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Abstract
We describe a density functional theory for mixtures of hard sphere (HS)
colloids and ideal polymers, the Asakura–Oosawa model. The geometry-
based fundamental measures approach which is used to construct the functional
ensures the correct behaviour in the limit of low density of both species and
in the zero-dimensional limit of a cavity which can contain at most one HS.
Dimensional crossover is discussed in detail. Emphasis is placed on the
properties of homogeneous (bulk) fluid phases. We show that the present
functional yields the same free energy and, therefore, the same fluid–fluid
demixing transition as that given by a different approach, namely the free-
volume theory. The pair direct correlation functions c(2)

i j (r) of the bulk mixture
are given analytically. We investigate the partial structure factors Si j (k) and
the asymptotic decay, r → ∞, of the total pair correlation functions hi j (r)

obtained from the Ornstein–Zernike route. The locus in the phase diagram of
the crossover from monotonic to oscillatory decay of correlations is calculated
for several size ratios q = Rp/Rc, where Rp is the radius of the polymer
sphere and Rc that of the colloid. We determine the (mean-field) behaviour of
the partial structure factors on approaching the fluid–fluid critical (consolute)
point.

1. Introduction

This paper describes a density functional theory (DFT) for determining the equilibrium
properties of the so-called Asakura–Oosawa (AO) model of colloid–polymer mixtures [1, 2].
The model, which was first written down by Vrij [2], treats the colloids as hard spheres (HS)
and the globular polymer coils as interpenetrating spheres, as regards their mutual interactions,
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but polymers experience an excluded volume (hard) interaction with the colloids. It can be
regarded as the simplest, zeroth-order, model of a mixture of colloidal particles and non-
adsorbing polymers. Much attention has been paid to the bulk properties of the AO model
since this affords an important example of pure entropy-driven fluid–fluid phase separation.
When q , the size ratio of the radius of the polymer sphere to that of the colloid sphere, is
sufficiently large, the mixture separates into colloid-rich (liquid) and colloid-poor (gas) phases.
The earliest detailed theoretical treatment of the model was that by Gast et al [3] based on
liquid state perturbation theory for the (approximate) one-component version where colloids
are assumed to interact via the AO pair potential. An alternative approach was introduced by
Lekkerkerker et al [4] based on a free-volume theory for the free energy of the mixture—see
section 3.1. These approximate theories, along with some simulation studies of simplified
versions of the AO model [5, 6], indicate that when the size ratio q is larger than about 0.35
fluid–fluid separation is stable with respect to the fluid–solid transition. Other studies have
investigated the equilibrium pair correlation functions in the AO model [5, 7–9] and the formal
status of the mapping to a one-component fluid [8]. Although the AO model is highly idealized
the variation of bulk phase behaviour with q predicted by studies of the model is in keeping with
the experimental results [10, 11]. More recently attention has shifted towards inhomogeneous
mixtures. An effective Hamiltonian for the colloids was obtained by integrating out the degrees
of freedom of the polymer with both species subject to external fields [12, 13]. When the size
ratio q < (2/

√
3−1) = 0.1547 . . . the effective Hamiltonian contains only one- and two-body

(pairwise) contributions and for such mixtures it is straightforward to apply this to problems of
adsorption at a hard wall [13]. For larger size ratios many-body terms are present in the effective
Hamiltonian for both bulk and inhomogeneousmixtures [5, 8, 13] and incorporating such terms
is rather complicated. Thus treating fluid–fluid interfaces and adsorption phenomena which
occur for larger values of q is difficult within the effective Hamiltonian perspective and ad hoc
prescriptions have been made [12] in order to calculate the density profile of colloids and the
surface tension of the free fluid–fluid interface and compare with experimental data [14, 15].

The approach we adopt here for the AO model does not exploit the formal mapping to
an effective one-component system of colloids. Rather we treat colloid and polymer on equal
footing and develop a DFT specifically tailored for the AO mixture. DFT is recognized as
powerful tool for describing the equilibrium properties of inhomogeneousfluids [16, 17]. Most
effort has been expended on HS fluids, and the fundamental measure theory (FMT) introduced
by Rosenfeld [18] and subsequently refined [19–22] has proved particularly versatile and
reliable in a wide variety of applications to both pure HS and to mixtures. The FMT approach
has also been applied to parallel hard cubes [23, 24]. Other recent advances in geometry-based
DFT include

(i) penetrable spheres [25], where the interatomic potential is a finite constant when the
separation is smaller than the sphere diameter,

(ii) the Widom–Rowlinson model [26], where the unlike species interact via a hard core
potential and the like–like interactions are ideal,

(iii) a model proposed by Bolhuis and Frenkel [27] that describes a mixture of HS and infinitely
thin needles [28],

(iv) a model of an amphiphilic hard body mixture [29] and
(v) a ternary mixture of colloids, polymers and needles [30].

Our DFT for the AO model is also based on FMT ideas. An earlier letter [31] gave a brief outline
of the theory and some results for bulk properties while a second letter described applications
to fluid–fluid interfaces and wetting behaviour for the mixture adsorbed at a hard wall [32].
In this paper we provide a comprehensive description of the functional and its bulk properties
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(thermodynamic functions and pair correlation functions) which explains the status of the DFT
and which lists explicit expressions for all the relevant quantities required to implement the
formalism. Detailed results for interfacial properties obtained from the DFT are given in [9].

Our paper is organized as follows: section 2 is devoted to the theory. We begin in 2.1 with
an overview of DFT and describe the strategy for constructing functionals based on the FMT
approach. The AO model is specified in 2.2 and in 2.3 we examine two exact limiting cases,
namely the low density expansion and the zero-dimensional limit which corresponds to a small
cavity that can hold at most one colloidal sphere. The free energy of the latter case constitutes
a generating function for the three-dimensional functional and this is described in 2.4 where
the functional for the AO model is presented explicitly. Section 2.5 focuses on the properties
of the functional in various limiting cases and, in particular, how it accounts for zero-, one- and
two-dimensional density distributions. An alternative derivation of the functional is presented
in section 2.6. This is based on the original binary HS functional of Rosenfeld [18] and some
observations on the diagrammatic expansions of the pair direct correlation functions for HS
and for the AO model. We comment on the procedure of integrating out polymer degrees of
freedom in the context of DFT and the nature of an effective one-component functional in 2.7.
Section 3 is concerned with the predictions of the DFT for the properties of homogeneous
(bulk) fluid phases. In 3.1 we focus on thermodynamic functions and show that the bulk free
energy of the mixture is precisely the same as that obtained from the free-volume theory of
Lekkerkerker et al [4]. Fluid–fluid demixing is described in 3.2 where it is shown that the
spinodal in the ηp, ηc plane can be obtained analytically. ηp, ηc refer to the packing fractions
of polymer and colloid, respectively. Section 3.3 describes the pair direct correlation functions
c(2)

i j (r) obtained by functional differentiation of our AO functional; these are given analytically
and their behaviour with ηp and ηc is discussed. In 3.4 we focus on the partial structure
factors Si j (k) of the AO mixture and their behaviour when the mixture is close to the consolute
(critical) point. Since the Si j(k) are given analytically the correlation length of the bulk fluid
can be extracted straightforwardly. Section 3.5 is concerned with the nature of the asymptotic
decay of pair correlations in the bulk AO mixture. We present results for the so-called Fisher–
Widom (FW) line, which denotes the line in the phase diagram where the ultimate decay of the
total pair correlation functions hi j (r) crosses over from monotonic to oscillatory. Section 3.6
discusses the predictions of the present DFT for the effective interaction (depletion potential)
between colloidal particles, contrasting the Ornstein–Zernike (OZ) route with the alternative
test-particle route. We conclude in section 4 with a summary and a discussion of some of the
advantages and some shortcomings of our approach.

