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Counterion-induced entropic interactions in solutions of strongly
stretched, osmotic polyelectrolyte stars

A. Jusufi, C. N. Likos,a) and H. Löwen
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf,
Universitätsstraße 1, D-40225 Du¨sseldorf, Germany

~Received 7 January 2002; accepted 29 March 2002!

We examine the conformations and effective interactions of star-branched polyelectrolytes with and
without added salt, by employing monomer-resolved molecular dynamics simulations and an
analytical theory. The simulations take into account the excluded-volume and Coulomb interactions
between the individual monomers, as well as the counter- and coions. The theory is based on a
variational free energy that is written as a sum of electrostatic, polymer, and entropic contributions
of the counter- and coions. For the conformations of isolated polyelectrolyte stars, we find strong
stretching of the chains, resulting in a linear scaling of the star radius with the degree of
polymerization, as well as trapping and condensation of a large fraction of counterions. The
effective interactions at arbitrarily strong overlaps between the stars are shown to be dominated by
the entropic contributions of the trapped counterions, with the electrostatic contribution playing only
a minor role due to an almost complete neutralization of the stars. In the case of added salt, we find
a shrinking of the star size as well as a weakening of the effective force due to a generalized
depletion mechanism. The good agreement between theory and simulations allows us to put forward
analytic expressions for the effective interaction between polyelectrolyte stars at arbitrary
separations. ©2002 American Institute of Physics.@DOI: 10.1063/1.1480007#
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I. INTRODUCTION

Polyelectrolytes~PEs! are polymer chains carrying ion
izable groups along their backbone. Upon solution into
polar ~aqueous! solvent, these groups dissociate into the s
vent, leaving behind a charged polymer in coexistence w
its dissolved counterions. The problem of the structure of
solutions is a challenging one from the theoretical point
view, because it combines the complexities of polymer ph
ics, chain connectivity and self-avoidance, and of the lo
range Coulomb interaction between the charged monom
At the same time, there exists vivid interest on these m
ecules, due to their numerous biological and technolog
applications. Typical PE biomolecules are DNA and protei
sulfonated polysterene and polyacrylic acid, the key ingre
ent in diapers, are some of the most common commerci
used polyelectrolytes. The structure of PE solutions, the c
formational properties of the constituent macromolecules
the same, as well as the questions of counterion condens
and chain collapse have been the subject of many re
investigations1–12 employing a variety of theoretical an
computational approaches.13

When polyelectrolytes are grafted on surfaces they fo
a polyelectrolyte brush. Considerable progress toward a
oretical understanding of the properties ofplanar brushes
has been made through the use of scaling theory, s
consistent field ~SCF! calculations, and compute
simulations.14–18 Much less is known about spherical P
brushes. These result by grafting PEs of contour lengthL on

a!Author to whom correspondence should be addressed; electronic
likos@thphy.uni-duesseldorf.de
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spherical colloidal particles of radiusb. In the limit L@b,
one obtains the star-branched polyelectrolytes or simply
stars. These are systems of great physical and practica
portance: grafting of PE chains on colloidal particles d
solved in polar solvents greatly enhances their stabi
against flocculation;19,20 PE brushes are models of block c
polymer micelles formed by hydrophobically modified PE
in aqueous solutions;21 and they have considerable potent
in industrial applications due to the increased need for wa
supported systems.22,23 Pincus was the first to present
theory on the interactions of PE stars, based on sca
ideas.19 The two fundamental ingredients in Pincus’ approa
are the retraction of the chains of the stars as they appro
each other~no interdigitation! and the domination of the
force acting between them by the entropic contribution of
trapped counterions. PE stars that have the property of
sorbing most of the counterions are calledosmotic.24 Based
on these assumptions, Pincus predicted that the force
tween two PE stars should be independent of their sep
tion. Klein Wolterink et al.21 and Borisov and Zhulina24,25

put forward a scaling theory, together with SCF calculatio
to study the conformations of isolated PE stars.

In a recent letter,26 we proposed an analytical theory fo
the conformations and interactions of PE stars and comp
its predictions with the results from molecular dynami
~MD! computer simulations. In this paper, we give a detai
account of the theoretical model, which is valid for bo
isolated and interacting stars, and present more exten
comparisons with simulations for both salt-free and sa
containing solutions. We have investigated the sizes, con
mations and interactions of PE stars for high charging fr
il:
1 © 2002 American Institute of Physics
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tions a>1/6. We find a stretching of the chains an
significant counterion condensation. For the force betw
two stars, our results are quantitatively different than
early predictions of Ref. 19, in that we find the force to
dependent on the star–star separations. Qualitatively, h
ever, we confirm Pincus’ prediction,19 stating that the inter-
action is dominated by the entropic effects of the counteri
and not by the electrostatic contribution. Simple, analyti
expressions for the effective interactions between PE s
for given arm numbers and charging fractions are also
forward.

The rest of the paper is organized as follows: In Sec
we examine the conformations of isolated stars, and in
ticular in Sec. II A we introduce the simulation model.
Sec. II B we discuss the obtained density profiles from sim
lations, which are used as input to the theory presente
Sec. II C. The conformations of PE stars with added salt
discussed in Sec. II D. In Sec. III we turn our attention to t
effective interactions between two PE stars. The theory
presented in Sec. III A, and the results and comparison
simulations in Sec. III B for the salt-free case and in S
III C for the case of added salt. In Sec. IV we summarize a
conclude. As the theoretical model involves the calculat
of electrostatic potentials for unusual geometries, we pre
this technical part in Appendixes A and B.

II. THE DILUTE LIMIT: SIZES AND CONFORMATIONS
OF ISOLATED POLYELECTROLYTE STARS

A. The simulation model

We begin with the description of the simulation mod
valid for both a single star polyelectrolyte and two star po
electrolytes. We performed monomer-resolved MD simu
tions using the model of Stevens and Kremer,27 Grestet al.,28

and Grest29 for single polyelectrolyte chains. In our consid
erations we havef chains withN monomers per chain, al
chains coupled at a common core, whose sizeRd is much
smaller than the extension of the star-shaped macromole
The introduction of the core is necessary to accommodate
chains close to the center, where the monomer densit
high.

The polyelectrolyte chains are modeled as bead-sp
chains of Lennard-Jones~LJ! particles. The idea of this
method was first applied on neutral linear polymers and o
single star polymer.28,29 For good solvent conditions,
shifted LJ potential is used to describe the purely repuls
excluded volume interaction between allN f monomers:

VLJ~r !5H 4«LJF S sLJ

r D 12

2S sLJ

r D 6

1
1

4G for r<21/6sLJ ;

0 for r .21/6sLJ .
~1!

Here, r is the distance of the interacting beads,sLJ is the
microscopic length scale of the beads and«LJ sets the energy
scale. In accordance with previous work,30 we have chosen
for the temperatureT51.2«LJ /kB , wherekB is the Boltz-
mann constant.

The connectivity of the bonded monomers is assured
a finite extension nonlinear elastic~FENE! potential:
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VFENE~r !5H 2
1

2
kFENES R0

sLJ
D 2

lnF12S r

R0
D 2G for r<R0 ;

` for r .R0 ,
~2!

wherekFENE denotes the spring constant and is set tokFENE

57.0«LJ . This interaction diverges atr 5R0 , which deter-
mines the maximal relative displacement of two neighbor
beads. The energy«LJ is the same as in Eq.~1!, whereas for
the length scaleR0 we have chosen the valueR052.0sLJ .

The interactions between the monomers and the cen
particle mentioned above are modeled as follows: All mon
mers have a repulsive interactionVLJ

c (r ) of the truncated and
shifted LJ type with the central particle

VLJ
c ~r !5H ` for r<Rd ;

VLJ~r 2Rd! for r .Rd ,
~3!

whereas the innermost monomers in the chain experienc
additional attractive potentialVFENE

c (r ) of the FENE type
with this chain, namely

VFENE
c ~r !5H ` for r<Rd ;

VFENE~r 2Rd! for r .Rd .
~4!

Each chain is charged by a fractiona in a periodical
manner: every 1/a bead carries a monovalent charge. F
reasons of electroneutrality, the same amount of monova
charges as the charged monomers, namely theNc5a f N re-
leased counterions, are included in the simulation box. T
are able to freely move in the box, thereby they are simula
explicitly. The snapshot shown in Fig. 1 illustrates the diffe
ent kinds of particles in the system.

