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We examine the conformations and effective interactions of star-branched polyelectrolytes with and
without added salt, by employing monomer-resolved molecular dynamics simulations and an
analytical theory. The simulations take into account the excluded-volume and Coulomb interactions
between the individual monomers, as well as the counter- and coions. The theory is based on a
variational free energy that is written as a sum of electrostatic, polymer, and entropic contributions
of the counter- and coions. For the conformations of isolated polyelectrolyte stars, we find strong
stretching of the chains, resulting in a linear scaling of the star radius with the degree of
polymerization, as well as trapping and condensation of a large fraction of counterions. The
effective interactions at arbitrarily strong overlaps between the stars are shown to be dominated by
the entropic contributions of the trapped counterions, with the electrostatic contribution playing only
a minor role due to an almost complete neutralization of the stars. In the case of added salt, we find
a shrinking of the star size as well as a weakening of the effective force due to a generalized
depletion mechanism. The good agreement between theory and simulations allows us to put forward
analytic expressions for the effective interaction between polyelectrolyte stars at arbitrary
separations. €2002 American Institute of Physic§DOI: 10.1063/1.1480007

I. INTRODUCTION spherical colloidal particles of radius. In the limit L>Db,
) o one obtains the star-branched polyelectrolytes or simply PE
PolyelectrolytesPE9 are polymer chains carrying ion- giars. These are systems of great physical and practical im-

izable groups along their backbone. Upon solution into gyortance: grafting of PE chains on colloidal particles dis-

polar (aqueoussolvent, these groups dissociate into the sol-gq1yeq in polar solvents greatly enhances their stability

yent_, leaving behind.a charged polymer in coexistence Witrégainst flocculation®2° PE brushes are models of block co-
its dissolved counterions. The problem of the structure of P olymer micelles formed by hydrophobically modified PEs

spluhons IS a c;hallengmg one from th(.a'theoretlcal point o in aqueous solution®; and they have considerable potential
view, because it combines the complexities of polymer phys:

: : L . in industrial applications due to the increased need for water-
ics, chain connectivity and self-avoidance, and of the long- 23 o .

) . supported systent$:?® Pincus was the first to present a
range Coulomb interaction between the charged monomer

At the same time, there exists vivid interest on these molﬁweow on the interactions of PE stars, based on scaling

9 . . . . y
ecules, due to their numerous biological and technologica'fjeasl' The two fundamental ingredients in Pincus’ approach

applications. Typical PE biomolecules are DNA and proteins,are the retraction of the chains of the stars as they approach

sulfonated polysterene and polyacrylic acid, the key ingredi€ach other(no interdigitation and the domination of the

ent in diapers, are some of the most common commerciall)fprce acting betvyeen them by the entropic contribution of the
used polyelectrolytes. The structure of PE solutions, the corf@PPed counterions. PE stars that have the property of ab-
formational properties of the constituent macromolecules irforbing most of the counterions are callesotic®* Based

the same, as well as the questions of counterion condensati®f these assumptions, Pincus predicted that the force be-

and chain collapse have been the subject of many recefiveen two PE stars should be independent of their separa-
investigations™2 employing a variety of theoretical and tion. Klein Wolterink et al?* and Borisov and Zhulirf4?°

computational approachés. put forward a scaling theory, together with SCF calculations
When polyelectrolytes are grafted on surfaces they fornto study the conformations of isolated PE stars.
a polyelectrolyte brush. Considerable progress toward a the- In a recent lettef° we proposed an analytical theory for
oretical understanding of the properties ganar brushes the conformations and interactions of PE stars and compared
has been made through the use of scaling theory, selits predictions with the results from molecular dynamics
consistent field (SCH calculations, and computer (MD) computer simulations. In this paper, we give a detailed
simulations'*~*® Much less is known about spherical PE account of the theoretical model, which is valid for both
brushes. These result by grafting PEs of contour lehgtin  isolated and interacting stars, and present more extensive
comparisons with simulations for both salt-free and salt-
dAuthor to whom correspondence should be addressed; electronic maiﬁontaining solutions. We have investigated the sizes, confor-
likos@thphy.uni-duesseldorf.de mations and interactions of PE stars for high charging frac-
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tions «=1/6. We find a stretching of the chains and 1 Ro |2
significant counterion condensation. For the force betweeQ/ ) EkFENE(_) In
two stars, our results are quantitatively different than the Fene(r) =
early predictions of Ref. 19, in that we find the force to be
dependent on the star—star separations. Qualitatively, how- @
ever, we confirm Pincus’ predictiof,stating that the inter- wherekggne denotes the spring constant and is sekggye
action is dominated by the entropic effects of the counterions=7.0s| ;. This interaction diverges at=R,, which deter-
and not by the electrostatic contribution. Simple, analyticalmines the maximal relative displacement of two neighboring
expressions for the effective interactions between PE stadseads. The energy, ; is the same as in Eql), whereas for
for given arm numbers and charging fractions are also puthe length scal&k, we have chosen the vali®,=2.00 ;.
forward. The interactions between the monomers and the central

The rest of the paper is organized as follows: In Sec. llparticle mentioned above are modeled as follows: All mono-
we examine the conformations of isolated stars, and in pamers have a repulsive interactidfi,(r) of the truncated and
ticular in Sec. Il A we introduce the simulation model. In shifted LJ type with the central particle
Sec. Il B we discuss the obtained density profiles from simu-
lations, which are used as input to the theory presented in c _[Oo for r<Ry:

\ . V()= ()

Sec. I C. The conformations of PE stars with added salt are L Vi (r—=Ry) for r>Ry,

discussed in Sec. Il D. In Sec. Ill we turn our attention to theWhereas the innermost monomers in the chain experience an

effective interactions between two PE stars. The theory i%\dditional attractive potentiaVSo,r) of the FENE type
presented in Sec. lllA, and the results and comparisons Q. " i o namely FEN

simulations in Sec. Il B for the salt-free case and in Sec.

&
1-|=— for r=<Ry;
oL Ro 0

o for r>Ry,

[l C for the case of added salt. In Sec. IV we summarize and . o for r<sRy;

conclude. As the theoretical model involves the calculation  Vrene(r) = N (4)
. . ) V,:ENE(I’ Rd) for r>Rd.

of electrostatic potentials for unusual geometries, we present

this technical part in Appendixes A and B. Each chain is charged by a fractianin a periodical

manner: every X bead carries a monovalent charge. For

Il. THE DILUTE LIMIT: SIZES AND CONFORMATIONS reasons of electroneutrality, the same amount of monovalent

OF ISOLATED POLYELECTROLYTE STARS charges as the charged monomers, namelyNthe afN re-
. _ leased counterions, are included in the simulation box. They
A. The simulation model are able to freely move in the box, thereby they are simulated

We begin with the description of the simulation model, expli(_:itly. The sn_apsh(_)t shown in Fig. 1 illustrates the differ-
valid for both a single star polyelectrolyte and two star poly-€nt kinds of particles in the system.
electrolytes. We performed monomer-resolved MD simula- ~ The full Coulomb interactionVc,,(r) between all
tions using the model of Stevens and Krefegrestet al, 3 charged L{mtimonomer ions and counterionisas finally to
and Gre< for single polyelectrolyte chains. In our consid- b€ taken into account:
erations we havé chains withN monomers per chain, all a2 .