2. Theory

2.1. Overview and strategy

Within DFT the basic variables that describe the microscopic degrees of freedom of a many-
body system are the one-body densities ρi (r) of each species i : ρi (r) dV is the average
number of particles (of species i ) in an infinitesimal volume element dV located at position r.
Clearly ρi (r) can resolve inhomogeneities (spatial deviations from a uniform value) on small
length scales. Such inhomogeneous structuring is present in liquids under external influence
and is manifestly present in crystalline solids. Introducing the particle positions r

( j)
i , where

j = 1, . . . , Ni , and Ni is the total number of particles of species i , one defines

ρi (r) =
〈 Ni∑

j=1

δ(r − r
( j)
i )

〉
, (1)
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where the angular brackets denote an appropriate ensemble average over many configurations.
Evidently the ρi(r) for a given statepoint (e.g. temperature and chemical potentials µi ) contain
considerable knowledge about the system. More significant is the fact that the thermodynamic
potential of the system is determined solely by the one-body densities. The existence of a
functional that converts the functions ρi (r) to the grand potential � (which is a number)
is one of the building blocks of DFT. Within this description, the ρi(r) are basically the
system’s only degrees of freedom. At first glance this may seem to be a limitation: how can
the important structural information contained in higher-body correlations such as the pair
distribution functions be obtained, if the theory operates on the one-body level? The answer
lies in the second building block of DFT: the variational principle states that upon varying
the ρi (r), the grand potential functional is a minimum at the true equilibrium densities and its
value at the minimum is the true grand potential �. The grand potential functional has the form

�[ρi(r)] = Fexc[{ρi(r)}] +
∑

i

Fid[ρi (r)] +
∫

d3r ρi(r)[Vi,ext(r) − µi ], (2)

where Fid[ρi(r)] = kBT
∫

d3r ρi (r)[ln(�3
i ρi (r)) − 1] is the (Helmholtz) free energy of the

ideal gas, kB is Boltzmann’s constant, T is temperature, �i is the thermal wavelength of
species i and Vi,ext is an external potential acting on species i . Fexc is the excess Helmholtz
free energy arising from interactions between the particles. As this formalism is an exact refor-
mulation of equilibrium statistical mechanics, the hierarchy of higher-body direct correlation
functions can be obtained by functional differentiation of Fexc with respect to the density fields
and the equilibrium distribution functions from the OZ equation. The main benefit of DFT is
that powerful approximate theories can be obtained, provided the (generally unknown) excess
part Fexc is prescribed. The effects caused by different classes of (time-independent) external
potentials can all be treated within the same theory, as Fexc is independent of Vi,ext; it is a
unique functional of {ρi(r)} for a given choice of interparticle potential functions [16, 17]. Of
course, the difficult part of any approximate DFT is finding a suitable prescription or recipe
for Fexc that will incorporate the essential physics of short-range correlations (arising from the
packing of the particles) and of attractive forces (if these are present) between the particles.
However, in all cases, Fexc contains non-local contributions: when varying the density at a
given point in space, the system is affected on the length scale of the inter-particle potentials
(and beyond that through mediated correlations).

Our present DFT recipe to convert colloid and polymer density profiles to an (approximate)
excess free energy for the AO model has the following key features. The non-local character
is taken care of by convoluting the actual density fields ρi (r) with various weight functions.
The results of this procedure are weighted densities, and only these are subsequently used to
obtain the excess free-energy functional, not the bare density fields. This type of weighted-
density approximation (WDA) is now the most common tool to deal with very pronounced
inhomogeneities: bare density profiles may change by orders of magnitude over distances
as small as a particle diameter [33] and convolutions are a suitable means of treating this
behaviour as they exhibit the property of smoothing out. Extensitivity of the free energy is
incorporated by expressing Fexc as a spatial integral over an excess free-energy density �.
This ensures that, over length scales which are large compared with the system’s correlation
lengths, distinct regions of space give additive contributions to the free energy. In order to
connect the free-energy density with the weighted densities, our crucial approximation is to
regard � as a simple function (not a functional) of the weighted densities. This feature of
the theory is identical to that of Rosenfeld’s HS functional [18], and to various recent DFTs
mentioned in the introduction. The three main differences between this approach and most
other weighted-density [16, 17] DFTs are the following.
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(i) Rather than a single weight function, we use a set of weight functions wi
ν (labelled by ν)

for each species i . Consequently, we have a set of weighted densities ni
ν for each species i .

(ii) The range of the weight functions (defined as the distance beyond which a weight function
vanishes) is determined not by the range of interactions, but by the radii of the particles.

(iii) The free-energy density � is not modelled as a product of a bare density times a free
energy per particle, but as a function only of the weighted densities ni

ν .

Our DFT is constructed specifically to describe the AO model, i.e. the forms of the wi
ν and

of � are specific to this model. These are obtained by imposing the correct behaviour of the
functional in several different cases, where the exact behaviour of the AO model is known. The
low density (virial) expansion enables us to obtain the explicit form of the weight functions.
As we shall see below, these are the same as for HS [18]. The other case is a situation of
extreme confinement, where the particles of the system are only allowed to access a single
location in space. This zero-dimensional limit is reminiscent of confining a particle to a crystal
lattice site and corresponds to imposing the density distribution for a particle in a small cavity
whose dimensions are of the same size as the particle. For HS the importance of this limit
was demonstrated by Rosenfeld et al [19, 20]. Later it was shown that the original Rosenfeld
functional [18], as well as improved versions, can be obtained from a systematic treatment of
superpositions of (up to three) such density peaks [21, 22].

