongscc

(3) (r1 ,R1 ,R2). Since the latter
is in general unknown, in the SA it is factorized as a prod
of pair distribution functions, as explained below.

Let us consider two colloids in a distanceR12, as de-
picted in Fig. 4. We put the origin of our coordinate syste
in the center of one of the two colloids surrounded by st
polymers with densityrs(r1 ;R1 ,R2). The depletion force
acting on the left sphere is given by the general relati
Eq. ~20!. Taking into account that¹R1

Vsc(uR12r1u)
52¹r1

Vsc(uR12r1u), settingR150, performing the statisti-
cal average there, and projecting on theR12 direction accord-
ing to Eq.~21!, we obtain the depletion force as

Fdep~R12!522pE
0

`

r 1
2 dVsc~r 1!

dr1
dr1

3E
21

1

rs~r1 ;R1 ,R2!vdv, ~24!

wherev5cosu.
The superposition approximation amounts to replac

the exact densityrs(r1 ;R1 ,R2) of the stars in the presenc
of the two colloids by the product of the bulk star densityrs

r

FIG. 4. A sketch of two colloids in a distanceR12 . The origin of the
coordinates lies in the center of the left sphere.rs(r1 ;R1 ,R2) is the star-
polymer density atr1 , in the presence of the two colloids at positionsR1

andR2 .
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times the two radial distribution functions on the stars in
presence of twoisolatedcolloids, one with its center atR1

and one with its center atR2 . Hence, in the SA one writes

rs~r1 ;R1 ,R2!'rs
rgcs~ ur12R1u!gcs~ ur12R2u!, ~25!

where, evidently,rs
r5(6hs

r)/(pss
3) relates the reservoir den

sity and packing fraction. The radial distribution functio
gcs(ur12Ri u) above relate to a sea of stars in the presenc
a single colloid, hence they are readily available by thehc

→0-limit of the two-component integral equation theorie
Noting that ur12R2u5ur2u5AR12

2 1r 1
22R12r 1v, we finally

obtain in the SA,

Fdep~R12!522prs
rE

0

`

r 1
2 dVsc~r 1!

dr1
gcs~r 1!dr1

3E
21

1

gcs~AR12
2 1r 1

22R12r 1v!vdv. ~26!

In Fig. 3 we show results obtained from this approxim
tion, in comparison to direct simulation results and to t
inversion presented in the preceding subsection. It can
seen that superposition approximation reproduces the s
lation results in the linear polymer limit,f 52, very well. In
this case, the star polymer are very soft, weakly interac
particles. Thereby, the cross-correlations between them
ing from the interactionVss(r ) are so weak that the supe
position approximation is valid: the presence of a seco
colloid results into a density profile for the stars that is ve
well approximated by the product of those arising from tw
isolated colloids. However, for larger functionalities, whe
the star–star interaction starts causing significant correla
effects between them, the resulting depletion interactions
forces from the SA are less accurate. As expected, the
underestimates the degree of oscillatory behavior of
force; in addition, the phase of those oscillations is in er
Thus, for large arm numbers, the superposition approxi
tion is not an adequate tool for calculating accurately
effective interaction.

IV. PHASE DIAGRAMS

Due to the shortcomings of the superposition approxim
tion and the accuracy of the inversion of the RY-results,
have resorted to the latter procedure in order to calculate
depletion potential. Some examples of this potential are p
ted in Fig. 5 for different arm numbersf and reservoir pack-
ing fractionshs

r of the stars. Employing this interaction, w
proceed with the calculation of the phase diagrams of
lected star-polymer–colloid mixtures. The goal is to estab
the limits of stability of the demixing transition with respe
to the crystallization of the colloids. Thereby, we limite
ourselves to the common, fcc-structure for candidate col
dal crystals, which materializes for colloids in the absence
stars (hs

r50). Though competing crystal structures cann
be ruled out a priori, the quantitative features of the deplet
potential render the stability of more open crystal structur
such as the bcc-lattice, improbable. For the calculation of
phase diagrams, we combined simulations and perturba
theory, as explained below.
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A. Simulation

In order to determine phase coexistence, it is neces
to calculate the Helmholtz free energyF5F(Nc ,V,hs

r). An
accurate but computational expensive way is to perform th
modynamical integration of Monte Carlo simulation resul
using the hard-sphere system as reference; for a detailed
scription, see Refs. 14 and 59. The free energy can be i
grated as

F~Nc ,V,hs
r !5F0~Nc ,V,hs

r50!