: : qig;e” _ qid;
chains coupled at a common core, whose $geis much Veoullii) = =kgTAg—, (5)

. J €rii Mii

smaller than the extension of the star-shaped macromolecule. g g
The introduction of the core is necessary to accommodate thehereq;= =1 for the charged monomers and the counter-
chains close to the center, where the monomer density i®ns, respectively. The Bjerrum lengity is defined as the

high. length at which the electrostatic energy equals the thermal
The polyelectrolyte chains are modeled as bead-springnergy

chains of Lennard-Jonefd.J) particles. The idea of this s

method was first applied on neutral linear polymers and on a )\B:e_’ (6)

single star polymet®?° For good solvent conditions, a ekgT

shifted LJ potential is used to describe the purely repulsivgyneree is the unit charge of the interacting particles, and
excluded volume interaction between Blf monomers: the permittivity of the solvent. For water in room tempera-

o\ (o8 1 " ture one obtaindg=7.1 A. Unless explicitly mentioned, no
Y _ ] “ew (T) - (T) + 7 for r<2"0;; salt is added. The solvent is only taken into account via the
La(r) U6 dielectric background. The Bjerrum length is fixed tdg
0 for r>2"0;. =3.00;. This is a realistic value for typical polyelectro-

(1) lytes, such as the hydrophobic sodium getyreneec-
Here,r is the distance of the interacting beads, is the  styrene sulfonaje or the hydrophilic polyacrylamide-
microscopic length scale of the beads angisets the energy  co-sodium-2-acrylamido-2-methylpropane-sulfongfe The
scale. In accordance with previous wdfkwe have chosen long-ranged Coulomb forces are calculated by the Lekner
for the temperaturd=1.2¢;/kg, wherekg is the Boltz- method®?

mann constant. The single polyelectrolyte star was simulated in a cubic
The connectivity of the bonded monomers is assured byox with a typical edge length df,=900 ; with periodic
a finite extension nonlinear elasEENE) potential: boundary conditions, emulating a dilute PE-star solution.
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FIG. 2. Double-logarithmic plot of the density profile of monomers, mono-
mer ions, and counterions, for a star witkf 10, N=50 anda=1/3. The
slope of the scaling regime is also shown. Its value,— 1.8 indicates the
stretching of the chains.

monomers and counterions as functions of the distance from
the star center, respectively. We measured all three quan-
: tities during the simulation run and investigated primarily
K] their f anda dependence. In addition, we measured the frac-
. tion of trapped counterions that were condensed along the
' rods by surrounding every charged monomer with a fictitious
sphere of radiud g and monitoring the number of counteri-
FIG. 1. Snapshot of a star-branched polyelectrolyte Witl0, N=50 and ons inside all spheres.
a=1/3. The bright gray pall_s are the neutral monomers, a_md the dark We focus here on the density profiles. As seen in Fig. 2,
spheres along the chains indicate the charged monofeeesy third bal). . . . .
The counterions are the small, dark spheres around the star. the monomers show a scallng behavior of their proflle, a
feature qualitatively similar to neutral star polymé?ts®
Quantitatively, however, the scaling exponent is different: in

The box size was varied as well, in order to investigate théhe neutral-star case, one obtais)~r~432829%in the
influence of the long-ranged Coulomb forces and of the dencharged-star case we obtain a power-lefw) ~r %, i.e.,
sity on the single-star conformations. The core of the stathe chains are much more stretched. To demonstrate this
was located at the box center and remained fixed during theoint, we show in Fig. 3 snapshots of a charged and a neutral
simulation run. The time step was typicalipt=0.002- with ~ star; the stretching of the chains of the charged star is mani-
T= \/mazulsu being the associated time unit amd the  fest.
monomer mass. The counterions were taken to have the same
mass and size as the charged monomers.

After a long equilibration timg(150 000—200 000 time
steps, different static quantities were calculated during SN
simulation runs lasting between 500 000 and 1300000 time « %
steps, namely the center-to-end distanReand the density "
profiles of the monomers, the monomer ions, and the coun- .
terions that are trapped within the star due to the attractive.
Coulomb interaction between them and the monomer ions -
Simulations were carried out for a variety of arm numbfers
(f=5, 10, 18, 30, 40, 50and charge fractiong (a=1/6,
1/4, 1/3, allowing us to make systematic predictions for the
f and « dependencies of all theoretical parameters. In addi-
tion, we investigated the chain length dependence by varyin¢ - -
the degree of polymerizatioN of the chains. The valudy &2
=50, 100, 150, and 200 were considered.

B. The density profile FIG. 3. Snapshots of a polyelectrolyte steft picture, a=1/3) and a
. neutral star polymegright picture, «=0) each withf=10 arms andN
Let Cimon(r), Ccharge(_r) and cc_o_ume(r) be the expectation _50 monomers per arm. The stretching of the chains in the case of the
values of the one-particle densities of the monomers, chargetharged star, in contrast to the neutral star, can be clearly seen.
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TABLE Il. Comparison of the conformational properties obtained from
simulation and theory for different chain lengtNs Here the arm number is
fixed to =10, the charge fraction i&=1/3, and the cell radius iRy
=55.830; for N=50 andR\,=136.48¢, for all other chain lengths.

N N (Rlow)? (Rlow)® (Ni®  (Ni)®  (N)® (Np)°

50 160 27.4 26.9 110 134 72 81
100 330 573 540 236 269 9 103
150 500 84.2 78.8 382 420 131 133
200 660 1067 1004 553 572 169 162

aSimulation.
Theory.

polyelectrolytes?4253€as we will see in Sec. Ill, the inho-
mogeneous behavior of the counterions play a crucial role

for the effective interaction between two polyelectrolyte
stars.

FIG. 4. A sketch of a polyelectrolyte star in its spherical Wigner—Seitz cell. )
For demonstration, five chairisolid lineg are assumed to be fully stretched C. Theory of isolated polyelectrolyte-stars
and are surrounded by cylindefdashed lineswhere the condensed coun- . . . .
terions are located. For further explanations, see text. In the theoretical investigations, we employ a mean-
field, Flory-type approach for the analysis of the large-scale
properties of polyelectrolyte stars, which is akin to that of
The fully rodlike chain limit yields a monomer profile Ref. 21. We consider a star in a dilute solution of density
scaling a§*#c(r)~r 2 and hence a slope 2 in a double-  ps=Ng/V containingNg, PE stars in the macroscopic vol-
logarithmic plot. This rodlike behavior has been experimenumeV. We define accordingly the Wigner—Seitz radiios
tally observed in neutron scattering studies of block copolyion-sphere radiysRy,= (4mp</3) > The star is envisioned
mer micelles’* Because of small lateral fluctuations of the as a sphere of radiuR enclosed in a cell of radiuBy,>R;
chains®® the fully rodlike limit is not reached here and the all counterions are restricted to move inside this cell. Figure
slope y=—1.8 is obtained® Nevertheless, the value indi- 4 illustrates the situation and is helpful for further consider-
cates an almost complete stretching of the chains. The coutions.
terion density profile shows the same scaling as that of the Particular attention has to be paid to the Manning con-
monomers. This is a manifestation of the tendency of thélensation of counterions on the rodlike chairis’~*The
counterions to achieve local charge neutrality, a feature alseondensation takes place when the dimensionless parameter
seen in simulations of planar polyelectrolyte brusHedow- ~ £=\gNa/R exceeds unity® This condition is satisfied for
ever, the counterions, in contrast to the monomers, are n@ll our parameter combinations, see Tables I-Ill. Thus, in the
bounded and therefore they add a high entropic contributiofnodel, theN. counterions are partitioned into three different
to the free energy of the system. This is a relevant poinstates:N; condensedaounterions withinf tubes around the
because many investigations on these systems are based anches of the star: these are confined to move in quasi-one-
homogeneous distributions of the counterions within PE-stagimensional cylindrical domain\l, trappedcounterions in-

side the star: these are allowed to explore the whole interior

of the star. FinallyN; free counterions that move into the
TABLE I. Comparison of conformational properties between simulation and
theory for different arm numberfs The chain length is fixed tbl=50, and
the cell radius iRy=55.830 5, except forf=40 (Ry,=62.040,), and

TABLE lIl. Comparison of the conformational properties between simula-
f=50 (Ry=74.440,).

tion and theory for two different chain numberand different salt concen-
trationscg. The charge fraction is fixed ta=1/3, and the cell radius is

f @ Ne (Rlow)? (R/ULJ)b (Nin)? (Nin)b (Np)? (Nl)b

Rw=55.8301,.
5° 13 80 26.8 26.1 47 57 27 25 c

S
ooye S ma B/ 2 2B N N, Mol (RIow)® (RIo® (N (N (N)® (N
166 1/3 160 27.4 26.9 110 134 72 81 5 80 250 0.036 22.1 22.2 73 73 40 22
18 1/6 144 24.2 25.8 91 121 60 90 5 80 600 0.088 20.7 19.4 87 76 44 29
18 1/4 216 26.6 26.9 156 190 107 141 10 160 250 0.036 24.0 25.0 138 150 81 60
18 1/3 288 28.3 28.1 217 260 159 190 10° 160 600 0.088 22.6 22.7 156 155 %0 71
30 1/4 360 27.2 28.8 278 332 213 272 10° 160 750 0.109 21.8 22.1 164 156 %5 74
30 1/3 480 28.6 29.7 384 449 309 366 10 160 1000 0.146 21.9 21.3 173 156 98 74
40 1/3 640 29.2 30.9 531 607 392 517
50 1/3 800 29.8 32.0 668 763 514 670 °Simulation.