2.2. Specification of the Asakura–Oosawa model

The AO model describes colloids as hard impenetrable spheres and polymers as effective
particles with spherical shape. These polymeric spheres are ideal (non-interacting) amongst
themselves, but experience a hard core repulsion with the colloids. Clearly, the model is
idealized, but it captures the essential physics of real colloid–polymer mixtures. In particular,
the AO model describes polymer coils at the theta point, where repulsion is balanced by
attraction, such that the effective interaction between polymers (as expressed by their second
virial coefficient) vanishes. The AO model should also be regarded as a useful zeroth-order
reference system for a wide variety of complex fluids where soft penetrable particles move in
the space between hard bodies.

Thus, we consider a mixture of Nc colloids with radii Rc, and Np polymers, with radii Rp,
interacting via pair potentials Vi j , with i, j = c, p, contained inside a (large) volume V . The
Hamiltonian consists of (trivial) kinetic energy terms and a sum of interaction terms:

H ({Ri, r j }) =
Nc∑

i< j

Vcc(|Ri − R j |) +
Nc∑
i

Np∑
j

Vcp(|Ri − r j |) +
Np∑

i< j

Vpp(|ri − r j |), (3)

where {Ri} = {r(c)
i } denotes colloid and {ri} = {r(p)

i } polymer coordinates.
The interaction potential between colloids is hard: Vcc(r) = ∞ if r � 2Rc, and zero

otherwise. The interaction between colloids and polymers is also hard: Vcp(r) = ∞,
if r � Rc + Rp, and zero otherwise. The interaction between polymers vanishes for all
distances [2]: Vpp(r) = 0. Since all the interactions between particles are either hard or ideal,
temperature T plays no role in determining phase behaviour or structure and the thermodynamic
state of the bulk system is governed by the packing fractions of colloids, ηc = 4π Nc R3

c /(3V ),
and of polymers, ηp = 4π Np R3

p/(3V ). The properties of the system are governed by the size
ratio q = Rp/Rc, which is the only adjustable parameter in the model. Unlike other theoretical
treatments which are based on some integrating out of polymer degrees of freedom [3–5, 12, 13]
the present DFT of the AO model treats colloid and polymer on equal footing.
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2.3. Two exact limiting cases

2.3.1. Low density expansion. For small densities of all species, ρi → 0, the probability
that particles interact is small and for uniform fluids this enables one to make the systematic
virial expansion of thermodynamic functions in powers of the (bulk) densities. The lowest
order term governs the low density behaviour and for the excess free energy this is simply
β Fexc/V = − ∑

i j ρiρ j
∫

d3r fi j (r)/2, where fi j(r) = exp(−βVi j(r)) − 1 are the Mayer
functions, with β = 1/kBT , and the summations run over all species. A similar expansion can
be performed for inhomogeneous systems [16–18]. For a mixture the lowest-order term is

β Fexc[{ρi (r)}] = − 1
2

∑
i j

∫
d3r d3r ′ ρi(r) fi j (|r − r′|)ρ j (r

′). (4)

Note that as the AO model exhibits only hard core interactions, the fi j take on the values −1
and 0 only: fcc, fcp = −1 if the particle pair overlaps, and are zero otherwise. fpp = 0 for all
separations r . Equation (4) sums double convolutions of the density profiles, where the Mayer
function is the convolution kernel. Although the functional is only second order in densities,
an important feature is already present: the range of non-locality is the range of interactions.

2.3.2. Zero-dimensional limit. In statistical physics it is a common simplification to consider
models in reduced spatial dimensionality d . Often two-dimensional systems are simpler to
tackle than three-dimensional systems, and one-dimensional systems are usually simpler than
two-dimensional systems. Reduced dimensionalities not only simplify theoretical treatments,
but are also realized in nature,e.g. in films (two dimensions) or inside channels (one dimension)
or cavities (zero dimensions). A versatile DFT should be able to describe accurately all
situations of reduced dimensionality. In order to model the ultimate dimensional crossover to
zero dimensions a special limit was introduced [19, 20]. In this so-called zero-dimensional
limit the system is confined in all three spatial dimensions, such that only a single point
in three-dimensional space is accessible for the particles. Physically, the zero-dimensional
limit may be realized by a small cavity with rigid walls, that is of particle size. The zero-
dimensional limit is also similar to that of a particle at a crystal lattice site, where each particle
is confined within the cage of its nearest neighbours. Any theoretical description for structure
and thermodynamics in highly inhomogeneous three-dimensional situations should be able to
reproduce dimensional crossover, even to the extreme limit of a zero-dimensional situation.
Clearly, this is a demanding requirement. It has been found, in the case of HS, that one
can start with a point and by considering zero-dimensional cavities of increasingly complex
shape build up a theory for higher dimensions. A strong guide for the general structure of
the functional is provided by Percus’s exact one-dimensional functional for hard rods [34]. In
the case of HS knowledge of the exact zero-dimensional free energy was sufficient to derive
a working theory [21], and was subsequently exploited to derive improved versions [22].
The same methodology was used to tackle other systems including penetrable spheres, which
interact with a constant pair potential if they overlap [25], the Widom–Rowlinson model [26]
and a needle–sphere mixture [28], as well as models for an amphiphilic [29] and a ternary
mixture [30]. Here we follow the same route for the AO model.

To be explicit, we introduce an external potential Vext(r) = 0 if |r| < ε, and ∞ otherwise.
Each particle’s centre is then allowed to move inside a sphere of volume 4πε3/3. We consider
the limit ε → 0, so that any particles present in the cavity overlap. In order to derive the
zero-dimensional Helmholtz (excess) free energy, we consider the grand partition sum �. The
only states that are allowed are the following:

(i) the empty state without any particle,
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(ii) the state with exactly one colloidal particle and
(iii) all states without colloids but with an arbitrary number of polymers.

Hence, in that order,

� = 1 + zc + [exp(zp) − 1] = zc + exp(zp), (5)

where the (dimensionless) fugacities are defined here as zi = exp(βµi)�
−3
i 4πε3/3. The mean

occupation numbers of particles, ηi , which are the packing fractions in zero dimension, are
obtained from

ηi = zi
∂

∂zi
ln �. (6)

More explicitly,

ηc = zc

zc + exp(zp)
, (7)

ηp = zp exp(zp)

zc + exp(zp)
, (8)

which can be inverted to obtain the fugacities

zc = ηc

1 − ηc
exp

(
ηp

1 − ηc

)
, (9)

zp = ηp

1 − ηc
. (10)

The dimensionless excess chemical potentials, µ̃i ≡ ln(zi) − ln(ηi), given by

µ̃c(ηc, ηp) = − ln(1 − ηc) +
ηp

1 − ηc
, (11)

µ̃p(ηc) = − ln(1 − ηc), (12)

can then be used to integrate along a suitably chosen path in the (ηc, ηp) plane in order to obtain
the excess free energy

β F0d(ηc, ηp) =
∫ ηc

0
dη′

c µ̃c(η
′
c, 0) +

∫ ηp

0
dη µ̃p(ηc). (13)

(Alternatively, one could use β F0d = − ln � + µ̃c∂ ln �/∂µ̃c + µ̃p∂ ln �/∂µ̃p.) The result is

β F0d(ηc, ηp) = (1 − ηc − ηp) ln(1 − ηc) + ηc. (14)

This zero-dimensional free energy exhibits a number of physically realistic properties, that
are generic to the model itself, independent of the precise situation under consideration, and
which remain valid for other reduced dimensionalities and confining geometries:

(i) The colloid packing fraction is restricted to ηc < 1. In three dimensions, ηc → 1
corresponds to space-filling spheres. Although it is impossible to pack HS more densely
than the close-packing fcc value of 0.7405, the limit ηc → 1 does arise in many liquid state
approximations such as scaled-particle and Percus–Yevick (PY) theories which commonly
produce expressions containing factors of 1/(1 − ηc).