1E
0

1

dlK (
i , j

Ns

Vdep~r !L
Nc ,V,h

s
r ,l

, ~27!

while using an auxiliary effective interactionVeff
l (r) between

the star-polymers and colloids in the simulation,

Veff
l ~r !5Vcc~r !1lVdep~r !. ~28!

Here, 0<l<1 is a dimensionless coupling parameter, int
polating between the hard sphere reference interactionl
50) and the effective potentialVeff(r). For the free energy of
the hard sphere reference system,F0(Nc ,V,hs

r50), we use
the Carnahan–Starling expression48 for the fluid, and the
equation of state proposed by Hall63 for the solid phase. The
calculation for every point on the free energy curve was p
formed withNs5108 particles starting with a face-centere
cubic configuration. After fitting polynomials to the functio
f (rc)5F/V, a common tangent construction was employ
to obtain the coexistence curves among all phases.

B. Perturbation theory

A theoretical understanding of the effects of the dep
tion potential can be reached within the framework of sta
dard perturbation theory, using the hard-sphere system
reference. To first order in perturbation theory, the Helmho
free energy of a collection of colloids interacting by the ha
sphere plus depletion potentials is given by43

FIG. 5. Depletion potentialsVdep(r ) for the colloids obtained by mapping
the two-component system on an effective one-component system by in
sion of OZ-equations in the low-density limit. We plot the potential f
different arm numbersf 52,6,32 for star polymer reservoir packing fraction
hs

r near the critical point of fluid demixing. The size ratio isq50.5.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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bF

Nc
5

bF0

Nc
1

1

2
brcE g0~r !f~r !d3r , ~29!

whereF0 andg0(r ) are the free energy and radial pair co
relation function of the reference system, andf(r ) the per-
turbing potential,Vdep(r ) in this case. Barker and Henderso
developed a second order term, including two-bo
correlations,64 and refining thereby the perturbation theo
for the free energy into

bF

Nc
5

bF0

Nc
1

1

2
brcE g0~r !f~r !d3r

2
1

4 S ]r

]pD
0

brcE g0~r !f2~r !d3r . ~30!

In Eq. ~30! above, (]r/]p)0 is the compressibility of the
reference system. For the reference free energyF0 , we used
the expressions of Canahan–Starling and Hall, for the fl
and solid phase, respectively. The pair distribution functio
g0(r ) are provided by the parametrizations of Verlet a
Weis65 for the fluid phase and Kincaid and Weis66 for the
solid. Free energy calculations using Eq.~30! were per-
formed by Dijkstraet al. for the effective Asakura–Oosaw
pair potential, modeling colloid–polymer mixtures14 and for
the effective one-component system arising by integra
out the small spheres in a binary hard sphere mixture.59 It
was found there that this approach yields excellent ag
ment for the fluid–solid boundaries compared to thermo
namical integration results.

C. Results

As far as the star-polymer–colloid mixtures are co
cerned, we find from the comparison of the Helmholtz fr
energy calculated from the two different approaches
scribed above, that the two are in excellent agreement a
as the solid branch of the free energy is concerned. Th
consistent with the findings in Refs. 14 and 59. For the fl
branch, though, only the low density range coincide,
larger densities the free energy of the perturbation appro
is always too large. This result is consistent with the fact t
the first-order perturbation theory arises from the Gibb
Bogolyubov inequality and hence the resulting free ene
can only by larger than the true one. Moreover, in the fl
phase, the hard-sphere radial distribution functiong0(r ) se-
verely underestimates the contact value of the trueg(r ), thus
resulting in an internal energy that is significantly high
than the true one at intermediate and high fluid densit
Thus, the Helmholtz free energy of the fluid is overes
mated. In view of the inaccuracy of the perturbation theo
for the fluid phase, we resorted to the results of the Mo
Carlo simulation, whereas for the solid we employed
perturbation approach, in order to reduce the computatio
effort.

In Fig. 6 we plot the phase diagrams for arm numb
f 52, 6, and 32 and size ratiosq50.2, 0.5, and 0.6. Forf
52 we obtain phase diagrams that are very similar to
ones obtained for the AO-model.14 This is interesting since in
this work we are dealing with realistic polymer-polymer
well as polymer–colloid interactions, that go beyond t
Downloaded 17 Mar 2009 to 134.99.64.184. Redistribution subject to AIP
y

id
s

g

e-
-

-
e
-

far
is
d
r
ch
t

–
y

r
s.
-
y
e
e
al

s

e

simple approximations of the AO-model. Apparently, t
overall features of such mixtures and, in particular, t
~meta!stability of the demixing transition are insensitive
the details of the interaction potentials. At size ratioq
50.5, we have a demixing binodal that is only slight
stable, a result in agreement with that of Ref. 14 in which
was foundqc>0.45.