The full Coulomb interactionVCoul(r ) between all
charged units~monomer ions and counterions! has finally to
be taken into account:

VCoul~r i j !5
qiqje

2

er i j
[kBTlB

qiqj

r i j
, ~5!

whereqi561 for the charged monomers and the count
ions, respectively. The Bjerrum lengthlB is defined as the
length at which the electrostatic energy equals the ther
energy

lB5
e2

ekBT
, ~6!

wheree is the unit charge of the interacting particles, ande
the permittivity of the solvent. For water in room temper
ture one obtainslB57.1 Å. Unless explicitly mentioned, no
salt is added. The solvent is only taken into account via
dielectric backgrounde. The Bjerrum length is fixed tolB

53.0sLJ . This is a realistic value for typical polyelectro
lytes, such as the hydrophobic sodium poly~styrene-co-
styrene sulfonate! or the hydrophilic poly~acrylamide-
co-sodium-2-acrylamido-2-methylpropane-sulfonate!.31 The
long-ranged Coulomb forces are calculated by the Lek
method.32

The single polyelectrolyte star was simulated in a cu
box with a typical edge length ofLb590sLJ with periodic
boundary conditions, emulating a dilute PE-star soluti
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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The box size was varied as well, in order to investigate th
influence of the long-ranged Coulomb forces and of the den
sity on the single-star conformations. The core of the sta
was located at the box center and remained fixed during th
simulation run. The time step was typicallyDt50.002t with
t5AmsLJ

2 /«LJ being the associated time unit andm the
monomer mass. The counterions were taken to have the sa
mass and size as the charged monomers.

After a long equilibration time~150 000–200 000 time
steps!, different static quantities were calculated during
simulation runs lasting between 500 000 and 1300 000 tim
steps, namely the center-to-end distancesR and the density
profiles of the monomers, the monomer ions, and the cou
terions that are trapped within the star due to the attractiv
Coulomb interaction between them and the monomer ion
Simulations were carried out for a variety of arm numbersf
~f 55, 10, 18, 30, 40, 50! and charge fractionsa ~a51/6,
1/4, 1/3!, allowing us to make systematic predictions for the
f anda dependencies of all theoretical parameters. In add
tion, we investigated the chain length dependence by varyin
the degree of polymerizationN of the chains. The valuesN
550, 100, 150, and 200 were considered.

B. The density profile

Let cmon(r ), ccharge(r ) andccounter(r ) be the expectation
values of the one-particle densities of the monomers, charg

FIG. 1. Snapshot of a star-branched polyelectrolyte withf 510, N550 and
a51/3. The bright gray balls are the neutral monomers, and the dar
spheres along the chains indicate the charged monomers~every third ball!.
The counterions are the small, dark spheres around the star.
Downloaded 12 Feb 2009 to 134.99.64.131. Redistribution subject to AIP
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monomers and counterions as functions of the distance f
the star centerr , respectively. We measured all three qua
tities during the simulation run and investigated primar
their f anda dependence. In addition, we measured the fr
tion of trapped counterions that were condensed along
rods by surrounding every charged monomer with a fictitio
sphere of radiuslB and monitoring the number of counter
ons inside all spheres.

We focus here on the density profiles. As seen in Fig
the monomers show a scaling behavior of their profile
feature qualitatively similar to neutral star polymers.30,33

Quantitatively, however, the scaling exponent is different:
the neutral-star case, one obtainsc(r );r 24/3,28,29,33 in the
charged-star case we obtain a power-lawc(r );r 21.8, i.e.,
the chains are much more stretched. To demonstrate
point, we show in Fig. 3 snapshots of a charged and a neu
star; the stretching of the chains of the charged star is m
fest.

k

FIG. 2. Double-logarithmic plot of the density profile of monomers, mon
mer ions, and counterions, for a star withf 510, N550 anda51/3. The
slope of the scaling regime is also shown. Its value,g521.8 indicates the
stretching of the chains.

FIG. 3. Snapshots of a polyelectrolyte star~left picture, a51/3! and a
neutral star polymer~right picture, a50! each with f 510 arms andN
550 monomers per arm. The stretching of the chains in the case of
charged star, in contrast to the neutral star, can be clearly seen.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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The fully rodlike chain limit yields a monomer profil
scaling as24,25 c(r );r 22 and hence a slope22 in a double-
logarithmic plot. This rodlike behavior has been experime
tally observed in neutron scattering studies of block copo
mer micelles.34 Because of small lateral fluctuations of th
chains,8,9 the fully rodlike limit is not reached here and th
slope g521.8 is obtained.35 Nevertheless, the value ind
cates an almost complete stretching of the chains. The c
terion density profile shows the same scaling as that of
monomers. This is a manifestation of the tendency of
counterions to achieve local charge neutrality, a feature
seen in simulations of planar polyelectrolyte brushes.17 How-
ever, the counterions, in contrast to the monomers, are
bounded and therefore they add a high entropic contribu
to the free energy of the system. This is a relevant po
because many investigations on these systems are bas
homogeneous distributions of the counterions within PE-

FIG. 4. A sketch of a polyelectrolyte star in its spherical Wigner–Seitz c
For demonstration, five chains~solid lines! are assumed to be fully stretche
and are surrounded by cylinders~dashed lines! where the condensed coun
terions are located. For further explanations, see text.

TABLE I. Comparison of conformational properties between simulation a
theory for different arm numbersf . The chain length is fixed toN550, and
the cell radius isRW555.83sLJ , except forf 540 (RW562.04sLJ), and
f 550 (RW574.44sLJ).

f a Nc (R/sLJ)
a (R/sLJ)

b (Nin)
a (Nin)

b (N1)a (N1)b

5c 1/3 80 26.8 26.1 47 57 27 25
10c 1/6 80 23.4 23.7 42 59 22 38
10c 1/4 120 25.3 25.2 77 97 46 61
10c 1/3 160 27.4 26.9 110 134 72 81
18c 1/6 144 24.2 25.8 91 121 60 90
18c 1/4 216 26.6 26.9 156 190 107 141
18c 1/3 288 28.3 28.1 217 260 159 190
30 1/4 360 27.2 28.8 278 332 213 272
30 1/3 480 28.6 29.7 384 449 309 366
40 1/3 640 29.2 30.9 531 607 392 517
50 1/3 800 29.8 32.0 668 763 514 670

aSimulation.
bTheory.
cFrom Ref. 26.
Downloaded 12 Feb 2009 to 134.99.64.131. Redistribution subject to AIP
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polyelectrolytes.21,24,25,36As we will see in Sec. III, the inho-
mogeneous behavior of the counterions play a crucial r
for the effective interaction between two polyelectroly
stars.

C. Theory of isolated polyelectrolyte-stars

In the theoretical investigations, we employ a mea
field, Flory-type approach for the analysis of the large-sc
properties of polyelectrolyte stars, which is akin to that
Ref. 21. We consider a star in a dilute solution of dens
rst5Nst/V containingNst PE stars in the macroscopic vo
ume V. We define accordingly the Wigner–Seitz radius~or
ion-sphere radius! RW5(4prst/3)21/3. The star is envisioned
as a sphere of radiusR enclosed in a cell of radiusRW.R;
all counterions are restricted to move inside this cell. Fig
4 illustrates the situation and is helpful for further consid
ations.

Particular attention has to be paid to the Manning co
densation of counterions on the rodlike chains.5,7,37–40The
condensation takes place when the dimensionless param
j5lBNa/R exceeds unity.38 This condition is satisfied for
all our parameter combinations, see Tables I–III. Thus, in
model, theNc counterions are partitioned into three differe
states:N1 condensedcounterions withinf tubes around the
branches of the star: these are confined to move in quasi-
dimensional cylindrical domains.N2 trappedcounterions in-
side the star: these are allowed to explore the whole inte
of the star. Finally,N3 free counterions that move into th

l.

d

TABLE II. Comparison of the conformational properties obtained fro
simulation and theory for different chain lengthsN. Here the arm number is
fixed to f 510, the charge fraction isa.1/3, and the cell radius isRW

555.83sLJ for N550 andRW5136.48sLJ for all other chain lengths.