(ii) Polymer packing fractions can be arbitrarily large, as no upper bound exists for ηp; the
ideality of the polymers means that there are no packing constraints for this species.

(iii) The free energy depends linearly on ηp. As we shall show in section 2.6, this is not
necessarily the case in three-dimensional bulk where terms of O(η4

p) and higher, but not
O(η2

p) or O(η3
p), can arise. However, this simple linear dependence is a feature of the well

known (approximate) free-volume theory [4, 5].
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Additionally, it is interesting to compare the present result for the AO model with
the result for HS mixtures. For a binary HS mixture of species 1 and 2, one obtains
β Fbhs

0d = (1 − η1 − η2) ln(1 − η1 − η2) + η1 + η2, where η1, η2 are the packing fractions of
species 1 and 2. Guided by (iii), we observe that linearization in η2 yields F0d of equation (14)
upon identifying η1 = ηc and η2 = ηp. This linearization property will be exploited further in
section 2.6 in an alternative derivation of the DFT.

These two exact limiting cases provide the key building blocks for constructing the free-
energy functional.

2.4. Density functional for the AO model

Following previous work on HS mixtures [18–20], we express the excess Helmholtz free
energy in terms of a functional of colloid and polymer density fields as a spatial integral over
a free-energy density � that is a function of the weighted densities:

β Fexc[ρc(r), ρp(r
′)] =

∫
d3x �({nc

ν(x)}, {np
γ (x)}), (15)

where the weighted densities for each species i = c, p are obtained by convolutions with the
actual density profiles

ni
ν(x) =

∫
d3r ρi (r)wi

ν(x − r). (16)

In previous work on HS, � was taken to be a function of species-independent weighted
densities [18]. Here we must generalize and allow � to depend on species-dependent weighted
densities. This is necessary in order to capture the intrinsically different nature of colloids and
polymers. The weight functions wi

ν are independent of the density profiles and are given by

wi
3(r) = �(Ri − r), (17)

wi
2(r) = δ(Ri − r), (18)

wi
1(r) = δ(Ri − r)/(4πr), (19)

wi
0(r) = δ(Ri − r)/(4πr2), (20)

wi
v2(r) = δ(Ri − r)r/r, (21)

wi
v1(r) = δ(Ri − r)r/(4πr2), (22)

ŵi
m2(r) = δ(Ri − r)(rr/r2 − 1̂/3), (23)

where r = |r|, �(r) is the step function, δ(r) is the Dirac distribution and 1̂ is the identity
matrix. The weight functions are quantities with dimension length 3−ν . They differ in their
tensorial rank: wi

0, w
i
1, w

i
2, w

i
3 are scalars; wi

v1,wi
v2 are vectors; ŵi

m2 is a (traceless) second-
rank tensor. Equations (17)–(22) are the weights given in [18], whereas equation (23) is
equivalent to the tensor formulation in [22]. The Fourier transforms of the weight functions
are given in appendix A.

The free-energy density is composed of three parts

� = �1 + �2 + �3, (24)

which are defined as

�1 =
∑
i=c,p

ni
0ϕi(n

c
3, np

3), (25)

�2 =
∑

i, j=c,p

(ni
1n j

2 − ni
v1 · n

j
v2)ϕi j(n

c
3, np

3), (26)



Density functional theory for a model colloid–polymer mixture: bulk fluid phases 9361

�3 = 1

8π

∑
i, j,k=c,p

(
1

3
ni

2n j
2nk

2 − ni
2n

j
v2 · nk

v2 +
3

2

[
ni

v2n̂ j
m2n

k
v2 − tr(n̂i

m2n̂ j
m2n̂k

m2)
])

ϕi jk(n
c
3, np

3),

(27)

where tr denotes the trace, and derivatives of the zero-dimensional excess free energy (given
by equation (14)) are

ϕi ...k(ηc, ηp) ≡ ∂m

∂ηi . . . ∂ηk
β F0d(ηc, ηp). (28)

In the absence of polymer, �1 and �2 are equivalent to the free-energy densities for HS
introduced in [18], and �3 is equivalent to the tensor treatment for pure HS in [22].
Equations (25)–(27) are direct generalizations of these earlier treatments to include summation
over species. All the derivatives ϕi ... j that carry more than one polymer index vanish due to
the functional form of F0d, and we obtain

�1 = nc
0

[
− ln(1 − nc

3) +
np

3

1 − nc
3

]
− np

0 ln(1 − nc
3), (29)

�2 = (nc
1nc

2 − nc
v1 · nc

v2)

[
1

1 − nc
3

+
np

3

(1 − nc
3)

2

]
+

np
1nc

2 − n
p
v1 · nc

v2 + nc
1np

2 − nc
v1 · n

p
v2

1 − nc
3

, (30)

�3 =
1
3 (nc

2)
3 − nc

2(n
c
v2)

2 + 3
2 (nc

v2n̂c
m2n

c
v2 − 3 det n̂c

m2)

8π

[
1

(1 − nc
3)

2
+

2np
3

(1 − nc
3)

3

]

+
(nc

2)
2np

2 − np
2(n

c
v2)

2 − 2nc
2n

c
v2 · n

p
v2 + 3

2 {2n
p
v2n̂c

m2n
c
v2 + nc

v2n̂p
m2n

c
v2 − 3tr[(n̂c

m2)
2n̂p

m2]}
8π(1 − nc

3)
2 .

(31)

For brevity we have omitted the r dependence, e.g. nc
3 = nc

3(r). The DFT for the AO model
is now fully specified. In the next subsection we examine several limiting cases in order to
ascertain better the nature of the approximation we have introduced.