®Theory.

éSimulation. ‘From Ref. 26.
bTheory.

9These entries were erroneous in Ref. 26 due to a programming error. We

‘From Ref. 26. quote here the correct results.
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bulk of the solution and in the model they are located in the

. : O counterion
regionR<r<Ry,. This approach is similar to the three-state Y :
model of Kramarenket al.** employed for polyelectrolyte 7\'B
microgel particles. To specify the available volumes to the

condensed and trapped counterions, we introduce tubes of
length R and radiushg surrounding each rod, and treat all
counterions contained in these tubes as condensed. Thus, the
interior volume V(R)=4xR%3 of the star is divided as
V(R)=V;+V,+frodR with V;=fm(A3—0?)R being

the total volume of the hollow tubes, available to the con-
densed counterions, ané, the volume remaining available

to the N, trapped counterions inside. Moreover, lgg ~ --J-----------------o-oooooo oo

=4 ( R\s;v_ R®%)/3 be the volume of the spherical shell for the g, 5. A sketch of a chain segment for the case 1/3, showing mono-
free counterions, angi(r), i=1,2,3, thenumberdensities of ~ mers (dashed-lined hollow sphengscharged monomersgbright gray
the three counterion types. Clearly, the number of free counsPheresand a counteriodark gray sphepeThe tube radius ia g from the

. . entral line, indicating the stretched behavior of the chain. The neutral
terions N3 Is equal to the number of the uncompensatedrcnonomers can deviate from the central line, whereas the charged monomers

charges of the sta@*/e. We emphasize that all counterions gre situated along this line. The counterion is assumed to be placed between
are indistinguishable particles and have been treated in thigo charged monomers with a distarggto them.

way in all considerations to follow. Particle exchanges be-
tween the three possible states constantly take place and the

numbersN;, i=1,2,3 are simply expectation values and not

prescribed occupation numbers of counterions that have betfr?d is a Gaussian approximation of thg con.fgrmatlonal en-
“marked” to belong to one state or the other. ropy of the arms of the star, where we identified the mono-

The equilibrium values foR and N; are determined mer length witho ;. For the nonelectrostatic contribution of

through minimization of a variational free energy which we the chainsFg, arising through their self-avoidance, we em-
ploy the Flory-type expression

%
\

'
/

\%\

write as
3 Fr 3u(fN)? "
FRIND=Uy+U+Fo+Fat+ > S, @ keT 8RS 1D
=1

with the excluded volume parameter As usual for the case

f good-solvent conditions, triplet-monomer contributions
ﬁave been omitted. Finally, the tern$s are ideal entropic
contributions of the form

whereU, andU. are electrostatic contributions andFg
elastic and self-avoidance contributions from the chains an
S entropic contributions from the counterions, to be de-
scribed in detail in what follows.

The termUy, is the Hartree-type, mean-field electrostatic 3 3
energy of the whole star Si:kBTL_d r pi(r)[InCpi(r)oiy) —1]
1 e(re(r’)
_ 3, 43,7 A
Unge | [ derar ST ® +3Niln(a—u), 12

with the localchargedensityo(r) to be defined below. The
only relevant correlations arise between the condensed cou
terions and the charges on the chains because the aver

den5||tyt_of the trappe(tj coufnten(:;:s Istt verty IOWt‘) I;|ence,trt]h hree entropic contributions in E¢7), the last terms contrib-
correlation energyJ, stems from the attractions between the only the trivial constant I8;In(A/oy ;) which will be

rods and the condensed counterions contained in the assoﬁ'r’opped in what follows

ated tubes. To estimate the average rod-condensed counter-"\\ . i\« the mean-field electrostatic and the entropic
ion separatiorzy,, we takezy=(1/2)yAg+ym, whereyy (;erms in more detail. Since the chains are modeled as being

=R/(Na) is the dlstancg betwegn two sequential charge ully stretched, the density distributions inside the stars fall
monomers along the chain, obtaining for.the correlation eng e = 2 from the center but are uniform outside the star.
ergy resulting fromN, condensed counterions: We note that this is different from the approach of Ref. 21,
U, AgNy where uniform densities insidend outside the star were em-
KeT == 2 ©) ployed. Though we obtained reasonable results for the iso-
lated star using such trial profiles, the nonuniform ones are of
Figure 5 illustrates the chosen value fgy, resulting  paramount importance for obtaining agreement with simula-
from geometrical considerations. The tefry is the elastic tion results regarding the effective interaction, as we will

with p;(r)=N;/V; being the number densities of the coun-
terions in the three possible statésis the thermal de Bro-
fe wavelength of the counterions. In writing the sum of the

contribution of the chains, written as discuss shortly. Accordingly, we write
Foq 3fR? o(r) O(R-r) O(r—R)O(Ry—T)
e SR (10) = - r (13)
keT 2Not, Q 47Rr V3
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with the net charg®* =|e[(N;—N;—N2)=|e[N; and the > ;. Since the condensed counterions are to be found in
Heaviside step functio®(x). We thus obtain the electro- typical distances g from the chain backbone, we thereby set
static energy as Tpair=Ng= 307, and thereby obtaiw = o7, =3007,. This
2 is the value that we employed in all our theoretical analyses.
Uy Nzrg [ R - - - “ o
— = —, (14) It is also in agreement with the “screened electrostatic” es-
keT 2R “\Rw timate v =\gk 2a® of Ref. 21, with k= 3N,\g/R?, for
where the functiond(x) is given by typical values ofa, N, andR read off from Table I.
The valuesk andN; (i=1,2,3) are found by minimiza-
(15) tion of the free energy Ed7). The results read as

5—9x+5x3—x8
dx)=14 T

5(1—x%)?
In order to calculate the entropic contributions of the - N )\BUEJNg S(RIRw) — R 9'(RIR
counterions in Eq(12), we need to specify the number den- T 3f 2 (R/Rw) Ry (R/IRw)

sities p;(r). We model the condensed counterions as having

a uniform distribution inside the tubes, an assumption sup- +3Re2| N (1+ 2 Wf)\éR) . V(R
ported by simulation results on single PE chains having typi- Ly 2 3V, VA
cal values of the ratiost\g/o 5 considered herg.Thus, 5 ) ,
p1(r)=N;/V, inside the tubes and zero otherwise. Since the L NWRo21— (L) ﬂ i( fNULJ) J
. . 1Ro(; 1 T+ v,
trapped counterions follow the profile of the charged mono- Ne/ 4z, | 8w\ R
mers, we take,(r)=Cr 20 (R—r). The volume which is 21)
available for theN, trapped counterions inside the star is
reduced by the presence of the tubes around the chains. We
therefore introduce a representative sphere of raiukav- Naz 241n (Nc_ Ny _ 1)&“ (22)
ing the same volum&/, as that available to th#&l, coun- 8 N H(R/Ry) N3 3Vy| |’
terions and calculate the prefactorof p, using the normal-
ization conditionC=N,/(47R"). The reduced radiuR’ is 3V, Ng| ]t
determined by the equation N1=(N—N3)[ 1+ V—lex;< —2— Z—” , (23
m

4—77R3—f )\2R—4—7TR’3=V (16)