An increase of the functionalityf suppresses the stabilit
of the demixing binodals, a finding which is in line with th
general trend that, asf grows, star-polymers become mo
akin to hard spheres; in a mixture of hard spheres, no dem
ing takes place.17,18,59 For f 56, a stable demixing binoda
appears at larger size ratio,q50.6, see Fig. 6~b!. This is to
be expected, as for largerf the star-polymers become mor
akin to hard depletants and hence a depletion force of lon
range is necessary in order to bring about phase separati
the fluid phase. For the casef 532 we obtain demixing bin-
odals that are always metastable with respect to freezing
the domainq<0.7 in which the pair potentials are reliabl
The results show a clear trend from the AO-type behav
valid for f 52, to the BHS-behavior, valid forf 532. In view
of the fact that the critical valueqc for f 56 seems to lie
slightly below 0.6 and is growing withf , we anticipate that
star polymers withf *10 will not be able to bring abou
stable demixing transitions in a star-polymer–colloid m
ture. For q50.2, shown in Figs. 6~g!, 6~h!, and 6~i!, we
obtain no stable demixing transitions for any of the thr
functionalitiesf 52, 6, and 32 that we checked. At small siz
ratios, star-polymers are weak depletants, causing an at
tion whose range is too short to bring about a thermodyna
cally stable ‘‘liquid-gas’’ coexistence curve. Our findings a
consistent with earlier results on, e.g., the hard-sphe
attractive-Yukawa system67,68 and other model potentials,69

in which it was found that the liquid disappears when t
range of the attractions becomes, roughly, less than 20%
that of the repulsions.

The mapping onto the one-component, depletionlike p
ture greatly facilitates the calculation of the phase diagra
in particular in the crystalline state. Nevertheless, perform
this mapping remains a matter of convenience; the phy
should not depend on the point of view and, in particular,
an exact mapping both the phase boundaries and the c
lation functions of the colloids should be identical in bo
pictures.22 Since we have employed approximations at va
ous stages, in both the two-component and in the deple
approaches, it is useful to perform a comparison between
two in order to judge their severity. This is the subject of t
following section.

V. COMPARISON BETWEEN THE TWO- AND ONE-
COMPONENT DESCRIPTIONS

A. Phase behavior

The determination of the partial chemical potentials
the full two-component system described in Sec. II enab
us to compare the results obtained there in the (hc ,hs)- or
system-representation, with the results obtained in Sec. IV
the (hc ,hs

r)- or reservoir-representation. As we can see fro
Eq. ~17!, the partial chemical potentials of the stars and c
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 6. Phase diagrams of star-polymer–colloid mixtures for different size ratios and different star functionalities. The circles indicate the calculated phase
boundaries from the one-component description, the squares from the full two-component description, see Sec. II. The lines are a guide to the eysolid
lines denote stable phase transitions and the broken ones metastable demixing binodals. The first row shows the phase behavior for a size ratioq50.6. ~a!
f 52; ~b! f 56; ~c! f 532. For f 52 andf 56 the demixing transition in the fluid phase is stable, resulting into three distinct phases: gas~G!, liquid ~L!, and
solid ~S!. For f 532 the freezing transition preempts demixing, resulting into two stable phases: fluid~F! and solid~S!. In the second row the phase behavi
for q50.5 is plotted, again the arm number increases from~d! to ~f!, in analogy to the first row. Now only forf 52 a stable demixing binodal is found. Th
asterisks denote state points at which pairwise correlation functions were calculated. The last row shows the behavior forq50.2. No stable fluid–fluid
transition is observed for arm numbersf 52 ~g!, f 56 ~h!, and f 532 ~i!.
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loids can be simply obtained by the common tangent c
struction; the intersection of the tangent with thex50 or x
51 axis yield the partial chemical potentialmc or ms , re-
spectively. Now, for every two coexistence points in t
(hc ,hs) ensemble we determine the corresponding chem
potentialms . The equation of state of the one component s
polymer system determined by RY gives us the reserv
packing fraction to every chemical potential. We calcula
the transformed curves for a size rationq50.5 and arm num-
bers f 52, 6, and 32. The results of the mapping of the c
existence points from the (hc ,hs)-plane into the
(hc ,hs

r)-plane are shown in Figs. 6~d!–6~f! together with the
fluid-demixing binodals from the one-component approa
Regarding the critical points the agreement is very go
Although many-body terms are neglected in the effect
one-component description,14,22 we find a satisfactory agree
ment, both for the critical colloid density and for the critic
Downloaded 17 Mar 2009 to 134.99.64.184. Redistribution subject to AIP
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star polymer reservoir density. Away from the critical poin
the coexistence lines from the two-component approach
too broad. The farther one is from the critical point, the mo
difficult it becomes to reach precisely the spinodal of t
mixture and then the numerical inaccuracies caused by
interpolation in the neighborhood of the spinodal beco
more and more relevant.