2.5. Examining limiting cases of the functional

2.5.1. Low density expansion. For low densities, ρi → 0, the weighted densities also
become small, ni

ν → 0, since the latter are given by a convolution of the density with a
density-independent weight function wi

ν , equation (16). In order to obtain the behaviour of
the DF, we Taylor expand the free-energy density � in powers of weighted densities. The
straightforward calculation yields to lowest order

� = nc
0nc

3 + nc
1nc

2 − nc
v1 · nc

v2 + nc
0np

3 + nc
1np

2 − nc
v1 · n

p
v2 + np

0nc
3 + np

1nc
2 − n

p
v1 · nc

v2. (32)

Each of the terms in the sum is a bilinear combination of weighted densities, ni
νn j

λ. We rewrite
this formally as

� ≡
∑

i j=cp

∑
νλ

Ci j
νλni

νn j
λ (33)

where the coefficients take on values Ci j
νλ = −1, 0, 1. (Note that the coefficients Cpp

νλ of terms
np

νnp
λ, with p representing species 2, which are non-zero in the corresponding expansion for

the binary HS functional vanish in the AO model.) Next we rearrange the order of integrations
in the density functional

β Fexc =
∫

d3x
∑
i jνλ

Ci j
νλ

∫
d3r ρi (r)wi

ν(r − x)

∫
d3r ′ ρ j (r

′)w j
λ(r

′ − x) (34)
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=
∑

i j

∫
d3r ρi (r)

∫
d3r ′ ρ j (r

′)
∑
νλ

∫
d3x Ci j

νλw
i
ν(r − x)w

j
λ(r

′ − x) (35)

=
∑

i j

∫
d3r ρi (r)

∫
d3r ′ ρ j (r

′) fi j(|r − r′|)/2, (36)

where in the last step we exploited the property of the weight functions to obtain the HS Mayer
bond. This is the same argument as in Rosenfeld’s HS mixture case [18]; the vanishing of the
polymer–polymerMayer bond is due solely to the functional form of �, which does not contain
terms quadratic in polymer weighted densities. Thus the present functional does reduce to the
correct low density limit when all densities ρi → 0.

2.5.2. Zero-dimensional limit. For density distributions ρi = ηiδ(r) each weighted density
becomes proportional to its weight function

ni
ν(x) =

∫
d3r ηiδ(r)wi

ν(r − x) = ηiw
i
ν(x). (37)

We show that the contribution from �1 yields the exact result. Consider

β Fexc =
∫

d3r �1 (38)

=
∫ ∞

0
dr 4πr2

∑
i

ηiw
i
0(r)ϕi(ηcw

c
3(r), ηpw

p
3(r)) (39)

=
∫ ∞

0
dr

∑
i

ηiδ(Ri − r)ϕi(ηc�(Rc − r), ηp�(Rp − r)) (40)

=
∫ ∞

0
dr

∑
i

ηi
−d�(Ri − r)

dr
ϕi(ηc�(Rc − r), ηp�(Rp − r)) (41)

=
∫ 1

0
dt[ηpϕp(ηc, ηpt) + ηcϕc(ηct, 0)], (42)

= β F0d(ηc, ηp) (43)

where we have assumed, without loss of generality, in equation (42) that Rc > Rp and have
used the definition of ϕi , equation (28), in the last step.

The contributions from �2 and �3 both vanish. This follows from symmetry
considerations. From equation (37), and the fact that wi

vν = wi
νr/r for ν = 1, 2, it follows

that ni
1n j

2 = ni
v1 · n

j
v2. Hence, from equation (30), �2 = 0. A similar argument holds for �3.

2.5.3. One-dimensional limit. Following [21] we can obtain an effective one-dimensional
functional by imposing on the general three-dimensional functional density distributions
ρi (r) = ρi(x)δ(y)δ(z). We omit the tedious details and show the final result:

β Fexc[ρc(x), ρp(x ′)] =
∫

dx �({nc
ν(x)}, {np

γ (x)}), (44)

where the weighted densities are obtained by one-dimensional convolutions

ni
ν(x) =

∫
dx ′ ρi (x ′)wi

ν(x − x ′), (45)

of the two one-dimensional weight functions

wi
d(x) = θ(Ri − |x |), (46)

wi
0(x) = [δ(Ri + x) + δ(Ri − x)]/2. (47)
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Note that wi
d originates from the three-dimensional weight wi

3, and describes the one-
dimensional packing fraction. The excess free-energy density obtained from �1 + �2,
i.e. equations (29), (30), is

� =
∑
i=c,p

ni
0 ϕi

(
nc

d , np
d

)
(48)

= −(nc
0 + np

0) ln(1 − nc
d) +

nc
0np

d

1 − nc
d

. (49)

Note that the remaining term �3, equation (31), gives an additional contribution if q �= 1.
Following the discussion of two-dimensional crossover in HS mixtures [35] we expect this
contribution to be negligible. We note that the bulk equation of state derived from � in
equation (49) is the same as that of free-volume theory in one dimension. As the latter is
known to yield a very good approximation to the exact solution of the one-dimensional AO
model [36], provided the reservoir packing fraction ηp,r is smaller than about 1.5, it is likely
that the one-dimensional functional will also be accurate in this regime.

To summarize, in this subsection we have shown that our DF for the AO model does yield
the correct low density and zero-dimensional limits and that for uniform one-dimensional
density distributions the theory is equivalent to free-volume theory. For completeness, a two-
dimensional functional is presented in appendix B.

2.6. Alternative derivation of the DFT

We show here that the present functional (section 2.4) can be derived in an alternative fashion
starting from the binary HS functional of Rosenfeld [18]. The only distinction between the
AO model and the binary HS model is that the interaction V22 between particles of species 2 is
zero. Thus all the necessary geometrical information about sphere packing is already included
and it is possible, at least in principle, to extract a functional for the AO model. More precisely,
if we had the exact functional for the binary HS model then a density expansion would contain
all the diagrams required for the AO model plus an additional class of diagrams containing
Mayer bonds between polymers. An operation which removes the unwanted class diagrams
from the binary HS functional would yield the exact functional for the AO model. In order
to extract the information we require from the binary HS functional, we turn to the exact low
density diagrammatic expansion of the bulk pair direct correlation function. For the AO model
this is given by

c(2)
cc (r) = + ρc + ρp + O(ρ2) (50)

c(2)
cp (r) = + ρc + O(ρ2) (51)

c(2)
pp (r) = 0 + O(ρ2), (52)

where we have given the expansion up to second order (third virial level). As usual each
bond between circles represents a Mayer function and a shaded circle an integration over
one coordinate. All diagrams involving a polymer–polymer Mayer bond are zero. To third
virial level, c(2)

pp = 0, as all three contributing diagrams contain a polymer–polymer Mayer
bond. Higher order terms in the expansion of c(2)

pp are non-zero as there exist diagrams which
contribute and yet do not contain polymer–polymer Mayer bonds. For example, at the fourth
virial level the diagram

(53)
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appears and gives a contribution of order ρ2
p to c(2)

pp (r). It should be noted that the Percus–

Yevick theory for the binary AO model also gives c(2)
pp = 0. A theory capable of going beyond

the approximation c(2)
pp = 0 would have to be accurate to at least the fourth virial level. As even

sophisticated integral equation theories are usually exact to only third virial level this is clearly
a difficult task. Equations (50)–(52) give no information about how to extract the colloid–
polymer functional from the binary HS functional as information about the polymer–polymer
interaction does not enter until higher terms in the expansion. However, the facts that

(i) c(2)
cp is independent of the polymer density field and

(ii) c(2)
pp = 0 suggest that the simplest way to obtain a functional for the AO model is to

linearize the binary HS functional with respect to ρp(r).