3 ThBTT 3 o whered’ (x) =dd/dx. All quantities acquire an explicit den-
yielding sity dependence througRy,, a usual situation for charged

systems, familiar from the statistical mechanics of charged-
3 B stabilized colloids as weff The results for different param-
1- Zf<ﬁ (17 eter combinations are shown in Tables | and Il in comparison
with simulation data.
Finally, we assume a uniform distribution of the free coun- Referring to Table I, in which the degree of polymeriza-
terions within the cellR<r<Ry and takeps(r)=0(r  tion is fixed toN=50, we see that the radii values from
—R)O(Rw—r)N3/Vs. theory and simulation are in very good agreement for all
Carrying out the integrations in E12), we obtain the  parameter combinations considered. Moreover, the radius is
following expressions for the entropic contributions of the practicallyf independent, a manifestation of the fact that the

211/3

R'=R

counterions in their three different states: chains are stretched. This is one of the features that distin-
S [ [N.o3 guish PE stars from neutral ones, for which the scalhg
I 7L . £1/5\3/5 30,33
T Nq| | v , (18) f**N=> holds™ " As far as the total number of trapped
B 1 counterionsN;,=N;+ N, and N, of condensed counterions
S, 200 are concerned, the following remarks can be made: both are
—==Ny|In| ——=3|+1|, (19 overestimated in the theory by an amount depending on the
kgT 47R . : : e .
» charging fractiorw. This overestimation can be explained by
[ [ Nao3 the fact that we assumed a complete stretching of the chains
S 301 . . . . .
ﬁ_Ng I v -1 (20 (rodlike configuratiof, which results in a stronger electro-
B 3

static attraction than the true one, in which lateral chain fluc-
The Flory term in Eq(11) takes into account, in a mean- tuations are present. The same mechanism is responsible for
field fashion, the loss of entropy of the chains due to thethe overestimation oN;. This claim is corroborated by the
short-range steric repulsions of the monomers, through theremark that the largest discrepancies occur for the smallest
effective, excluded-volume parameter The value of this charge fractiona=1/6, where the assumption of stretched
parameter for stiff PEs has been the topic of extensive disehains is most questionable. On the other handyatie of
cussion in the literatur€ %3 If the chains were neutral, condensed to absorbed counterions appears to be almost con-
then a good estimate far term would be the volume of the stant,~70% for all combinations considered, both in theory
monomer beadp=¢?;. The presence of the condensedand simulation. With our present, minimal assumptions, we
counterions, though, introduces monomer pairs along th&nd that the theory captures quantitatively all features of the
backbones of the chains, whose effective diameterjg  star conformations. It reproduces the tendency of the PE stars
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to increase the fractioN;,/N. of absorbed counterions &s
and/or « increase, in line with the predictions of scaling
theory in the “osmotic star” regimé*?°

In Table Il we show the results obtained for fixed arm
numberf =10 and varyind\. First, we observe a linear scal-
ing of the star radiuR~ N, confirming the overall stretched- R
chain configuration. Once again, theory and simulation are in
very good agreement regarding the radius values. In order to
achieve good agreement for the number of condensed coun- R
terions, we had to gradually increase the value of the tube
radius, though. As the chain length increases, so does the
absolutevalue of the transverse chain fluctuatiGreithough
the size of theirelative fluctuations must remain bounded,
so that the overall chain configuration is still stretched. This
means that the range in which our model rodlike chains can
capture counterions and condense them effectively increases.
In order to estimate this enhanced range, we fixed the gatio
of tube radius to chain lengtfthe relative fluctuationto its
value forN=50, i.e.,u=Ag/R(N=50)=10%. Thereafter,
we determined the tube radiug,,. through the relation Vout
Rupd N) = uR(N)~ «N. This change of the tube radius af-
fects the number of condensed counteriddg but has
otherwise only a minor effect on the other two quantities
and Nin - FIG. 6. A sketch of two polyelectrolyte-stars of radiiseach, held at

center-to-center separati@. The dark fused spheres denote the stars and

have a total volum&;,,. The light eight-shaped hollow region with volume
D. An isolated star with added salt V,ut denotes the region in which the free counterions can move.

The theory can also be extended to the case of added salt
by the addition of entropic terms for the counter- and coions.
With the addition ofNg salt molecules, the solution contains whereas the theory predicts that no coions penetrate into the
N, negatively charged coions amd, positively charged salt star. However, in view of the fact that in simulations only a
counterions, yielding a total number bf,+ N counterions tiny fraction of coions are found inside the star, this discrep-
in the system. The counter- and coions are separated in@ncy appears to be insignificant. Theory and simulation are
those absorbed in the interior of the s, and those out- in agreement in predicting that essentially all coions remain

side: Ng,=Ng+N.—N;, and N, ,=Ns—N;, . The entropic free in the star exterior.
terms of Eqgs.(19) and (20) are now modified through the

replacementN,— N, +N;,—N; and N3—2Ng+N.— (N

+Nj,). With these changes, the theory for the salt-free casg, CONCENTRATED SOLUTIONS: EFEECTIVE

can now be carried over to the case of added salt, wherebyTERACTIONS BETWEEN STAR-BRANCHED
one additional degree of freedom appears, namely the distrbOl YELECTROLYTES

bution of coions between the interior and the exterior of the
star. With these modifications, the procedure remains thé- Theory
same and the conformational properties are determined by The effective interactioV.z(D) between two PE stars,
the requirement of minimization of the variational free en-kept at center-to-center distanBe results after taking a ca-
ergy with respect t&R, N;, N;,, andNj. nonical trace over all but the star center degrees of freedom
The procedure yielddN;,,=0 for all cases considered, and is defined as
i.e., no coions penetrating the star. We have performed simu-
lations for the salted case as well finding, in agreement with Ver(D)=72(D) = Fo(=), (24
theory, that the addition of salt results in an almost completevhereF,(z) is the Helmholtz free energy of two PE stars at
neutralization of the PE star with increasing salt concentracenter-to-center separatiarf® For the theoretical investiga-
tion cg, to a shrinking of its radius and to an exclusion of all tions of the force at overlapping distandes< 2R, we take
coions from the star interior. In Table IIl, we summarize theinto consideration that, when two PE stars overlap, the
results obtained for different salt concentratiorts ~ chains of each star retract, a feature already conjectured by
=N,/V(Ry). First we note that the radius of the stars de-Pincus®and also confirmed in all simulations that we carried
creases with increasing salt concentration. This is caused lyut. We model the two stars as “fused spheres,” each carry-
the increased osmotic pressure of the salt ions outside thiag the cloud of its untrapped counterions around it, as
star. The cases in whidk,,> N, , seen only in the simulation shown in Fig. 6. The chains remain stretched, thus-tie 2
results, are caused by the penetration of a small number délloff of the density profile from each star center remains.
coions (<5% of their total numberinto the star interior, To model the chain retraction, each profile is sharply cut off
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as soon as the distance from the corresponding center 12 ——
reaches the bisecting plane located at a dist@nedrom the
centers. 1.0 4 1
The variational free energy,(D) is written as in Eq. 08 t i
(7). Since the termbl;, F¢ andFg remain unaffected b,
V(D) contains only the electrostatid (D) and the en- E\E 06 1 1
tropic contributionsS;(D), i=1,2,3: _Q 04 | ]
s i . """"."*""""'*"""'"*"“‘“"*"“A‘"'lr~~--A~---t-»«A—-~-*....‘....*....A.A,_*,,__‘,"“
_ & 02 . ]
Ver(D)=Un(D)+ 2 S(D) = 02 [le—s in-in
= 0.0 | & A out—out J
= min F(D;R,{N;}). (25 +----+ in—out
{RAN;}} -02 ¢
. . . X . 0_*_?_‘__,__*_._.._4-4—4—0—0—0-0—0-0~0—0—o—>
We first investigate the electrostatic plrt, (D) in more -0.4 S s

detall. It is convenient to separate the total charge density 00 02 04 06 08 1.0 12 1.4 1.6 1.8 20
o(r) into two contributions,p;,(r) in the interior of the DR
fused spheres\{j,) and @,(r) in the eight-shaped region gic 7 The three terms contributing to the electrostatic energy of two PE
outside o). Qoulr) is homogeneous and equal to stars, according to E¢30), as functions of the center-to-center separafon
—Q*/Vy,. We choose a spherical polar coordinate systenfor Ry=1.65R.
with its origin the center of the lower stésee Fig. 6. Set-
ting r,=r cosf and w=6— 6y, we write
2in(r)=Alel[P(r)+P(D—r)] (26) _ _
, . of the productsd ,(r)es(r) in Eqg. (29). Note that the first
with the shape function term, h;,.,, hasno Ry dependence. The various contribu-
1 tions of the terms aR,,=1.65R are shown in Fig. 7. The
P(N=2[0(R-16(w)+0(D2-1)B(-w)], (27)  strongestD dependence arises from the integration of the
term ®,,(r)ei,(r). The other terms are weaker, both in their