N Nc (R/sLJ)
a (R/sLJ)

b (Nin)
a (Nin)

b (N1)a (N1)b

50 160 27.4 26.9 110 134 72 81
100 330 57.3 54.0 236 269 96 103
150 500 84.2 78.8 382 420 131 133
200 660 106.7 100.4 553 572 169 162

aSimulation.
bTheory.

TABLE III. Comparison of the conformational properties between simu
tion and theory for two different chain numbersf and different salt concen-
trationscs . The charge fraction is fixed toa.1/3, and the cell radius is
RW555.83sLJ .

f Nc Ns

cs

~mol/lt! (R/sLJ)
a (R/sLJ)

b (Nin)
a (Nin)

b (N1)a (N1)b

5 80 250 0.036 22.1 22.2 73 73 40 22
5 80 600 0.088 20.7 19.4 87 76 44 29

10 160 250 0.036 24.0 25.0 138 150 81 60
10c 160 600 0.088 22.6 22.7 156 155 90d 71
10c 160 750 0.109 21.8 22.1 164 156 95d 74
10 160 1000 0.146 21.9 21.3 173 156 98 74

aSimulation.
bTheory.
cFrom Ref. 26.
dThese entries were erroneous in Ref. 26 due to a programming error
quote here the correct results.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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bulk of the solution and in the model they are located in
regionR,r ,RW . This approach is similar to the three-sta
model of Kramarenkoet al.,41 employed for polyelectrolyte
microgel particles. To specify the available volumes to
condensed and trapped counterions, we introduce tube
length R and radiuslB surrounding each rod, and treat a
counterions contained in these tubes as condensed. Thu
interior volume V(R)54pR3/3 of the star is divided as
V(R)5V11V21 f psLJ

2 R with V15 f p(lB
22sLJ

2 )R being
the total volume of the hollow tubes, available to the co
densed counterions, andV2 the volume remaining availabl
to the N2 trapped counterions inside. Moreover, letV3

54p(RW
3 2R3)/3 be the volume of the spherical shell for th

free counterions, andr i(r ), i 51,2,3, thenumberdensities of
the three counterion types. Clearly, the number of free co
terions N3 is equal to the number of the uncompensa
charges of the starQ* /e. We emphasize that all counterion
are indistinguishable particles and have been treated in
way in all considerations to follow. Particle exchanges b
tween the three possible states constantly take place an
numbersNi , i 51,2,3 are simply expectation values and n
prescribed occupation numbers of counterions that have b
‘‘marked’’ to belong to one state or the other.

The equilibrium values forR and Ni are determined
through minimization of a variational free energy which w
write as

F~R,$Ni%!5UH1Uc1Fel1FFl1(
i 51

3

Si , ~7!

whereUH andUc are electrostatic contributions,Fel andFFl

elastic and self-avoidance contributions from the chains
Si entropic contributions from the counterions, to be d
scribed in detail in what follows.

The termUH is the Hartree-type, mean-field electrosta
energy of the whole star

UH5
1

2e E E d3r d3r 8
%~r !%~r 8!

ur2r 8u
, ~8!

with the localchargedensity%(r ) to be defined below. The
only relevant correlations arise between the condensed c
terions and the charges on the chains because the av
density of the trapped counterions is very low. Hence,
correlation energyUc stems from the attractions between t
rods and the condensed counterions contained in the as
ated tubes. To estimate the average rod-condensed cou
ion separationzm , we takezm5(1/2)AlB

21ym
2 , where ym

5R/(Na) is the distance between two sequential charg
monomers along the chain, obtaining for the correlation
ergy resulting fromN1 condensed counterions:

Uc

kBT
52

lBN1

zm
. ~9!

Figure 5 illustrates the chosen value forzm resulting
from geometrical considerations. The termFel is the elastic
contribution of the chains, written as

Fel

kBT
5

3 f R2

2NsLJ
2 , ~10!
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and is a Gaussian approximation of the conformational
tropy of the arms of the star, where we identified the mon
mer length withsLJ . For the nonelectrostatic contribution o
the chainsFFl , arising through their self-avoidance, we em
ploy the Flory-type expression

FFl

kBT
5

3v~ f N!2

8pR3 , ~11!

with the excluded volume parameterv. As usual for the case
of good-solvent conditions, triplet-monomer contributio
have been omitted. Finally, the termsSi are ideal entropic
contributions of the form

Si5kBTE
Vi

d3r r i~r !@ ln~r i~r !sLJ
3 !21#

13Ni lnS L

sLJ
D , ~12!

with r i(r )5Ni /Vi being the number densities of the cou
terions in the three possible states.L is the thermal de Bro-
glie wavelength of the counterions. In writing the sum of t
three entropic contributions in Eq.~7!, the last terms contrib-
ute only the trivial constant 3Nc ln(L/sLJ) which will be
dropped in what follows.

We discuss the mean-field electrostatic and the entro
terms in more detail. Since the chains are modeled as b
fully stretched, the density distributions inside the stars
off as;r 22 from the center but are uniform outside the st
We note that this is different from the approach of Ref. 2
where uniform densities insideandoutside the star were em
ployed. Though we obtained reasonable results for the
lated star using such trial profiles, the nonuniform ones ar
paramount importance for obtaining agreement with simu
tion results regarding the effective interaction, as we w
discuss shortly. Accordingly, we write

%~r !

Q*
5

Q~R2r !

4pRr2 2
Q~r 2R!Q~RW2r !

V3
, ~13!

FIG. 5. A sketch of a chain segment for the casea51/3, showing mono-
mers ~dashed-lined hollow spheres!, charged monomers~bright gray
spheres! and a counterion~dark gray sphere!. The tube radius islB from the
central line, indicating the stretched behavior of the chain. The neu
monomers can deviate from the central line, whereas the charged mono
are situated along this line. The counterion is assumed to be placed bet
two charged monomers with a distancezm to them.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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with the net chargeQ* 5ueu(Nc2N12N2)5ueuN3 and the
Heaviside step functionQ(x). We thus obtain the electro
static energy as

UH

kBT
5

N3
2lB

2R
qS R

RW
D , ~14!

where the functionq(x) is given by

q~x!511
529x15x32x6

5~12x3!2 . ~15!

In order to calculate the entropic contributions of t
counterions in Eq.~12!, we need to specify the number de
sitiesr i(r ). We model the condensed counterions as hav
a uniform distribution inside the tubes, an assumption s
ported by simulation results on single PE chains having ty
cal values of the ratiosalB /sLJ considered here.5 Thus,
r1(r )5N1 /V1 inside the tubes and zero otherwise. Since
trapped counterions follow the profile of the charged mo
mers, we taker2(r )5Cr22Q(R2r ). The volume which is
available for theN2 trapped counterions inside the star
reduced by the presence of the tubes around the chains
therefore introduce a representative sphere of radiusR8 hav-
ing the same volumeV2 as that available to theN2 coun-
terions and calculate the prefactorC of r2 using the normal-
ization conditionC5N2 /(4pR8). The reduced radiusR8 is
determined by the equation

4p

3
R32 f plB

2R5
4p

3
R83[V2 , ~16!

yielding

R85RF12
3

4
f S lB

R D 2G1/3

. ~17!

Finally, we assume a uniform distribution of the free cou
terions within the cellR,r ,RW and take r3(r )5Q(r
2R)Q(RW2r )N3 /V3 .

Carrying out the integrations in Eq.~12!, we obtain the
following expressions for the entropic contributions of t
counterions in their three different states:

S1

kBT
5N1F lnS N1sLJ

3

V1
D 21G , ~18!

S2

kBT
5N2F lnS N2sLJ

3

4pR83D 11G , ~19!

S3

kBT
5N3F lnS N3sLJ

3

V3
D 21G . ~20!