This ensures that the bulk pair correlations are correct to the third virial level, i.e. c(2)
pp =

−δ2β Fexc/δρp(r)δρp(r
′) = 0 and c(2)

cp = −δ2β Fexc/δρc(r)δρp(r
′) is independent of the

polymer density.
The exact AO free-energy functional contains terms linear in ρp(r) but not terms in ρ2

p

or ρ3
p, as these would lead to inconsistency with the low order diagrams. However, when

expanding the binary HS functional in ρp(r) we could have chosen to omit the ρ2
p and ρ3

p
terms, but retain all higher orders; the low order diagrams exercise no constraint over these
higher order contributions. In linearizing the functional we have chosen to set all higher order
terms to zero. The justification for this can be found by looking at the exact diagrammatic
expansion for a binary mixture to fourth virial level:

c(2)
i j (r) = +

∑
k

ρk +
∑
k,l

ρkρl + + + + + + + O(ρ3). (54)

The Rosenfeld binary HS functional generates bulk c(2)
i j identical to those from Percus–Yevick

theory. The latter is not exact to fourth virial level as it contains only a subset of the required
diagrams:

c(2)
i j (r) = +

∑
k

ρk +
∑
k,l

ρkρl + + + + O(ρ3). (55)

All diagrams in PY theory, equation (55), have a Mayer bond connecting i j . We henceforth
refer to diagrams of this category as A class and diagrams with no i j Mayer bond as B class
and focus our attention on c(2)

pp . Retaining quartic and higher order terms when expanding the
Rosenfeld HS functional, only HS A-class diagrams would be included. For the AO model
all A-class diagrams are identically zero in the expansion of c(2)

pp and only B-class diagrams
contribute. Inclusion of quartic or higher order terms in the ρp expansion of the functional
would incorporate only unphysical diagrams. The A-class diagrams required for the AO model
are not contained within the original binary HS functional. We conclude that by linearizing
the original Rosenfeld HS functional in the polymer density we should obtain a functional
which describes the AO model. Indeed when such a linearization is performed we recover
equations (24)–(31) for the free-energy density but with the tensor weighted densities n̂i

m2 = 0,
since the original Rosenfeld functional does not have tensor weights.

2.7. Effective one-component functional

When investigating the statistical mechanics of soft matter systems it is frequently
advantageous to integrate out some degrees of freedom in order to obtain effective interactions
between the particles of the remaining species. This has proved particularly fruitful for the AO
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model of colloid–polymer mixtures where the polymer degrees of freedom could be explicitly
integrated out for certain size ratios [5, 8, 9, 13]. However, it is not obvious that an analogous
procedure can generally be performed within the context of DFT. In order to minimize a
functional � of two independent density fields it is necessary to solve simultaneously the
coupled equations

δ�[ρc, ρp]

δρc(r)
= 0,

δ�[ρc, ρp]

δρp(r)
= 0. (56)

The corresponding Euler–Lagrange equations are given by

ρc(r) = zc exp(c(1)
c (r; [ρc, ρp]) − βV ext

c (r)) (57)

ρp(r) = zp exp(c(1)
p (r; [ρc, ρp]) − βV ext

p (r)), (58)

where zc and z p are the fugacities and the functional dependence of the one-body direct
correlation function c(1)

i is made explicit. While species have been labelled c, p, equations (57)
and (58) apply to an arbitrary binary mixture. The Euler–Lagrange equations are usually
coupled in a complicated way and must be solved using numerical methods.

Within the context of DFT the term ‘integrating out’ can be somewhat misleading because
at no stage in the calculation have integrals been performed over the polymer degrees of
freedom. The usual procedure of integrating out is performed directly on the partition function
and the effective potentials which result are then input to a one-component theory or simulation
to calculate the density distribution of the species of (main) interest [5, 8]. While an effective
potential never appears explicitly within the DFT formulation, it is contained implicitly in the
Euler–Lagrange equation of the species of interest. It is the variational minimization of �

which takes the place of an explicit integrating out. The analogue of integrating out within
DFT is expressing the free-energy functional as a functional of a reduced set of density fields

Fexc[ρc(r)] ≡ Fexc[ρc(r), ρp[ρc(r)]]. (59)

These considerations can be made explicit for the AO functional. The one-body direct
correlation function of species i is given by

c(1)
i (r) = −β

δFexc[{ρi}]
δρi(r)

= −
∑

ν

∂�

∂ni
ν

⊗ ωi
ν , (60)

where ⊗ denotes a convolution. c(1)
i (r) is independent of the polymer density as only colloid

weighted densities appear on the RHS of equation (60). It follows that c(1)
p (r) is a functional

of the colloid profile alone: c(1)
p (r) ≡ c(1)

p (r; [ρc]). Combining (60) with (58) thus provides an
explicit expression for the polymer profile ρp(r) as a functional of the colloid profile ρc(r) [9].
If we constrain the colloid density field ρc(r) to be fixed at some non-equilibrium value, then
the polymer profile which minimizes the free energy subject to the constraint is automatically
given. The AO functional, although a genuine two-component theory, can thus be regarded as
an effective one-component free-energy functional of a single density field. For more general
model fluids the Euler–Lagrange equations will not decouple and will not be as simple but
the concept remains the same. Although the equations may be coupled in a complicated way,
for given external potentials, ρ1 ≡ ρ1([ρ2]; z1) and ρ2 ≡ ρ2([ρ1]; z2) so one of the density
profiles can, in principle, be eliminated to obtain the effective functional [37]. In order to
obtain explicit forms for the effective potentials one must resort to alternative methods such
as those described by Roth et al [38] for additive and non-additive [39] HS mixtures.