where the normalization factor energy scale and in thed dependence.
_ - We proceed with the calculation of the entropic terms
=Q* + _ 1
A=Q{4mR[1+ cosfo(1~Incosto) ]} 28 (D), (i=1.2.3), which include th@®-dependent volumes
guarantees tha‘tvind3rgm(r)=Q*. of integration and their corresponding profilegr). In par-
We rewrite Eq(8), expressindJ (D) by using the elec- ticular, p;(r) is uniform within the 2f tubes and zero other-
trostatic potentiatb(r) as wise. The trapped counterion density(r) has the form
1 p2(r)=B[P(r)+P(D—r)], with the shape functiorP(r)
Un(D)= — f ABr (D (r)+P (1)) ou(r given by Eq.(27). The constanB is determined by the con-
H(P)= o Vin (Pin(r)+ Poulr)) €in(r) dition fy_d%rp,(r)=N,, whereV,(D)=V;,(D)—V; (here
2

V,=2fm\3R), and reads as
+] @0+ P |, @9
out

where® ,(r) (e=in, out), is the contribution of the charge

density o (r) to the electrostatic potential at arbitrary 330.0
pointr in space. The calculation db;,(r) is rather technical

and is shown in Appendix A; that ab,(r) in Appendix B.

Unlike the single-star cases, an analytical solution is no 3100 |
longer feasible and therefore numerical computations are
necessary in order to determine the electrostatic energy. Ol

dimensional groundg) (D) has the form - 2900 1
Uy(D) Z2\g (Ry D =3
_ _ %6}
kT R R'R 270.0
Z2\g D Rw D
= T[hin—in ﬁ) + 2hin—out(?! ﬁ 2500
h (RW D (30
tol 5 5 | 230.0 : : :
M RTR 0.0 0.5 1.0 L5 2.0
D/R

where Z=Q*/|e| is the total number of uncompensated

charges (_)ﬂ)oth_spheres an(_lhaf,B(R_V\_//R:D/R) (a.,,B=in, ~ FIG. 8. Entropic contribution of trapped counterioftsere N,=100 vs
out) are dimensionless functions arising from the integrationstar—star separatidb.
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N, tive interaction, as we will explain shortly. Second, both
D D (31 Uy(D) and S,(D) are nonlinear functions ob, implying
4#R[ﬁ(1—|n(ﬁ)

that the resulting effective force(D)= —dV(D)/dD is is
not constant. This finding is at odds with the the situation in
Finally, p3(r)=N3/Vyu(D). Accordingly, we obtain the en- curved polyelectrolyte brushes, resulting from grafting PE
tropic contributions of the counterions in the three differentchains on a solid particle of radids By employing scaling
states using Eq.12) as arguments for the trapped counterions, Pincus predicted that
in the regimeR>D>b the force of two porcupines i®
Nl“EJ) 1

B=
+1

independent® Finally, we comment on the fact th& (D)
v in Fig. 8 shows a maximum for a small but nonzero value of
the separatio)=0.1R. This is an artifact of the model for
P the density distributions, in which we assumed-a~? de-
D D pendence of the profiles for all In reality, the monomer
1+ ﬁ( 1"”(@)” and counterion densities do not divergeratO due to the
hard cores of the particles. Hence, at small separations,
+ —In2<—) strong steric repulsions between the locally dense macromo-
D D || 2R 2R’ lecular aggregates will cause the entrdgy(D) to increase
a ) ) monotonically a$>— 0. Neither in the simulations nor in the
R theory, however, did we examine the effective interaction at
+N,+ 3N, In(—,)‘ (33)  such small separations, hence this artifact does not influence
R the comparisons that are to follow.
N The effective potentiaV/ (D) is_ obtained by addin_g_up
3 . -1/, the termsS;(D) andUy(D), according to Eq(25) andmini-
}( Rw 1) N R( Rw 1” mizingthe free energyF,(D;R,{N;}) with respect toR and
3\ R® 4R\ R? the N;s for every separatioD<2R. We can simplify the
(34 problem by first taking into consideration that the star extent
R is unaffected byD. Indeed, the chains are already almost
completely stretched and, as confirmed during our simulation
Tuns, R remains constant and equal to its value for the iso-
"ated star. Since th&;s are related througiN;+N,+ N5
=N.=constant, only two variational parameters remain, say
N; andN,. In the simulations we have found that the num-
ber of condensed counterions remains, to a very good ap-

; (32

Vi

4T

Ss _
KT Ns| In
4

wherevl=vl—2fwafJR. The last term ofS, results from
the fact that the available volume for the trapped counterion
is reduced by the tubes around the chains. We therefore i
troduce two smaller fused spheres with radRis<R that
fulfill the condition

2p ’
Vin(R,D) =27\ gR=Vir(R",D), (35 proximation, constant for all overlapping separatioDs
with <2R, and undergoes a rather abrupt change at the crossover
distanceD =2R. Hence, we have chosearot to determine
A 3/ D 1/ D)3 N through the variational calculation, but rather to treat it as
Vin(R",D)= ?R's 1+ E(ﬁ) -3 (ﬁ) } (36)  a fit parameter, held constant for &, and chosen so as to

give optimal agreement with simulation results. It would be

R’ is obtained by solving Eq35) together with Eq(36) and ~ desirable to obtain this result through the full minimization;

it depends additionally oD. however such an attempt leads to significantly worse results
We emphasize that the dominabt dependence of the than the procedure described above. On the other hand, the

two-star free energlEq. (25)] arises from the termg (D) treatment of the net charge as a fit parameter is not at all

and S,(D). The former is shown in Fig. 7 and the latter in unusual for charged systems and, in the realm of charge-

Fig. 8. Three remarks are in order here: first, the number o$tabilized colloidal suspensions, it is an oft-used approach

trapped counteriondl,=N;,—N; sets the overall scale of known as charge renormalizatiof>***> Therefore,

the termS,(D). Therefore the role of théN; condensed F,(D,;R,{N;}) is only minimized with respect tbl,, yield-

counterions becomes important in “renormalizing” the effec-ing

|2D 1R\3,’\,1+D R\Z,\,l
D R ,, D "2r L Ne=Ny (3R TaRIRE ) (RS
2()_2hRWD WlDllo TN, D[, D R ’
Nl 2R For |t 2R or TN oR

(37)
with R’ obtained by solving Eq(36).
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TABLE IV. The parameters used in the simulations of two PE stars. The
degree of polymerization i =50 for all entriesRy is the core size, scaled
on the radiuR obtained from Table I. In the last two columns, we show in
addition the parameter values for the force fit of E2p).

f a Nc (Ry4/R) N, e ¢
5 1/3 80 0.01 105 0.47 0.0542
10 1/6 80 0.05 80 0.43 0.0456
10 1/4 120 0.05 147 0.45 0.0343
10 1/3 160 0.04 218 0.52 0.0265
18 1/6 144 0.06 160 0.50 0.0238
18 1/4 216 0.05 275 0.56 0.0183
18 1/3 288 0.05 400 0.59 0.0149
30 1/4 360 0.08 265 0.63 0.0114

FIG. 9. Simulation snapshots of two polyelectrolyte-stars at small center-to-

center separatiob (left picture and at a larger separatidright picture.

The chain length isN=50 and the arm numbér=10.