The Flory term in Eq.~11! takes into account, in a mean
field fashion, the loss of entropy of the chains due to
short-range, steric repulsions of the monomers, through t
effective, excluded-volume parameterv. The value of this
parameter for stiff PEs has been the topic of extensive
cussion in the literature.15,19,39 If the chains were neutral
then a good estimate forv term would be the volume of the
monomer bead,v>sLJ

3 . The presence of the condens
counterions, though, introduces monomer pairs along
backbones of the chains, whose effective diameter isspair
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.sLJ . Since the condensed counterions are to be found
typical distanceslB from the chain backbone, we thereby s
spair5lB53sLJ and thereby obtainv5spair

3 >30sLJ
3 . This

is the value that we employed in all our theoretical analys
It is also in agreement with the ‘‘screened electrostatic’’ e
timate v>lBk22a2 of Ref. 21, with k5A3N2lB /R3, for
typical values ofa, N2 andR read off from Table I.

The valuesR andNi ( i 51,2,3) are found by minimiza-
tion of the free energy Eq.~7!. The results read as

R35
N

3 f H lBsLJ
2 N3

2

2 Fq~R/RW!2
R

RW
q8~R/RW!G

13RsLJ
2 FN2S 11

2

3

p f lB
2R

V2
D 2N3

V~R!

V3
G

1N1RsLJ
2 F12S f

Nc
D 2 lBR2

4zm
3 G1

9

8p S f NsLJ

R D 2

vJ ;

~21!

N35
R

lBq~R/RW!H 21 lnF S Nc2N1

N3
21D V3

3V2
G J ; ~22!

N15~Nc2N3!F11
3V2

V1
expS 222

lB

zm
D G21

, ~23!

whereq8(x)5dq/dx. All quantities acquire an explicit den
sity dependence throughRW , a usual situation for charge
systems, familiar from the statistical mechanics of charg
stabilized colloids as well.42 The results for different param
eter combinations are shown in Tables I and II in comparis
with simulation data.

Referring to Table I, in which the degree of polymeriz
tion is fixed to N550, we see that the radii values from
theory and simulation are in very good agreement for
parameter combinations considered. Moreover, the radiu
practically f independent, a manifestation of the fact that t
chains are stretched. This is one of the features that dis
guish PE stars from neutral ones, for which the scalingR
; f 1/5N3/5 holds.30,33 As far as the total number of trappe
counterionsNin5N11N2 and N1 of condensed counterion
are concerned, the following remarks can be made: both
overestimated in the theory by an amount depending on
charging fractiona. This overestimation can be explained b
the fact that we assumed a complete stretching of the ch
~rodlike configuration!, which results in a stronger electro
static attraction than the true one, in which lateral chain fl
tuations are present. The same mechanism is responsibl
the overestimation ofN1 . This claim is corroborated by the
remark that the largest discrepancies occur for the sma
charge fractiona51/6, where the assumption of stretche
chains is most questionable. On the other hand, theratio of
condensed to absorbed counterions appears to be almost
stant,;70% for all combinations considered, both in theo
and simulation. With our present, minimal assumptions,
find that the theory captures quantitatively all features of
star conformations. It reproduces the tendency of the PE s
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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to increase the fractionNin /Nc of absorbed counterions asf
and/or a increase, in line with the predictions of scalin
theory in the ‘‘osmotic star’’ regime.24,25

In Table II we show the results obtained for fixed ar
numberf 510 and varyingN. First, we observe a linear sca
ing of the star radiusR;N, confirming the overall stretched
chain configuration. Once again, theory and simulation ar
very good agreement regarding the radius values. In orde
achieve good agreement for the number of condensed c
terions, we had to gradually increase the value of the t
radius, though. As the chain length increases, so does
absolutevalue of the transverse chain fluctuations,8 although
the size of theirrelative fluctuations must remain bounde
so that the overall chain configuration is still stretched. T
means that the range in which our model rodlike chains
capture counterions and condense them effectively increa
In order to estimate this enhanced range, we fixed the ratm
of tube radius to chain length~the relative fluctuation! to its
value for N550, i.e.,m5lB /R(N550)>10%. Thereafter,
we determined the tube radiusRtube through the relation
Rtube(N)5mR(N);mN. This change of the tube radius a
fects the number of condensed counterionsN1 but has
otherwise only a minor effect on the other two quantitiesR
andNin .

D. An isolated star with added salt

The theory can also be extended to the case of added
by the addition of entropic terms for the counter- and coio
With the addition ofNs salt molecules, the solution contain
Ns negatively charged coions andNs positively charged sal
counterions, yielding a total number ofNc1Ns counterions
in the system. The counter- and coions are separated
those absorbed in the interior of the starNin

6 and those out-
side: Nout

1 5Ns1Nc2Nin
1 and Nout

2 5Ns2Nin
2 . The entropic

terms of Eqs.~19! and ~20! are now modified through the
replacementsN2→Nin

11Nin
22N1 and N3→2Ns1Nc2(Nin

1

1Nin
2). With these changes, the theory for the salt-free c

can now be carried over to the case of added salt, whe
one additional degree of freedom appears, namely the di
bution of coions between the interior and the exterior of
star. With these modifications, the procedure remains
same and the conformational properties are determined
the requirement of minimization of the variational free e
ergy with respect toR, Nin

1 , Nin
2 , andN1 .

The procedure yieldsNin
250 for all cases considered

i.e., no coions penetrating the star. We have performed si
lations for the salted case as well finding, in agreement w
theory, that the addition of salt results in an almost comp
neutralization of the PE star with increasing salt concen
tion cs , to a shrinking of its radius and to an exclusion of
coions from the star interior. In Table III, we summarize t
results obtained for different salt concentrationscs

5Ns /V(RW). First we note that the radius of the stars d
creases with increasing salt concentration. This is cause
the increased osmotic pressure of the salt ions outside
star. The cases in whichNin.Nc , seen only in the simulation
results, are caused by the penetration of a small numbe
coions ~,5% of their total number! into the star interior,
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in
to
n-
e
he

s
n
es.

alt
.

to

e
by
ri-
e
e

by
-

u-
h
te
-

l

-
by
he

of

whereas the theory predicts that no coions penetrate into
star. However, in view of the fact that in simulations only
tiny fraction of coions are found inside the star, this discre
ancy appears to be insignificant. Theory and simulation
in agreement in predicting that essentially all coions rem
free in the star exterior.

III. CONCENTRATED SOLUTIONS: EFFECTIVE
INTERACTIONS BETWEEN STAR-BRANCHED
POLYELECTROLYTES

A. Theory

The effective interactionVeff(D) between two PE stars
kept at center-to-center distanceD, results after taking a ca
nonical trace over all but the star center degrees of freed
and is defined as

Veff~D !5F2~D !2F2~`!, ~24!

whereF2(z) is the Helmholtz free energy of two PE stars
center-to-center separationz.43 For the theoretical investiga
tions of the force at overlapping distancesD<2R, we take
into consideration that, when two PE stars overlap,
chains of each star retract, a feature already conjecture
Pincus19 and also confirmed in all simulations that we carri
out. We model the two stars as ‘‘fused spheres,’’ each ca
ing the cloud of its untrapped counterions around it,
shown in Fig. 6. The chains remain stretched, thus the;r 22

falloff of the density profile from each star center remain
To model the chain retraction, each profile is sharply cut

FIG. 6. A sketch of two polyelectrolyte-stars of radiusR each, held at
center-to-center separationD. The dark fused spheres denote the stars a
have a total volumeVin . The light eight-shaped hollow region with volum
Vout denotes the region in which the free counterions can move.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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as soon as the distance from the corresponding ce
reaches the bisecting plane located at a distanceD/2 from the
centers.

The variational free energyF2(D) is written as in Eq.
~7!. Since the termsUc , Fel andFFl remain unaffected byD,
Veff(D) contains only the electrostaticUH(D) and the en-
tropic contributionsSi(D), i 51,2,3:

Veff~D !5UH~D !1(
i 51

3

Si~D !

5 min
$R,$Ni %%

F2~D;R,$Ni%!. ~25!

We first investigate the electrostatic partUH(D) in more
detail. It is convenient to separate the total charge den
%(r ) into two contributions,% in(r ) in the interior of the
fused spheres (Vin) and %out(r ) in the eight-shaped regio
outside (Vout). %out(r ) is homogeneous and equal
2Q* /Vout. We choose a spherical polar coordinate syst
with its origin the center of the lower star~see Fig. 6!. Set-
ting r u5r cosu andv[u2u0 , we write

% in~r !5Aueu@P~r !1P~D2r !# ~26!

with the shape function

P~r !5
1

r 2 @Q~R2r !Q~v!1Q~D/22r u!Q~2v!#, ~27!

where the normalization factor

A5Q* $4pR@11cosu0~12 ln cosu0!#%21 ~28!

guarantees that*Vin
d3r% in(r )5Q* .