3. Application to bulk fluid phases

In this section we apply the theory developed in section 2 to the calculation of the
thermodynamic and structural properties of the bulk AO mixture.
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3.1. Thermodynamic functions

Homogeneous fluid phases are characterized by spatially constant density fields: ρc(r) ≡ ρc,
and ρp(r) ≡ ρp. In order to determine the free energy, and hence all thermodynamicquantities,
we evaluate the density functional Fexc[ρc = const, ρp = const]. First we need to calculate
the weighted densities, equation (16). The integration over the weight functions (17–23) can
be carried out explicitly, and yields the so-called fundamental measures

ξ i
ν ≡

∫
d3x wi

ν(x), (61)

which describe the volume ξ i
3 = 4π R3

i /3, surface area ξ i
2 = 4π R2

i , integral mean curvature
ξ i

1 = Ri and Euler characteristic ξ i
0 = 1 of the spherical particles. The resulting weighted

densities are

ni
3 = ηi , (62)

ni
2 = 3ηi/Ri , (63)

ni
1 = 3ηi/(4π R2

i ), (64)

ni
0 = 3ηi/(4π R3

i ), (65)

ni
v1 = ni

v2 = n̂i
m2 = 0, (66)

with, once again, i = c, p. Inserting these expressions into equations (29)–(31), we obtain the
excess free-energy density �, equation (24), which is constant in space, so the integration in
equation (15) is trivial. We find that the excess Helmholtz free-energy density is given by

β Fexc/V = β fhs(ρc) − ρp ln α(ρc), (67)

where fhs(ρc) is the excess free-energy density of pure HS in the scaled-particle (PY
compressibility) approximation, given as

β fhs(ρc) = 3ηc[3ηc(2 − ηc) − 2(1 − ηc)
2 ln(1 − ηc)]

8π R3
c (1 − ηc)2

, (68)

and

α(ρc) = (1 − ηc) exp(−Aγ − Bγ 2 − Cγ 3), (69)

where γ = ηc/(1 − ηc), A = q3 + 3q2 + 3q, B = 3q3 + 9q2/2 and C = 3q3. This result
can be shown to be identical to that of free-volume theory for the AO model [4], where the
quantity α is interpreted as the ratio of the free volume accessible to a test polymer sphere
and the system volume. In order to demonstrate the equivalence we perform a Legendre
transform on the total (canonical) Helmholtz free energy F(Nc, Np, V ) = Fexc(Nc, Np, V ) +
β−1V

∑
i=c,p ρi [ln(�3

i ρi ) − 1] to obtain the semigrand potential

�̃(Nc, zp, V ) = F(Nc, Np, V ) − µp Np. (70)

The polymer chemical potential µp = (∂ F/∂ Np)Nc,V = β−1 ln(�3
pρp/α) and equation (70)

reduces to

β�̃(Nc, zp, V )

V
= ρc[ln(�3

cρc) − 1] + β fhs(ρc) − ρp(ρc, zp), (71)

where the polymer density in the system, ρp, depends on the colloid density ρc and on the
polymer fugacity zp = exp(βµp)/�

3
p. For ideal polymers zp = ρp,r , the density of polymer in

the reservoir is in chemical equilibrium with the system. Equating the two expressions for µp

yields

ρp(ρc, zp) = α(ρc)ρp,r = α(ρc)zp, (72)
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with α given by equation (69). Inserting equation (72) into (71) leads to the standard
free-volume result for the semi-grand potential density [4]. Note that −V −1∂�̃/∂µp = ρp,
consistent with the thermodynamic definition of �̃.

At first sight it seems surprising that our DFT approach is equivalent to free-volume
theory. Recall that the latter treats the semi-grand potential as the sum of a HS (colloid) part
plus a contribution from an ideal gas of polymers in the free volume left by the colloids. The
connections between the two approaches become clearer when we recognize the following.

(i) The treatment of HSs is equivalent; α in free-volume theory is obtained from scaled-
particle theory, while the DFT gives rise to the scaled particle equation of state for pure
and binary HS mixtures.

(ii) Free-volume theory can be regarded as an expansion of �̃ in the fugacity zp, about an HS
reference system, that is truncated at the term linear in zp [5, 13]. The linearity in zp, or
equivalently in ηp, is a key feature of our DFT which we imposed at the outset via the
zero-dimensional route and in the alternative derivation of section 2.6. Note that once one
has identified α as the ratio of polymer density in the system to that in the reservoir, see
equation (72), its interpretation as the free-volume fraction for a single ideal polymer is
immediate. That the DFT should yield the same formula for α as that of scaled-particle
theory is then not so surprising. Nevertheless, it is pleasing that the two approaches,
which appear to have rather distinct roots, do yield the same bulk free energy and hence
the same (fluid) equation of state4. In particular they yield the same attractive contribution,
−α(ρc)zp, to the grand potential density. It is this term which leads to the possibility of
fluid–fluid demixing.

3.2. Fluid–fluid demixing

Phase behaviour in the AO model is a well studied problem [2–5]. It is striking that this simple
model gives rise to stable, entropically driven fluid–fluid phase separation for sufficiently large
size ratios q . Given that the free energy from our approach is identical to that from free-volume
theory, it immediately follows that it gives rise to the same (fluid state) phase diagrams. We do
not consider solid states in the present study. The phase separation into colloid-rich (polymer-
poor) and colloid-poor (polymer-rich) fluid phases is analogous to liquid–gas separation with
the polymer reservoir fraction ηp,r , or zp, playing the role of inverse temperature. Free-volume
theory for the AO model predicts stable liquid–gas coexistence for q > 0.32. For smaller
values of q this transition becomes metastable with respect to a broad, in ηc, fluid–solid
transition [4, 5]. Here we focus on demixing for size ratios in the range 0.4 � q � 1, where
we expect stable liquid–gas coexistence.

In order to calculate the binodal we perform a common-tangent construction on the semi-
grand potential �̃, equation (71), at fixed zp (or ηp,r). This is equivalent to equating the total
pressure and chemical potentials of each species in the two coexisting phases. It should be noted
that the canonical free energy F does not display any obvious double-minimum structure as a
function of ηc, ηp. The spinodal is the locus of statepoints where the curvature of the semi-grand
potential changes its sign at fixed ηp,r . In practice, a canonical calculation can be performed
more easily. The boundary of stability is obtained by solving det[∂2(F/V )/∂ρi∂ρ j ] = 0,
i, j = c, p. This can be done analytically, and we obtain the spinodal from the following
equation:

4 We note that in calculations, e.g. [5], based on free-volume theory the Carnahan–Starling approximation is often
used for fhs whereas in the DFT approach the PY compressibility approximation (68) must be employed.
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Figure 1. Demixing phase diagram of the AO model for size ratio q = 0.6. The binodal (thick
curve), spinodal (dashed curve), tie lines (thin curves), FW line (dotted curve), critical point (dot)
and intersection of the binodal and the FW line (cross) are shown for (a) the reservoir representation
using the colloid packing fraction ηc and polymer reservoir fraction ηp,r as variables and (b) the
system representation using ηc and the actual polymer fraction ηp as variables. The FW line denotes
the line where the asymptotic decay of pair correlations crosses over from monotonic to oscillatory.
Note that these phase diagrams display only the fluid portion of the phase diagram; a fluid–solid
transition occurs for higher values of ηc.

ηp = θ4
1 θ2/ηc

12θ3
1 + 15qθ2

1θ2 + 6q2θ1θ
2
2 + q3θ3

2

, (73)

where θ1 = 1 − ηc, and θ2 = 1 + 2ηc. Results obtained in one representation are easily
converted to the other using equation (72).