B. Results for the effective interaction star has two contributions, arising by the core-bonded mono-

The theoretical model for the effective interaction has > and all other nonbonded monomers acting on the core.
been tested against results of MD simulations of two star!J nder.these cwcumstgncgs, the effectlve. farceD) acting
branched polyelectrolytes. In a MD simulation, the mean©" theith star center is given as a canonical average
force at the center of the stars can be measthé&tior this
purpose, the simulation model of an isolated star, presented

in Sec. Il A, is expanded to two stars. The microscopic inter- < 2 fN
— Vg,
1

action potentials and parameters are those presented in Sec. F,(D)= > V(=R
Il A. The centers of the two stars were placed along the body k=1
diagonal of the cubic simulation box with periodic boundary f
conditions and the mean force acting at the center of the stars +> VEenelIr — Ri|)) > , (38)
was measuretl. Typically 120000 time steps are used for =1

equilibration and up to 500000 steps were simulated to

gather statistics. For deep overlaps of the stars within their

radii, the periodic images of the stars have negligible effects, o re i the first sum the repulsive interactions of the core
on the effective force. We have also checked that the magsz\{ith all 2 fN monomers in the system are considered ac-
charges have only a minor effect on the measured forces a

bare overlaps. In Fig. 9, snapshots of two PE stars at differ(—;orOIing to Eq/3), whereas the second sum only accounts for

ent separationB are shown, in order to illustrate the proce- the attractive interactions with tHfeinnermost monomers of

dure and the typical conformation of the stars when they ard1€ chains attached to théh center according to Eg4). In
close to one another. It is clear that there is no interdigitatioyvhat follows, we consider the projectiof(D)=F;(D)
from different stars. -(R;—Ry)/|R;—R,| of the effective force on the interpar-

Consider, then, two PE staiiss 1,2, separated by a dis- ticle axis, related to the effective interaction throfiyh
tanceD. The mean forc&;(D) acting at the center of th¢h F(D)=—dVx(D)/dD.

180 500 ————————————— 220
160 b, ] 4 200 F N

\ ¢ f=5,a=1/3,N, =105 o f=10,a=1/4,N, = 147 80 b of=10,0=13,N,=218

140 b e vf=10,a=1/6,N,=80 ] 400 af=18,a=14N =275 ] AN s f=18.a=1/3, N,=400

o f=18,a=1/6N, =160 *f=30,a=1/4,N,=265 160 |

] E 140

120

v

(¥
8

20 F©) A

0 a2 4 1 i n A n 0 1 1 1 1 It L n 0 I n i L L L n
03 05 07 09 L1 13 15 17 19 03 05 07 09 LI 13 15 17 19 03 05 07 09 L1 13 15 17 19
(D-2R)IR (D-2R)R (D-2R)IR

FIG. 10. Theoretical resultdines) in comparison with simulation resul{symbolg of the effective force$-(D) for different parameter combinatioris «,
andN;. The chain length is fixed &=50. Since the theoretical model has no core, in contrast to the simulation model, the simulation data have to be
displaced by the core diameteRg. [(a) and (b) redrawn from Ref. 2
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The parameter combinations for which we performed 280 —y— T T y T T r r
simulations are summarized in Table IV. The results, com- \
pared with the theoretical predictions of Sec. IlIA, are 240+ o f=10,0.= /4
shown in Fig. 10. As can be seen, there is very good agree: \ fit ’
ment between theory and simulation, for all parameter com- ¥

S '« f=18,00=1/3 1
. —-- fit

binations considered. The number of condensed counterion: 200 \
N, lies for all curves between twice the value calculated for
a star withf arms and the value for a star withf2arms,
which formally is obtained at zero separation between the
two macromolecules. The only exception is the case With

chain retraction and the associated cut of the density profile
at the bisecting plane are probably not valid. Nevertheless,
good agreement with the simulation results is obtained with
the choiceN;=105. Theshapeof the force is determined
almost entirely by the entropic ter®, and the electrostatic

contributionUy plays only a minor role, as the PE stars are 0 ' ' : ' . 4 L .
almost electroneutral. This is in full agreement with the pre- 02 04 06 08 1 12 14 16 18 2
dictions of Ref. 19. Thenagnitudeof the force is determined (D-2R )IR

d

mainly by the amount of mobile counterioMs,=N;,—N;
inside, hence the amount of condensed counterions plays a o , _ _
decisive role. Moreover, a homogeneous charge and densi IG. 11. Fit(lines) of the 5|mul_at|on datéasymbols for the effective force
R o e tween two PE stars, according to E89).
distribution inside the star leads to the erroneous prediction
that the force is almost constant, hence thilr? profiles are
crucial in reproducing the shape of the force versus distance
curves. d exp—«D)
In order to cast the effective interaction into a manage- F(D)— dD D (42)
able form that should facilitate the theoretical analysis of
experimental scattering data, we derive a simple and accurawlid for D>2R, leads to
fit of the force data, which is shown in Fig. 11. The fit is

given by ( % g—é(% o for D<2R;
_ 1-
ZR%:C“N”[ wl oAzl | e 2R O §<1+2KR>1<1+KD>(§)2
with 0.4<¢=0.63, and a positive consta@t For the latter, (L  Xexd—«(D—2R)] for D=2R,
we further introduce the ansatz (42
NG =BIN, 40 where k= \ps\g is the inverse Debye screening length.

Therefore, the interaction potentiLy(D), obtained by inte-

) ~ gration of Eq.(42), reads as
The precise values faf and C depend onf and N, (or «)

and are listed in the last two columns of Table IV. The ex-Vex(D)

ponent{ always remains smaller than the valliguua=1,  kgT
which is obtained for neutral star polym&}4® (F~D~1).
For neutral stars, a weakly diverging logarithmic effective ( L[ _(3)1‘1+ 2 [(3)2‘5_ 1}
interaction resulté®*’ whereas in this case the effective in- 1-¢ 2R 5(2—¢)| | 2R
teraction does not diverge at the origin.

Further, the interaction beyond overlap must be deter- + 2(1+2kR)"! for D<2R;

mined. For this purpose, we assume that the charged mono- =CfN{
mers of one star interact with the charged monomers of the

other star via a screened potential of the Yukawa form, the

screening caused by the counterions surrounding the stars.
Integrating these Yukawa segments on both stars leads to a
Yukawa-type tail for the effective interaction between stars at

large separations as well. This is in line with the theory of

effective interactions for charged collofdsas well as with  The last expression can be used in attempting to describe
recent results from linear-response theory applied tdheoretically scattering profiles from concentrated PE star
polyelectrolyte-staré® Matching the expression valid fd  solutions?>?*49The effective interaction is manifestly den-
<2R, Eq.(39), with the expression sity dependent through the inverse Debye lengtlror the

3 (2R
£ (1+2«R) 1( )exq—K(D—zR)]

D

L for D=2R.

(43
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40 e f=10,0= /4 ] 40 R f=30,a=14 1
A N S O B Ff=18,a=1/3 3 \ I" 3
——— f=30, 0= 1/4
o 30 1 = -
<ot 1 -
5 20 F 1 -
15 } 1 -
10 | 1 j
5 (a) ® 3
0
0 1 2 3 4 ’

DI/(2R) D/(2R)

FIG. 12. (a) The effective interaction potenti&les(D) obtained from Eq(43) for variousf and« values.(b) A comparison between the effective interactions
between charged stafthick lines and those for neutral stafthin lines, obtained from Ed44)], having the same arm number and size as the charged ones.

purpose of fitting experimental dat@, and ¢ can be used as decay for nonoverlapping ones, hence it has some qualitative
fit parameters, however the constraint 0<1 should al-  Similarities with the interaction of PE stars, and read¥ as
ways be respect.ed. o . V(D)

Representative curves for the effective interaction of EQ:- KT
(43) are shown in Fig. 1@). As can be seen from E3), B

the potential between polyelectrolyte stars has the property D .
of beingbounded i.e., its value at zero separation between —Inl 5+ (1+ Vir2) for D<2R;
the stars is finite. This is an idealization stemming from the 5