We rewrite Eq.~8!, expressingUH(D) by using the elec-
trostatic potentialF(r ) as

UH~D !5
1

2e F E
Vin

d3r (F in(r )1Fout(r ))% in(r )

1E
Vout

d3r ((F in(r )1Fout(r ))%out(r )G , ~29!

whereFa(r ) ~a5 in, out!, is the contribution of the charg
density %a(r ) to the electrostatic potential at anarbitrary
point r in space. The calculation ofF in(r ) is rather technical
and is shown in Appendix A; that ofFout(r ) in Appendix B.
Unlike the single-star cases, an analytical solution is
longer feasible and therefore numerical computations
necessary in order to determine the electrostatic energy
dimensional grounds,UH(D) has the form

UH~D !

kBT
5

Z2lB

R
hS RW

R
,
D

RD
5

Z2lB

R Fhin-inS D

RD12hin-outS RW

R
,
D

RD
1hout-outS RW

R
,
D

RD G , ~30!

where Z5Q* /ueu is the total number of uncompensate
charges ofboth spheres andha2b(RW /R,D/R) ~a,b5 in,
out! are dimensionless functions arising from the integratio
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of the productsFa(r )%b(r ) in Eq. ~29!. Note that the first
term, hin-in , hasno RW dependence. The various contrib
tions of the terms atRW51.65R are shown in Fig. 7. The
strongestD dependence arises from the integration of t
termF in(r )% in(r ). The other terms are weaker, both in the
energy scale and in theirD dependence.

We proceed with the calculation of the entropic term
Si(D), (i 51,2,3), which include theD-dependent volumes
of integration and their corresponding profilesr i(r ). In par-
ticular, r1(r ) is uniform within the 2f tubes and zero other
wise. The trapped counterion densityr2(r ) has the form
r2(r )5B@P(r )1P(D2r )#, with the shape functionP(r )
given by Eq.~27!. The constantB is determined by the con
dition *V2

d3rr2(r )5N2 , whereV2(D)5Vin(D)2V1 ~here

V152 f plB
2R) , and reads as

FIG. 7. The three terms contributing to the electrostatic energy of two
stars, according to Eq.~30!, as functions of the center-to-center separationD
for RW51.65R.

FIG. 8. Entropic contribution of trapped counterions~here N25100! vs
star–star separationD.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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B5
N2

4pRF D

2R S 12 lnS D

2RD D11G . ~31!

Finally, r3(r )5N3 /Vout(D). Accordingly, we obtain the en
tropic contributions of the counterions in the three differe
states using Eq.~12! as

S1

kBT
5N1F lnS N1sLJ

3

Ṽ1
D 21G ; ~32!

S2

kBT
5N2 lnS N2

4pF11
D

2R8 S 12 lnS D

2R8D D G D
1

N2

11
D

2R8 S 12 lnS D

2R8D D
D

2R8
ln2S D

2R8D
1N213N2 lnS R

R8D ; ~33!

S3

kBT
5N3F lnS N3

4pF1

3 S RW
3

R3 21D 1
D

4R S RW
2

R2 21D G D 21G ,

~34!

whereṼ15V122 f psLJ
2 R . The last term ofS2 results from

the fact that the available volume for the trapped counteri
is reduced by the tubes around the chains. We therefore
troduce two smaller fused spheres with radiusR8<R that
fulfill the condition

Vin~R,D !22p f lB
2R5Vin~R8,D !, ~35!

with

Vin~R8,D !5
4p

3
R83F11

3

2 S D

2R8D2
1

2 S D

2R8D
3G . ~36!

R8 is obtained by solving Eq.~35! together with Eq.~36! and
it depends additionally onD.

We emphasize that the dominantD dependence of the
two-star free energy@Eq. ~25!# arises from the termsUH(D)
andS2(D). The former is shown in Fig. 7 and the latter
Fig. 8. Three remarks are in order here: first, the numbe
trapped counterionsN25Nin2N1 sets the overall scale o
the term S2(D). Therefore the role of theN1 condensed
counterions becomes important in ‘‘renormalizing’’ the effe
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tive interaction, as we will explain shortly. Second, bo
UH(D) and S2(D) are nonlinear functions ofD, implying
that the resulting effective forceF(D)52dVeff(D)/dD is is
not constant. This finding is at odds with the the situation
curved polyelectrolyte brushes, resulting from grafting P
chains on a solid particle of radiusb. By employing scaling
arguments for the trapped counterions, Pincus predicted
in the regimeR@D@b the force of two porcupines isD
independent.19 Finally, we comment on the fact thatS2(D)
in Fig. 8 shows a maximum for a small but nonzero value
the separation,D>0.1R. This is an artifact of the model fo
the density distributions, in which we assumed a;r 22 de-
pendence of the profiles for allr . In reality, the monomer
and counterion densities do not diverge atr 50 due to the
hard cores of the particles. Hence, at small separatio
strong steric repulsions between the locally dense macro
lecular aggregates will cause the entropyS2(D) to increase
monotonically asD→0. Neither in the simulations nor in th
theory, however, did we examine the effective interaction
such small separations, hence this artifact does not influe
the comparisons that are to follow.

The effective potentialVeff(D) is obtained by adding up
the termsSi(D) andUH(D), according to Eq.~25! andmini-
mizing the free energyF2(D;R,$Ni%) with respect toR and
the Nis for every separationD<2R. We can simplify the
problem by first taking into consideration that the star ext
R is unaffected byD. Indeed, the chains are already almo
completely stretched and, as confirmed during our simula
runs,R remains constant and equal to its value for the i
lated star. Since theNis are related throughN11N21N3

5Nc5constant, only two variational parameters remain, s
N1 andN2 . In the simulations we have found that the num
ber of condensed counterions remains, to a very good
proximation, constant for all overlapping separationsD
<2R, and undergoes a rather abrupt change at the cross
distanceD52R. Hence, we have chosennot to determine
N1 through the variational calculation, but rather to treat it
a fit parameter, held constant for allD, and chosen so as t
give optimal agreement with simulation results. It would
desirable to obtain this result through the full minimizatio
however such an attempt leads to significantly worse res
than the procedure described above. On the other hand
treatment of the net charge as a fit parameter is not a
unusual for charged systems and, in the realm of cha
stabilized colloidal suspensions, it is an oft-used appro
known as charge renormalization.42,44,45 Therefore,
F2(D,;R,$Ni%) is only minimized with respect toN2 , yield-
ing
N2~D !5
R

2lBhS RW

R
,
D

RD H 21
D

2R8

ln2S D

2R8D
11

D

2R8 S 12 lnS D

2R8D D
1 lnF S Nc2N1

N2
21D

1

3S RW
3

R3 21D 1
D

4RS RW
2

R2 21D
11

D

2R8S 12 ln S D

2R8D D
S R

R8D
3G J ,

~37!

with R8 obtained by solving Eq.~36!.
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B. Results for the effective interaction

The theoretical model for the effective interaction h
been tested against results of MD simulations of two s
branched polyelectrolytes. In a MD simulation, the me
force at the center of the stars can be measured.30,43 For this
purpose, the simulation model of an isolated star, prese
in Sec. II A, is expanded to two stars. The microscopic int
action potentials and parameters are those presented in
II A. The centers of the two stars were placed along the b
diagonal of the cubic simulation box with periodic bounda
conditions and the mean force acting at the center of the s
was measured.30 Typically 120 000 time steps are used f
equilibration and up to 500 000 steps were simulated
gather statistics. For deep overlaps of the stars within t
radii, the periodic images of the stars have negligible effe
on the effective force. We have also checked that the im
charges have only a minor effect on the measured force
bare overlaps. In Fig. 9, snapshots of two PE stars at dif
ent separationsD are shown, in order to illustrate the proc
dure and the typical conformation of the stars when they
close to one another. It is clear that there is no interdigitat
from different stars.