B. Structure

We now discuss the colloid–colloid correlation functio
in the fluid phase. We showed how to translate the star p
mer densities on the phase boundaries to the correspon
chemical potentials or reservoir packing fractions. Hence,
are able to compare the structure of the colloids in the o
and two-component description on selected state point
the phase diagrams. In Fig. 7 we plot the pair distribut
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



re
ts

a
or

g
en
d
te

he
tly,

-

ne-
irst
em-
the
sed
70.

-

e

va-
rect
ne-

ter
he
n-
PY

er–
e
nd
are
iva-
re,

ave
g

et-
be
of
tar-

as
of

be
ler
ere
wls

ia-
e-

ll

am
e-

ll

9528 J. Chem. Phys., Vol. 116, No. 21, 1 June 2002 Dzubiella, Likos, and Löwen
function gcc(r ) and in Fig. 8 the associated static structu
factors Scc(k) corresponding to four different state poin
~A!–~D! in the phase diagram Fig. 6. The size ratio isq
50.5 and the arm numbersf vary. The state points~A!–~C!
are chosen to be close to the fluid-fluid demixing critic
point, while point~D! is deep in the stable fluid phase. F
the one-component system we use the Percus–Yevick~PY!-
closure, which is expected to be accurate for the short-ran
interactions between the colloids. For the two-compon
case, we use the RY-closure as described in Sec. II. In a
tion we compute the correlation functions with compu

FIG. 7. Comparison of the pair correlations functionsgcc(r ) for the colloids
at different state points~A!–~D!, denoted by the asterisks in the phase d
gram for q50.5 in ~d!–~f!. Using the depletion potentials from the on
component description MC simulations~solid lines! are compared to PY
results ~dashed lines!. Dotted lines present RY-results employing the fu
binary OZ-equations.

FIG. 8. Comparison of the static structure factorsScc(q) for the colloids at
different state points~A!–~D!, denoted by the asterisks in the phase diagr
for q50.5 in ~d!–~f!. Using the depletion potentials from the on
component description MC simulations~solid lines! are compared to PY
results ~dashed lines!. Dotted lines present RY-results employing the fu
binary OZ-equations.
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simulations for the state points~A! and ~D!, where the fluid
demixing transition is not preempted by freezing. In t
simulations the structure factor was calculated direc
using43

Scc~k!5Nc
21^rc~k!rc~2k!&, ~31!

where rc(k) is the Fourier transform of the colloid one
particle density operator and is defined as43

rc~k!5(
i 51

Nc

exp~ ik•r i!, ~32!

with the sum being extended over all positionsr i of the Nc

colloidal particles.
The simulations were performed using the same o

component effective interactions as the PY-calculations. F
of all, the agreement between PY and simulations data d
onstrates that the PY-closure yields very good results for
structure in systems with a hard-sphere interaction dres
with a short-range attraction, as also seen in Refs. 14 and
Further, theScc(k)’s resulting from the solution of the two
component system~through the RY-closure! are indeed very
similar to those arising from the solution of the effectiv
one-component system~through the PY-closure! at the cor-
responding thermodynamic points. This demonstrates the
lidity of the mapping procedure and also serves as an indi
proof that higher-order interactions, which have been
glected in the one-component description, are not crucial.71,72

The structure factors at the thermodynamic points~A!, ~B!,
and~C! show the typical enhancement for lowk-values, due
to their close distance from the demixing spinodal. The fas
divergence of the RY-structure factor in comparison with t
PY- one is in line with the demixing spinodals and demo
strates the superiority of the RY-closure with respect to
regarding thermodynamic properties.