; : ; : 18 (1+ﬁ/2)1(2—

central particle on which the chains are anchored has vanish- D 4R
ing extent. Although in reality the effective interaction will for D=2R.
diverge at full overlaps, the range of this divergence will be
very small, typically on the order of a few A. On the other (44)
hand, the range of the interaction derived above is that of th§he comparison is shown in Fig. 3. Despite the fact that
corona radius of the stars, which can be very large, up tehe potential of Eq(44) diverges at the origin and that of Eq.
several microns for long chains. Hence, for a vast range of43) does not, the latter represents nevertheless much stron-
star concentrations, the macromolecules will feel only theger repulsions at strongly overlapping configurations than the
effects of the ultrasoft interaction of E(43) and a theoret-  former. Although the interaction between neutral stars for-
ical analysis on the basis of the latter will be fully sufficient mally takes over at some small separatndue to its di-
in capturing the physics of the correlations in the system. Irvergence, the ultrasoft character of the latter renders this
this respect, the effective interaction between PE stars berossover value very small. Hence, polyelectrolyte stars repel
longs to a new class of potentials that have attracted consigach other at overlapping separations much more strongly
erable attention recently, the so-called mean-fieldthan their neutral counterparts. This implies that stabilization
potentials***°~>8 Physical systems whose constituent par-of colloidal particles against the van der Waals attraction can
ticles interact by means of such a bounded or a slowly dibe achieved more efficiently by grafting of polyelectrolytes
verging interaction, are called mean-field flufdS>**Typi-  than by grafting of neutral polymer chains.
cal phenomena associated with mean-field fluids are an
anomalous structure factor in the fluid pha%e® reentrant
melting and exotic crystal structures in the solid
phase%°-62as well as the property that at high concentra-  In this section we turn our attention to the effective in-
tions in the uniform phase the direct correlation function ofteraction in the presence of added salt. As discussed in Sec.
the system is, to an excellent approximation, equal tdlD, the coions of the added salt remain outside the star,
—Veii(/(kgT).2°~%® Polymer chains?®® dendrimers* as  whereas in the salt-free case only a very small fraction of
well as neutral star polyme¥sare systems that have been counterions can be found there. In addition, the salt counte-
shown to belong to this new class. Polyelectrolyte stars argons just supplement a small fraction to neutralize the star,
the new member of the family. hence they are also predominantly found in the star exterior.

It is pertinent to compare the effective interaction of Eq. Therefore, we obtain in the case of added salt a drastically
(43), valid for chargedstar polymers, with the known inter- increased entropic contributid from the outside region, in
action for neutral stars?’ The latter features an ultrasoft, comparison to the salt-free case. The available voliyg
logarithmic divergence for overlapping stars and a Yukawao the counter- and coions outside the star and its dependence

fact that we assumed, in the theoretical modeling, that the = 7gf>" R exp{— \/?(D—ZR)}

C. Interacting stars in the presence of added salt
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FIG. 13. TheD dependence of the entropic contribution of the counterionsg|G. 14. Theoreticallines) and simulation(points results for the force

and the coions outside the stars for the case of added salt. The paramet%ween two stars in the presence of added salt. The degree of p0|ymeriza_

are f=10, =1/3, N.=320, with Ny=250 added salt molecules. The tjon of the chains isN=50, the charging fractiom=1/3 and forN,=250

Wigner—Seitz radius iRy=55.83;. salt molecules in the simulation box, corresponding to a salt concentration
c,=0.036 M.

on the star—star separati@hnow plays an important role in
diminishing the magnitude of the effective force between thelhe expression for the Wigner—Seitz radius reads as

PE stars. Indeedy,, increases with decreasing distances 3|13

between the stanid. As the volume available to the counter- (4—) L, for D=0;

and coions increases with decreaslbg their entropy also Ry(D)= m (46)
grows. The dependence of the te8x(D) on D is shown in D gy 1

Fig. 13. > Cosf{g)—i for D>0,

Since we have a large number of particles in the outside .
region, this entropy increase is significant and contributes ¥/Neré¥ is given by
measurable effective attraction to the total potential between = |n[w+ w?—1], (47)
the stars. Alternatively, one can think of the two overlapping .
stars in Fig. 6 as being hit by a large number of counterioné"”th
mostly from the outside, a situation that results an unbal- 24
anced force pushing the two stars closer to one another. This W=1+ =
is the well known “depletion mechanism?® familiar from
the classical case of colloid—polymer mixtufésn which The theoretical results obtained with these modifications
the small polymer induces an attraction between the largedr® shown in Fig. 14, and compared with simulations. Both
hard colloids. An important quantitative difference in the data sets correspond to a salt concentration oqf
case at hand, though, is that the large starsnatérard but =0.036 mol/l. It can be seen indeed that the magnitude of
penetrable. Thus, the depletion attraction is superimposed dhe force is roughly halved in comparison with the salt-free
the repulsion caused by the trapped counterions and the totg@ses of Fig. 10. The osmotic pressure from the outer ions
effect need not be a net attraction. Instead, a reduced repdtas the effect of reducing the strength of the star—star inter-
sion between the polyelectrolyte stars results. action for overlapping stars. For nonoverlapping stars, the

The theoretical analysis of the effective interaction in theSame effect appears, for the well-understood reason of en-
case of added salt follows the same lines presented in Sedanced screening, causing an increase of the inverse Debye
IIA above. Similarly to the single-star case, we have toScreening length in Eq. (43).
make the formal substitutionNz=N.—N;;—N.+2Ng
—N;,, whenNg salt molecules are present. Now tbede-
pendence of the volum¥ (D) becomes crucial in com- v SUMMARY AND CONCLUDING REMARKS
parison with simulation results, since the sizgof the simu-
lation box remains constant an¥, (D) grows asD We have analyzed the conformations, sizes, counterion
diminishes. Referring to Fig. 6, we see that halependent distributions and effective interactions between osmotic
Wigner—Seitz radiuf,(D) can be determined by solving polyelectrolyte-stars. The main findings of this work a(i¢:

Ly)3

= (48)

the equation a stretching of the arms of the stafs) a strong absorption
5 of counterions in the star interior and condensation along the
Lp=Vou(D)+Vin(D). (45 rodlike chainsgiii) an entropically dominated, soft effective
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repulsion between PE stars, being caused mainly by the
trapped counterions; and@v) a reduction of the strength of
the repulsion in the presence of added salt.

The crossover of the effective interaction from a power-
law form at overlaps to a Yukawa form beyond overlaps is
akin to the case of neutral star polymers. Hence, it is to be
expected that the anomalous structure factors found there
will also be seen in the case of charged stars if the concen-
tration of the solution exceeds its overlap value. On similar D/2
grounds, an unusual phase diagram for PE stars is also to be
expected? displaying exotic crystals and reentrant melting.
The phase diagram will be much richer in this case, due to c=121
the addition of two more possible degrees of freedom: the dz —+—
charging fractiona and the salt concentration. Additional T
guestions that should be addressed in future investigations :
include the effects of polydispers¥y and many-body ’
force$® in polyelectrolyte-star solutions. The latter are ex-

pected to play a minor role at reasonable Concemrat_lon“lg—’lG. 15. A sketch of the chopped sphere showing the geometry of the
though, because the entropy argument suggests they will bgrobiem and demonstrating the procedure used for the calculation of the
come important only at densities for which three PE starslectrostatic potentials.

have a triplet overlap within their coronae, and higher. Fi-
nally, further work should be done to study spherical PE
brushe&>®® having a nonvanishing hard colloidal particle in

the middle of the aggregate and a corresponding core—shell Q* (R) 1 , (A2)

structure. dQ: ﬁln E 1+COS€0[1—|I’](COSHO)] dz ’

i.e., it depends on the geometry through égsD/(2R) as
ACKNOWLEDGMENTS well as on the position of the disk ceni€ralong thez axis.
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whereas the radiua of the disk is given by

APPENDIX A: CALCULATION
OF THE ELECTROSTATIC POTENTIAL @, a=\R>-7'2. (A4)

In this Appendix we present the technical details for the  The elementary contribution of the disk to the electro-
calculation of the electrostatic potential of the two fusedstatic potential at the poir®, dd4.{r;z’), depends para-
spheres of radiuR, each carrying a chargg* and having a  metrically on the disk center locatiar. Its calculation fol-
charge density (r’) that decays asr() ~* with the distance  |ows from further decomposing the disk into concentric rings
r’ from its center and is abruptly cut off at the mid plane, asof radius ¢ centered aC, making use of the known results
given by Egs.(26) and (28). In other words, we show the for the electrostatic potential of a charged rfi§®and inte-
steps for the calculation of the electrostatic poterda|(r) grating thereafter fron¥=0 to £&=a. Note that, due to the
of Eq. (29). inhomogeneous:(r’') ~? dependence of the charge density