Consider, then, two PE stars,i 51,2, separated by a dis
tanceD. The mean forceFi(D) acting at the center of thei th

FIG. 9. Simulation snapshots of two polyelectrolyte-stars at small cente
center separationD ~left picture! and at a larger separation~right picture!.
The chain length isN550 and the arm numberf 510.
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star has two contributions, arising by the core-bonded mo
mers and all other nonbonded monomers acting on the c
Under these circumstances, the effective forceFi(D) acting
on thei th star center is given as a canonical average

Fi~D !5K 2“RiS (
k51

2 f N

VLJ
c ~ ur k2Ri u!

1(
l 51

f

VFENE
c ~ ur l2Ri u!D L , ~38!

where in the first sum the repulsive interactions of the c
with all 2 f N monomers in the system are considered
cording to Eq.~3!, whereas the second sum only accounts
the attractive interactions with thef innermost monomers o
the chains attached to thei th center according to Eq.~4!. In
what follows, we consider the projectionF(D)5F1(D)
•(R12R2)/uR12R2u of the effective force on the interpar
ticle axis, related to the effective interaction through43

F(D)52dVeff(D)/dD.

o-

TABLE IV. The parameters used in the simulations of two PE stars. T
degree of polymerization isN550 for all entries.Rd is the core size, scaled
on the radiusR obtained from Table I. In the last two columns, we show
addition the parameter values for the force fit of Eq.~39!.

f a Nc (Rd /R) N1 z C̃

5 1/3 80 0.01 105 0.47 0.0542
10 1/6 80 0.05 80 0.43 0.0456
10 1/4 120 0.05 147 0.45 0.0343
10 1/3 160 0.04 218 0.52 0.0265
18 1/6 144 0.06 160 0.50 0.0238
18 1/4 216 0.05 275 0.56 0.0183
18 1/3 288 0.05 400 0.59 0.0149
30 1/4 360 0.08 265 0.63 0.0114
e to be

FIG. 10. Theoretical results~lines! in comparison with simulation results~symbols! of the effective forcesF(D) for different parameter combinationsf , a,
and N1 . The chain length is fixed atN550. Since the theoretical model has no core, in contrast to the simulation model, the simulation data hav
displaced by the core diameter 2Rd . @~a! and ~b! redrawn from Ref. 26#.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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The parameter combinations for which we perform
simulations are summarized in Table IV. The results, co
pared with the theoretical predictions of Sec. III A, a
shown in Fig. 10. As can be seen, there is very good ag
ment between theory and simulation, for all parameter co
binations considered. The number of condensed counter
N1 lies for all curves between twice the value calculated
a star with f arms and the value for a star with 2f arms,
which formally is obtained at zero separation between
two macromolecules. The only exception is the case witf
55; however, for such a low arm number the assumption
chain retraction and the associated cut of the density pro
at the bisecting plane are probably not valid. Neverthele
good agreement with the simulation results is obtained w
the choiceN15105. Theshapeof the force is determined
almost entirely by the entropic termS2 and the electrostatic
contributionUH plays only a minor role, as the PE stars a
almost electroneutral. This is in full agreement with the p
dictions of Ref. 19. Themagnitudeof the force is determined
mainly by the amount of mobile counterionsN25Nin2N1

inside, hence the amount of condensed counterions pla
decisive role. Moreover, a homogeneous charge and de
distribution inside the star leads to the erroneous predic
that the force is almost constant, hence the;1/r 2 profiles are
crucial in reproducing the shape of the force versus dista
curves.

In order to cast the effective interaction into a mana
able form that should facilitate the theoretical analysis
experimental scattering data, we derive a simple and accu
fit of the force data, which is shown in Fig. 11. The fit
given by

2R
F~D !

kBT
5C~ f ,Nc!F S D

2RD 2z

20.4S D

2RD 12zG , ~39!

with 0.4&z&0.63, and a positive constantC. For the latter,
we further introduce the ansatz

C~ f ,Nc!5C̃f Nc . ~40!

The precise values forz and C̃ depend onf and Nc ~or a!
and are listed in the last two columns of Table IV. The e
ponentz always remains smaller than the valuezneutral51,
which is obtained for neutral star polymers30,46 (F;D21).
For neutral stars, a weakly diverging logarithmic effecti
interaction results,46,47 whereas in this case the effective i
teraction does not diverge at the origin.

Further, the interaction beyond overlap must be de
mined. For this purpose, we assume that the charged m
mers of one star interact with the charged monomers of
other star via a screened potential of the Yukawa form,
screening caused by the counterions surrounding the s
Integrating these Yukawa segments on both stars leads
Yukawa-type tail for the effective interaction between stars
large separations as well. This is in line with the theory
effective interactions for charged colloids42 as well as with
recent results from linear-response theory applied
polyelectrolyte-stars.48 Matching the expression valid forD
<2R, Eq. ~39!, with the expression
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F~D !}2
d

dD

exp~2kD !

D
, ~41!

valid for D.2R, leads to

2R
F~D !

kBT
5C̃f Nc5

S D

2RD 2z

2
2

5 S D

2RD 12z

for D<2R;

3

5
~112kR!21~11kD !S 2R

D D 2

3exp@2k~D22R!# for D>2R,
~42!

where k5Ar3lB is the inverse Debye screening lengt
Therefore, the interaction potentialVeff(D), obtained by inte-
gration of Eq.~42!, reads as

Veff~D !

kBT

5C̃f Nc5
1

12z F12S D

2RD 12zG1
2

5~22z! F S D

2RD 22z

21G
1 3

5 ~112kR!21 for D<2R;

3

5
~112kR!21S 2R

D Dexp@2k~D22R!#

for D>2R.

~43!

The last expression can be used in attempting to desc
theoretically scattering profiles from concentrated PE s
solutions.20,23,49The effective interaction is manifestly den
sity dependent through the inverse Debye lengthk. For the

FIG. 11. Fit ~lines! of the simulation data~symbols! for the effective force
between two PE stars, according to Eq.~39!.
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FIG. 12. ~a! The effective interaction potentialVeff(D) obtained from Eq.~43! for variousf anda values.~b! A comparison between the effective interaction
between charged stars~thick lines! and those for neutral stars@thin lines, obtained from Eq.~44!#, having the same arm number and size as the charged o
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purpose of fitting experimental data,C̃ andz can be used as
fit parameters, however the constraint 0,z,1 should al-
ways be respected.

Representative curves for the effective interaction of E
~43! are shown in Fig. 12~a!. As can be seen from Eq.~43!,
the potential between polyelectrolyte stars has the prop
of being bounded, i.e., its value at zero separation betwe
the stars is finite. This is an idealization stemming from
fact that we assumed, in the theoretical modeling, that
central particle on which the chains are anchored has van
ing extent. Although in reality the effective interaction w
diverge at full overlaps, the range of this divergence will
very small, typically on the order of a few Å. On the oth
hand, the range of the interaction derived above is that of
corona radius of the stars, which can be very large, up
several microns for long chains. Hence, for a vast range
star concentrations, the macromolecules will feel only
effects of the ultrasoft interaction of Eq.~43! and a theoret-
ical analysis on the basis of the latter will be fully sufficie
in capturing the physics of the correlations in the system
this respect, the effective interaction between PE stars
longs to a new class of potentials that have attracted con
erable attention recently, the so-called mean-fi
potentials.43,50–58 Physical systems whose constituent p
ticles interact by means of such a bounded or a slowly
verging interaction, are called mean-field fluids.43,55,58Typi-
cal phenomena associated with mean-field fluids are
anomalous structure factor in the fluid phase,50,59 reentrant
melting and exotic crystal structures in the so
phase,50,60–62as well as the property that at high concent
tions in the uniform phase the direct correlation function
the system is, to an excellent approximation, equal
2Veff(r)/(kBT).50–55 Polymer chains,52,53 dendrimers,54 as
well as neutral star polymers58 are systems that have bee
shown to belong to this new class. Polyelectrolyte stars
the new member of the family.

It is pertinent to compare the effective interaction of E
~43!, valid for chargedstar polymers, with the known inter
action for neutral stars.47 The latter features an ultrasof
logarithmic divergence for overlapping stars and a Yuka
Downloaded 12 Feb 2009 to 134.99.64.131. Redistribution subject to AIP
.

ty

e
e
h-

e
to
of
e

n
e-
id-
d
-
i-

n

-
f
o

re

.

a

decay for nonoverlapping ones, hence it has some qualita
similarities with the interaction of PE stars, and reads as47

Veff~D !

kBT

5
5

18
f 3/25

2 lnS D

2RD1~11Af /2!21 for D<2R;

~11Af /2!21S 2R

D DexpF2
Af ~D22R!