VI. SUMMARY AND CONCLUDING REMARKS

We have traced out the phase diagram of star-polym
colloid mixtures, establishing the limits of stability of th
demixing binodals as functions of the star functionality a
the size ratio, for the case in which the star-polymers
smaller than the colloids. We have demonstrated the equ
lence of a two-component approach with a depletion pictu
in which the stars are further traced out. Star polymers h
been shown to fulfill their unique role as natural bridgin
systems between soft polymers~for low f ! and colloidal
particles~at high f !. Hence, they can act as selective depl
ants between colloidal hard spheres. All our findings can
experimentally checked by carefully preparing mixtures
index-matched hard sphere colloids with monodisperse s
polymers in good solvents.26

The stability of the demixing with respect to freezing h
been recently studied in some generality in the framework
the model of nonadditive hard spheres.18,73,74 Whether the
present system can also fit within this picture remains to
seen. Our work is limited to star-colloid size ratios smal
than unity, since the star-colloid interactions employed h
are derived under the assumption that the star never ‘‘cra
over’’ the colloidal hard sphere.35 The investigation of the
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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opposite case, in which the small colloids can fully penetr
into the corona of the star-polymers75 is also a problem for
the future.
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APPENDIX: ON THE x\0 AND x\1 LIMITS OF THE
GIBBS FREE ENERGY

In this Appendix we present some technical details n
essary for the solution of the second-order differential E
~16!. With the Gibbs free energy per particle,

g~x!5
G~x,T,P!

N
, ~A1!

we seek to solve the equation,47

g9~x!5
kBT

Scon~k50!
, ~A2!

where it is implied that the pressureP and the temperatureT
are constant.

The concentration structure factorScon(k) for a colloid-
star mixture of partial concentrationsxc andxs is defined as

Scon~k!5
1

N
^@xsrc~k!2xcrs~k!#

3@xsrc~2k!2xcrs~2k!#&

5xs
2 1

N
^rc~k!rc~2k!&1xc

2 1

N
^rs~k!rs~2k!&

22xcxs

1

N
^rc~k!rs~2k!&, ~A3!

where rc(k) is defined through Eq.~32! and similarly for
rs(k).

We define the partial structure factorsSi j (k) as Si j (k)
5d i j 1Ar ir j h̃i j (k), i , j 5c,s. It can be shown43 that these
Si j (k)’s satisfy the equations,

xcScc~k!5
1

N
^rc~k!rc~2k!&, ~A4!

xsSss~k!5
1

N
^rs~k!rs~2k!&, ~A5!

AxcxsScs~k!5
1

N
^rc~k!rs~2k!&. ~A6!

From Eqs.~A3! to ~A6! we obtain

Scon~k!5xcxs
2Scc~k!1xsxc

2Sss~k!

22~xcxs!
3/2Scs~k!. ~A7!

We now setxs5x, xc512x and introduce the total densit
r of the mixture, related to the partial densities throughrc

5(12x)r andrs5xr. UsingSi j (k)5d i j 1Ar ir j h̃i j (k) and
Eqs.~A2! and ~A7! above, we obtain
Downloaded 17 Mar 2009 to 134.99.64.184. Redistribution subject to AIP
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.

bg9~x!5$x2~12x!@11~12x!rh̃cc~0!#

1x~12x!2@11xrh̃ss~0!#

22x2~12x!2rh̃cs~0!%21. ~A8!

The quantitiesh̃i j (0) are all finite and so isr. An analysis of
the limiting behavior of the rhs of Eq.~A8! above, shows
that it diverges as 1/x for x→0 and as 1/(12x) for x→1. In
order to circumvent this technical difficulty at the tw
boundaries of integration and deal always with finite valu
we split the Gibbs free energy per particleg(x) into the ideal
part,gid(x), and the excess part,gex(x), as follows:

bg~x!5bgid~x!1bgex~x!

5~12x!bmc, id~x!1xbms, id~x!1bgex~x!

5~12x!ln@~12x!rsc
3#1x ln~xrsc

3!

1bgex~x!13~12x!lnS Lc

sc
D13x lnS Ls

sc
D

5~12x!ln~12x!1x ln x1bgex~x!1C1x1C0 ,

~A9!

where Lc,s are the thermal de Broglie wavelengths of t
colloids and stars, respectively, and in the last line we h
simply introduced two constants,C0 and C1 for a term in
g(x) that is linear inx and plays no role, neither in th
argument that follows nor in the determination of pha
boundaries. Taking the second derivative in Eq.~A9! above,
we obtain

bg9~x!5
1

x
1

1

12x
1gex9 ~x!. ~A10!

Thus, the 1/x-divergence at x→0 and the
1/(12x)-divergence atx→1 manifest also in Eq.~A8!
above, are seen to arise from the ideal part of the Gibbs
energy. Hence, a second-order differential equation for wh
all terms that appear are free of divergences can be writ
which reads as

bgex9 ~x!5
1

Scon~k50!
2S 1

x
1

1

12xD . ~A11!

We solved therefore numerically Eq.~A11! for the determi-
nation of the functiongex(x); addition of the analytically
known termgid(x) delivers the total Gibbs free energy p
particle.

1We ignore here the possibility of formation of a quasicrystal because
practice, quasicrystal forming materials are usually ternary mixtures.
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