The electrostatic potentiab(r) due to the charge den- inside the sphere, we are now dealing with disks that have
sity o(r) in a dielectric medium of permittivity is given by  inhomogeneous charge densities as functio& themselves,

10 o(r') and which vary as<(&2+c¢?) 1. The integration over the

d(r)= —j ——d3r. (A1) rings can be nevertheless carried out analytically.

e [r'=r| We employ cylindrical coordinates and also introduce
In order to calculate the integral above, we now take the twdhe vectors connecting the disk center with the observation
inner fused spheres shown in Fig. 6 and introduce infinitesipoint P (see Fig. 15 We have, evidentlyr=(p, ¢,z) and
mally thin disks of thicknesslz' that are perpendicular to s=(p,®,z—2'), with the distance from the axis p and the
the z axis and cover the whole pattern, as shown in Fig. 15azimuthal angle¢. Due to azimuthal symmetry, it holds
There, we show for clarity only one of the two fused spheresd® i {r;z') =d®d4.d{p,z;2’). It is convenient as an inter-
cut in the mid plane, which we call a “chopped sphere” andmediate step to express the sought-for potential in a shifted
which can be figured as a succession of disks, each carryirgystem of axes, whose origin lies at the ce@esf the disk,
an elementary charggQ. It is a straightforward calculation and in which the potential is expressed by another function
to show that this elementary charge is given by dd’, i.e., we write
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FIG. 16. The electrostatic potentid;,(r) for two inhomogeneously charged, chopped fused spheres of iBdipltted as a function af along paths of

fixed distancep from thez axis. (a) Center-to-center distand@=R; (b) D=R/2. The curves are shown in the cylindrical coordinates introduced in Fig. 15.

The centers of the spheres are located atztpesitions for which the upper curves have sharp peaks.

dPgysd p,2;2")=dd’ (p,2-2";2') s\ s
W(s:2") (—) (—1)¥tan* tan ! —)
=dV(s,x;2'). (A5) ¢ c
k ( 1)j+k c\2i-1 [c\2i-1
Here,s is the magnitude of the vectsrand y is the angle e — - <_) } )
betweens and thez axis. The coordinatesand y are related =1 2j-1 [la S
to the original ones through (A11)
o m; (A6) The termdW¥ .. (z,9) is given by
dv.(s,x;Z")
Z_Z’ 2k+1
COSY=—7 -3 (A7) 2dQ
P +(Z z ) EIn[l+(a/C) ] CE PZk(O)PZK(COSX)
The functiondW¥(s,x;z’) can be obtained analytically k (— 1)J+k 2 (—1)k a\?
through the integration over rings mentioned above. The re- Z + > Inf1+| = .
sult reads as follows: B
(A12)
AV (s x:2) = d¥_(s,x;z')  for s<a; A8) The electrostatic potential caused by #iegle chopped
X d¥.(s,x;z') for s>a. sphere ®,,{r) at point P can be obtained by &’
integration
The termdW¥ _(s, x;z’) is given by 2 —Dl2
q)chop(r):J,77qu)dis&P!Z;Z,)
d¥ _(s,x;2') o
z'=D/2 , , ,
2dQ =1, d¥(s(p,z;z'),x(p,z;2');Z"). (A13)
= Cni+ (/o) ¢ >, P2 (0)P(cosy) =R
k=0 Due to symmetry, thetotal electrostatic potentiatb;,(r)
X[A(s;2")+By(s;2')], (A9) caused byboth fused spheres at the observation pdnts
given as
whereP,(x) is the Legendre polynomial of orden D (N =D od 1)+ Pepof D—T) (A14)
~(2k+1) 1)k 2 whereD=D®&,. In Fig. 16, we show representative results
As;z)= ( ) i( ) Inl 1+ s } for & ,,(r) obtained with this procedure.
c 2 c The integral in Eq(A13) cannot be carried out analyti-
K 1)i+k j cally and one has to resort to a simple, one-dimensional nu-
2 ) ( ) ] (A10) merical integration. In performing this integral by using Egs.
j=1 c (A8)—(A12) together with Eqs(A2)—(A7), all k andj sums

appearing there must be made manifestly convergent, i.e., the

and sums have to be expressed in terms of a varigklé raised
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to positive powers. For this purpose, it is necessary, dependvhere

ing on whethers<c or s>c, to make expansions of the

logarithmic and/or the inverse tangent functions in Egs.
(A10) and(A11). The expressions suitable for the numerical
integration are given below for completeness and conve-

nience.
Case | s<c<a or s<a<ec.
d¥_(s,x;z")

[

2d
Q Z P2(0) P, (cosy)

T eln[1+(alc)?] c&

X[C(8;2")+Dy(s;2") + Ei(s;2')], (A15)
where
. ® (_1)j+k+1 s 2(j—k)—1-
Cu(s;z )_j=§k;r12—j c ; (A16)
’ S & k —1 a —1 S
D(s;z")= c (—1)tan p —tan c ; (A17)
/ (_1)]+k+1 s 2(k—j)+1 s 2j—-1
Eu(s;z )_jZlT p 3 -1.
(A18)
Case It c<s<a.
dV¥_(s,x;z")
2dQ

= en[1+(alo)] CE P2i(0) Pax(cosy)[ Fi(z,5)

+Gy(z,s) +H(z,9)], (A19)
where
c 2k+l(_1)k s 2
Fk(s;z’)z(g) 3 In 1+(E }; (A20)
k . o
o (_1)J+k c 2(k j)+1.
G(s;z )—;1 T(g) ; (A21)
- * (_1)J+k c\26-K-1r/ g\ 2i-1
Hy(s:z )=i=%l—2]._l (5) - —1}.
(A22)

Case Il a<s<c.

2dQ

d¥.(s,x;z')= 1+ (a0 CE P2k(0) Py (cosy)
* 1)itk+1 ] g2 [ g\ 20-K -1

y 2 (e ) a _)

j=k+1 S C

(A23)
Case IV c<a<s.

. 240
d¥_(s,x;z')= WCE P2k(0)

X Po(cosy)[1k(s;2") +I(s;2') ],
(A24)

ko anj+k 2(k—j)+1 2j
) (—1)*K/a c\?
1 (S;z )—;12—1. S S (A25)
(_1)k a 2 c 2k+1
Ju(s;z')= 5 In| 1+ c §) (A26)

Case Va<c<s.

Here, d¥.(s,x;z') can be taken directly from Eq.
(A12), as all parameters appearing in the sums are smaller
than unity.

APPENDIX B: CALCULATION
OF THE ELECTROSTATIC POTENTIAL ®

In order to calculate the electrostatic potentdg] (r),
caused by the hollow fused spheres of the free counterions
that reside in the volum¥, (see Fig. 6 we employ the
superposition principle. Thereby, the aforementioned hollow
region of uniform charge density,,(r) is apprehended as
the superposition of two fused spheres of radiyg with
charge density ,,(r) and of two smaller fused spheres, of
radius R, with charge density—o,,(r). In this way, the
problem is reduced to the calculation of the electrostatic po-
tential of two fused spheres with uniform charge density. The
geometrical setup as well as the method of calculation are
identical to those presented in Appendix A. Thereby, the
electrostatic potentiad® 4 {r) is still given by expressions
of the form Eqgs.(A5)—(A8), however Eqs(A2), (A9), and
(A12) have to be replaced by their counterparts valid for
homogeneous charge distributions. The corresponding ex-
pressions for spheres of radiRsare given below

dQ:ﬂ_Q*(RZ_Z/Z)
27R® 3(D) 1(D)3 o
X 3 1+§ ﬁ _E ﬁ dz', (B1)

2dQ &
¥ (s,;2')= =~ 2, Pad0)Padcosy)

4k+1 s 1 [s|*
X[Z(k+1)(2k—1) a 2k-1la |’
(B2
and
* 2k
v s g 5 e
(B3)

The substitutiorR— Ryy yields the expressions for the fused
spheres of radiuRy,. Note that the term in the curly brack-
ets in Eq.(B1) is the volume of the chopped sphere.
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