4R G
for D>2R.

~44!

The comparison is shown in Fig. 12~b!. Despite the fact that
the potential of Eq.~44! diverges at the origin and that of Eq
~43! does not, the latter represents nevertheless much s
ger repulsions at strongly overlapping configurations than
former. Although the interaction between neutral stars f
mally takes over at some small separationD, due to its di-
vergence, the ultrasoft character of the latter renders
crossover value very small. Hence, polyelectrolyte stars re
each other at overlapping separations much more stro
than their neutral counterparts. This implies that stabilizat
of colloidal particles against the van der Waals attraction
be achieved more efficiently by grafting of polyelectrolyt
than by grafting of neutral polymer chains.

C. Interacting stars in the presence of added salt

In this section we turn our attention to the effective i
teraction in the presence of added salt. As discussed in
II D, the coions of the added salt remain outside the s
whereas in the salt-free case only a very small fraction
counterions can be found there. In addition, the salt cou
rions just supplement a small fraction to neutralize the s
hence they are also predominantly found in the star exte
Therefore, we obtain in the case of added salt a drastic
increased entropic contributionS3 from the outside region, in
comparison to the salt-free case. The available volumeVout

to the counter- and coions outside the star and its depend
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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on the star–star separationD now plays an important role in
diminishing the magnitude of the effective force between
PE stars. Indeed,Vout increases with decreasing distanc
between the starsD. As the volume available to the counte
and coions increases with decreasingD, their entropy also
grows. The dependence of the termS3(D) on D is shown in
Fig. 13.

Since we have a large number of particles in the outs
region, this entropy increase is significant and contribute
measurable effective attraction to the total potential betw
the stars. Alternatively, one can think of the two overlapp
stars in Fig. 6 as being hit by a large number of counteri
mostly from the outside, a situation that results an unb
anced force pushing the two stars closer to one another.
is the well known ‘‘depletion mechanism,’’43 familiar from
the classical case of colloid–polymer mixtures,63 in which
the small polymer induces an attraction between the la
hard colloids. An important quantitative difference in th
case at hand, though, is that the large stars arenot hard but
penetrable. Thus, the depletion attraction is superimpose
the repulsion caused by the trapped counterions and the
effect need not be a net attraction. Instead, a reduced re
sion between the polyelectrolyte stars results.

The theoretical analysis of the effective interaction in t
case of added salt follows the same lines presented in
III A above. Similarly to the single-star case, we have
make the formal substitutionN35Nc2Nin→Nc12Ns

2Nin , whenNs salt molecules are present. Now theD de-
pendence of the volumeVout(D) becomes crucial in com
parison with simulation results, since the sizeLb of the simu-
lation box remains constant andVout(D) grows as D
diminishes. Referring to Fig. 6, we see that theD-dependent
Wigner–Seitz radiusRW(D) can be determined by solvin
the equation

Lb
35Vout~D !1Vin~D !. ~45!

FIG. 13. TheD dependence of the entropic contribution of the counterio
and the coions outside the stars for the case of added salt. The param
are f 510, a51/3, Nc5320, with Ns5250 added salt molecules. Th
Wigner–Seitz radius isRW555.83sLJ .
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The expression for the Wigner–Seitz radius reads as

RW~D !5H S 3

4p D 1/3

Lb for D50;

D

2 FcoshS c

3 D2
1

2G for D.0,

~46!

wherec is given by

c5 ln@w1Aw221#, ~47!

with

w511
24

p S Lb

D D 3

. ~48!

The theoretical results obtained with these modificatio
are shown in Fig. 14, and compared with simulations. B
data sets correspond to a salt concentration ofcs

50.036 mol/l. It can be seen indeed that the magnitude
the force is roughly halved in comparison with the salt-fr
cases of Fig. 10. The osmotic pressure from the outer i
has the effect of reducing the strength of the star–star in
action for overlapping stars. For nonoverlapping stars,
same effect appears, for the well-understood reason of
hanced screening, causing an increase of the inverse D
screening lengthk in Eq. ~43!.

IV. SUMMARY AND CONCLUDING REMARKS

We have analyzed the conformations, sizes, counte
distributions and effective interactions between osmo
polyelectrolyte-stars. The main findings of this work are:~i!
a stretching of the arms of the stars;~ii ! a strong absorption
of counterions in the star interior and condensation along
rodlike chains;~iii ! an entropically dominated, soft effectiv

s
ters
FIG. 14. Theoretical~lines! and simulation~points! results for the force
between two stars in the presence of added salt. The degree of polyme
tion of the chains isN550, the charging fractiona51/3 and forNs5250
salt molecules in the simulation box, corresponding to a salt concentra
cs50.036 M.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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repulsion between PE stars, being caused mainly by
trapped counterions; and~iv! a reduction of the strength o
the repulsion in the presence of added salt.

The crossover of the effective interaction from a pow
law form at overlaps to a Yukawa form beyond overlaps
akin to the case of neutral star polymers. Hence, it is to
expected that the anomalous structure factors found the59

will also be seen in the case of charged stars if the conc
tration of the solution exceeds its overlap value. On sim
grounds, an unusual phase diagram for PE stars is also
expected,60 displaying exotic crystals and reentrant meltin
The phase diagram will be much richer in this case, due
the addition of two more possible degrees of freedom:
charging fractiona and the salt concentration. Additiona
questions that should be addressed in future investigat
include the effects of polydispersity64 and many-body
forces65 in polyelectrolyte-star solutions. The latter are e
pected to play a minor role at reasonable concentratio
though, because the entropy argument suggests they wil
come important only at densities for which three PE st
have a triplet overlap within their coronae, and higher.
nally, further work should be done to study spherical
brushes20,66 having a nonvanishing hard colloidal particle
the middle of the aggregate and a corresponding core–s
structure.
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APPENDIX A: CALCULATION
OF THE ELECTROSTATIC POTENTIAL F in

In this Appendix we present the technical details for t
calculation of the electrostatic potential of the two fus
spheres of radiusR, each carrying a chargeQ* and having a
charge density%(r 8) that decays as (r 8)22 with the distance
r 8 from its center and is abruptly cut off at the mid plane,
given by Eqs.~26! and ~28!. In other words, we show the
steps for the calculation of the electrostatic potentialF in(r )
of Eq. ~29!.

The electrostatic potentialF(r ) due to the charge den
sity %(r ) in a dielectric medium of permittivitye is given by

F~r !5
1

e E %~r 8!

ur 82r u
d3r 8. ~A1!

In order to calculate the integral above, we now take the
inner fused spheres shown in Fig. 6 and introduce infinite
mally thin disks of thicknessdz8 that are perpendicular to
the z axis and cover the whole pattern, as shown in Fig.
There, we show for clarity only one of the two fused spher
cut in the mid plane, which we call a ‘‘chopped sphere’’ a
which can be figured as a succession of disks, each carr
an elementary chargedQ. It is a straightforward calculation
to show that this elementary charge is given by
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dQ5
Q*

2R
lnS R

c D 1

11cosu0@12 ln~cosu0!#
dz8, ~A2!

i.e., it depends on the geometry through cosu05D/(2R) as
well as on the position of the disk centerC along thez axis.
As shown in Fig. 15,c is the distance (OC) between the
disk center and the center of the chopped sphere, whic
taken to be the origin of the coordinate axes. WithC
5(x8,y8,z8) we have therefore

c5uz8u, ~A3!

whereas the radiusa of the disk is given by

a5AR22z82. ~A4!

The elementary contribution of the disk to the electr
static potential at the pointP, dFdisc(r ;z8), depends para-
metrically on the disk center locationz8. Its calculation fol-
lows from further decomposing the disk into concentric rin
of radiusj centered atC, making use of the known result
for the electrostatic potential of a charged ring,67,68 and inte-
grating thereafter fromj50 to j5a. Note that, due to the
inhomogeneous}(r 8)22 dependence of the charge dens
inside the sphere, we are now dealing with disks that h
inhomogeneous charge densities as function ofj themselves,
and which vary as}(j21c2)21. The integration over the
rings can be nevertheless carried out analytically.

We employ cylindrical coordinates and also introdu
the vectors connecting the disk center with the observati
point P ~see Fig. 15!. We have, evidently,r5(r,f,z) and
s5(r,f,z2z8), with the distance from thez axis r and the
azimuthal anglef. Due to azimuthal symmetry, it hold
dFdisc(r ;z8)5dFdisc(r,z;z8). It is convenient as an inter
mediate step to express the sought-for potential in a shi
system of axes, whose origin lies at the centerC of the disk,
and in which the potential is expressed by another funct
dF8, i.e., we write

FIG. 15. A sketch of the chopped sphere showing the geometry of
problem and demonstrating the procedure used for the calculation o
electrostatic potentials.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 16. The electrostatic potentialF in(r ) for two inhomogeneously charged, chopped fused spheres of radiusR, plotted as a function ofz along paths of
fixed distancer from thez axis. ~a! Center-to-center distanceD5R; ~b! D5R/2. The curves are shown in the cylindrical coordinates introduced in Fig.
The centers of the spheres are located at thez positions for which the upper curves have sharp peaks.
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-
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dFdisc~r,z;z8!5dF8~r,z2z8;z8!

5dC~s,x;z8!. ~A5!

Here,s is the magnitude of the vectors and x is the angle
betweens and thez axis. The coordinatess andx are related
to the original ones through

s5Ar21~z2z8!2; ~A6!

cosx5
z2z8

r21~z2z8!2 . ~A7!

The functiondC(s,x;z8) can be obtained analyticall
through the integration over rings mentioned above. The
sult reads as follows:

dC~s,x;z8!5H dC,~s,x;z8! for s<a;

dC.~s,x;z8! for s.a.
~A8!

The termdC,(s,x;z8) is given by

dC,~s,x;z8!

5
2dQ

e ln@11~a/c!2#

1

c (
k50

`

P2k~0!P2k~cosx!

3@Ak~s;z8!1Bk~s;z8!#, ~A9!

wherePm(x) is the Legendre polynomial of orderm

Ak~s;z8!5S s

cD 2(2k11)H ~21!k

2
lnF11S s

cD 2G
1(

j 51

k
~21! j 1k

2 j S s

cD 2 j J , ~A10!

and
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e-

Bk~s;z8!5S s

cD 2kH ~21!kF tan21S a

cD2tan21S s

cD G
2(

j 51

k
~21! j 1k

2 j 21 F S c

aD 2 j 21

2S c

sD
2 j 21G J .

~A11!

The termdC.(z,s) is given by

dC.~s,x;z8!

5
2dQ

e ln@11~a/c!2#

1

c (
k50

`

P2k~0!P2k~cosx!S c

sD
2k11

3H (
j 51

k
~21! j 1k

2 j S a

cD 2 j

1
~21!k

2
lnF11S a

cD 2G J .

~A12!

The electrostatic potential caused by thesinglechopped
sphere Fchop(r ) at point P can be obtained by az8
integration

Fchop~r !5E
z852R

z85D/2
dFdisc~r,z;z8!

5E
z852R

z85D/2
dC~s~r,z;z8!,x~r,z;z8!;z8!. ~A13!

Due to symmetry, thetotal electrostatic potentialF in(r )
caused byboth fused spheres at the observation pointP is
given as

F in~r !5Fchop~r !1Fchop~D2r !, ~A14!

whereD5Dêz . In Fig. 16, we show representative resu
for F in(r ) obtained with this procedure.

The integral in Eq.~A13! cannot be carried out analyti
cally and one has to resort to a simple, one-dimensional
merical integration. In performing this integral by using Eq
~A8!–~A12! together with Eqs.~A2!–~A7!, all k and j sums
appearing there must be made manifestly convergent, i.e.
sums have to be expressed in terms of a variablex,1 raised
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to positive powers. For this purpose, it is necessary, depe
ing on whethers,c or s.c, to make expansions of th
logarithmic and/or the inverse tangent functions in E
~A10! and~A11!. The expressions suitable for the numeric
integration are given below for completeness and con
nience.

Case I: s,c,a or s,a,c.

dC,~s,x;z8!

5
2dQ

e ln@11~a/c!2#

1

c(
k50

`

P2k~0!P2k~cosx!

3@Ck~s;z8!1Dk~s;z8!1Ek~s;z8!#, ~A15!

where

Ck~s;z8!5 (
j 5k11

`
~21! j 1k11

2 j S s

cD 2( j 2k)21

; ~A16!

Dk~s;z8!5S s

cD 2k

~21!kF tan21S a

cD2tan21S s

cD G ; ~A17!

Ek~s;z8!5(
j 51

k
~21! j 1k11

2 j 21 S s

cD 2(k2 j )11F S s

aD 2 j 21

21G .
~A18!

Case II: c,s,a.

dC,~s,x;z8!

5
2dQ

e ln@11~a/c!2#

1

c(
k50

`

P2k~0!P2k~cosx!@Fk~z,s!

1Gk~z,s!1Hk~z,s!#, ~A19!

where

Fk~s;z8!5S c

sD
2k11 ~21!k

2
lnF11S s

cD 2G ; ~A20!

Gk~s;z8!5(
j 51

k
~21! j 1k

2 j S c

sD
2(k2 j )11

; ~A21!

Hk~s;z8!5 (
j 5k11

`
~21! j 1k

2 j 21 S c

sD
2( j 2k)21F S s

aD 2 j 21

21G .
~A22!

Case III: a,s,c.

dC.~s,x;z8!5
2dQ

e ln@11~a/c!2#

1

c (
k50

`

P2k~0!P2k~cosx!

3 (
j 5k11

`
~21! j 1k11

2 j S a

sD 2 j S s

cD 2( j 2k)21

.

~A23!

Case IV: c,a,s.

dC.~s,x;z8!5
2dQ

e ln@11~a/c!2#

1

c(
k50

`

P2k~0!

3P2k~cosx!@ I k~s;z8!1Jk~s;z8!#,

~A24!
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where

I k~s;z8!5(
j 51

k
~21! j 1k

2 j S a

sD 2(k2 j )11S c

sD
2 j

; ~A25!

Jk~s;z8!5
~21!k

2
lnF11S a

cD 2G S c

sD
2k11

. ~A26!

Case V: a,c,s.
Here, dC.(s,x;z8) can be taken directly from Eq

~A12!, as all parameters appearing in the sums are sma
than unity.

APPENDIX B: CALCULATION
OF THE ELECTROSTATIC POTENTIAL Fout

In order to calculate the electrostatic potentialFout(r ),
caused by the hollow fused spheres of the free counter
that reside in the volumeVout ~see Fig. 6!, we employ the
superposition principle. Thereby, the aforementioned holl
region of uniform charge density%out(r ) is apprehended a
the superposition of two fused spheres of radiusRW with
charge density%out(r ) and of two smaller fused spheres,
radius R, with charge density2%out(r ). In this way, the
problem is reduced to the calculation of the electrostatic
tential of two fused spheres with uniform charge density. T
geometrical setup as well as the method of calculation
identical to those presented in Appendix A. Thereby,
electrostatic potentialdFdisc(r ) is still given by expressions
of the form Eqs.~A5!–~A8!, however Eqs.~A2!, ~A9!, and
~A12! have to be replaced by their counterparts valid
homogeneous charge distributions. The corresponding
pressions for spheres of radiusR are given below

dQ5pQ* ~R22z82!

3H 2pR3

3 F11
3

2 S D

2RD2
1

2 S D

2RD 3G J 21

dz8, ~B1!

dC,~s,x;z8!5
2dQ

ea (
k50

`

P2k~0!P2k~cosx!

3F 4k11

2~k11!~2k21! S s

aD2
1

2k21 S s

aD 2kG ,
~B2!

and

dC.~s,x;z8!5
2dQ

es (
k50

`
P2k~0!P2k~cosx!

2~k11! S a

sD 2k

.

~B3!

The substitutionR→RW yields the expressions for the fuse
spheres of radiusRW . Note that the term in the curly brack
ets in Eq.~B1! is the volume of the chopped sphere.
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