In figure 1 we display the demixing phase diagram for size ratio q = 0.6. In the reservoir
representation (figure 1(a)), we see that the form of the phase diagram does resemble the
gas–liquid portion of the phase diagram of a simple substance provided the polymer reservoir
density ηp,r is replaced by inverse temperature. Upon increasing ηp,r the system separates into
phases with different compositions and the tie lines connecting coexisting phases are horizontal
in this representation. The binodal and spinodal coincide at the (lower) critical point. Also
shown in figure 1 is the FW line, which divides the phase diagram into regions where the
asymptotic decay of pair correlations is either monotonic or oscillatory. We shall discuss this
in detail in section 3.5.

The actual polymer density in the system may be considerably different from that in the
reservoir, because insertion of polymers into the system is hindered by the presence of the
colloids, i.e. ηp < ηp,r . The phase diagram in the system representation (figure 1(b)) shows the
mixed one-phase region in the lower left part and the demixed two-phase region in the upper
right part of the ηc, ηp plane. The tie lines between coexisting phases now have a negative
slope. Changing the size ratio q has a pronounced effect on the location of the binodal. We
display results for q = 0.4, 0.6, 0.8, 1 in figure 2. As q increases, the binodals move to higher
ηp,r , and the critical point shifts to lower colloid fractions ηc (see figure 2(a)). The actual
polymer density ηp at the critical point increases slowly with q (figure 2(b)).

3.3. Direct correlation functions

We now shift our attention to the structural properties of the bulk AO mixture, focusing
first on the pair direct correlation functions c(2)

i j (r). Recall that for binary HS mixtures the
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Figure 2. Phase diagram of the AO model for size ratios q = 0.4, 0.6, 0.8, 1. The binodals (thin
curves), critical points (dots joined by a thick curve) and intersections of the FW line and the
binodals (crosses joined by a dashed curve) are shown for (a) the reservoir representation with ηc
and ηp,r and (b) the system representation with ηc and ηp.

c(2)
i j (r) obtained from solving the PY closure are surprisingly simple (polynomial) expressions.

Considerable insight into the structure of HS fluids was gained by introducing a new geometrical
interpretation of the direct correlation functions [40]. This insight eventually led to the
development of the FMT density functional for HS. In the present work the opposite route
is followed. Here, starting from the functional we developed in section 2, the c(2)

i j (r) are
obtained as second functional derivatives with respect to the density fields. This yields an
(approximate) geometrical representation of the pair direct correlation functions of the AO
model. Explicit analytic expressions are given below. It is important to note from the outset
that the c(2)

i j (r) derived from the present DFT are not (except for special cases) equivalent to
those obtained by solving the PY closure for the AO model. In particular, the core condition on
the pair correlation functions, gi j(r < Ri + R j ) = 0, is violated in the present approximation,
if pair and direct correlation functions are related via the OZ relation. Nevertheless, in the light
of the discussion of section 2.6, we do expect c(2)

i j to be similar to those from PY. Recall that
the latter can only be obtained numerically for the AO model. The direct correlation functions
are given by

c(2)
i j (r, r′) = − δ2β Fexc

δρi(r)δρ j(r′)
= −

∑
ν,γ

ψ i j
νγ wi

ν ⊗ w j
γ , (74)

where the ⊗ denotes the convolution and ψ
i j
νγ = ∂2�/

(
∂ni

ν∂ni
γ

)
, and as usual i, j = c, p. �

is the free-energy density given by equations (24)–(31). Carrying out this analysis reveals that
the bulk direct correlation functions possess the following structure:

c(2)
cc (ηc, ηp; r) = c(2)

hs (ηc; r) + ηpc(2)
∗ (ηc; r), (75)

c(2)
cp (ηc, ηp; r) = c(2)

cp (ηc; r), (76)

c(2)
pp (ηc, ηp; r) = 0, (77)

where c(2)

hs is the solution of the PY closure for one-component HS. The simple dependence
on ηp originates from the linearity of Fexc in the polymer density profile. This dependence
allows c(2)

cc to be split into two parts: c(2)

hs is the residual contribution, present even if polymers
are absent, while c(2)∗ is the contribution from introducing the polymers, i.e. the function c(2)∗
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describes the part of the direct correlations between pairs of colloid due to the presence of
the polymers. The spatial dependence of c(2)∗ is similar to that of c(2)

hs , and will be discussed
below. Linearity of the functional in ρp(r) implies that c(2)

cp is independent of the polymer
density. The size ratio q determines the shape of c(2)

cp . Finally, the linearity ensures that the
polymer–polymer direct correlation function vanishes, as in the PY closure for the AO model.
These observations are, of course, consistent with the low density expansion of c(2)

i j used in the
alternative derivation of the functional given in section 2.6.

The range of the c(2)
i j is determined by the geometric nature of the weight functions wi

ν .

As these are characteristic of single-particle geometries, it is clear that the c(2)
i j must vanish

beyond a separation which is the sum of both particle radii involved, i.e. c(2)

i j (r > Ri + R j) = 0,
as is found in the PY treatment. Clearly, this property reflects the approximate nature of the
functional. In an exact treatment we would expect contributions beyond the range Ri + R j .

We now give explicit expressions for c(2)
i j entering equations (75)–(77). Recall that the

PY solution [41] for HS with packing fraction ηc and diameter σc (≡ 2Rc) is

c(2)

hs (ηc; x) = −�(σc − r)

(1 − ηc)4

∑
i

τ hs
i x i , (78)

where τ hs
i are functions of the colloid packing fractionηc and x = r/σc. The only non-vanishing

coefficients are

τ hs
0 = (1 + 2ηc)

2,

τ hs
1 = −3ηc

2
(2 + ηc)

2,

τ hs
3 = ηc

2
(1 + 2ηc)

2.

(79)

The polymer contribution to c(2)
cc is given by

c(2)
∗ (ηc; r) = −�(σc − r)

2q3

∑
i

τ ∗
i x i , (80)

where the only non-vanishing coefficients are

τ ∗
0 = 2[1 + A + 2Aγ + 4Bγ + 6Bγ 2 + 3Cγ 2(3 + 4γ )],

τ ∗
1 = −3 − 2A + (2B)/3 − 6Aγ − 8Bγ − 18Bγ 2 − 2Cγ [−1 + 9γ (1 + 2γ )],

τ ∗
3 = 1 + 2Aγ + 6Bγ 2 + 12Cγ 3,

(81)

where A, B, C and γ are defined below equation (69). The limiting form at small colloid
density is

c(2)
∗ (ηc → 0; r) =

{
−2(1 + q)3 + 3(1 + q)2x − x3, r < σc,

0, otherwise.
(82)

The colloid–polymer direct correlation function is given by

c(2)
cp (ηc, r) =




−(1 + γ )(1 + Aγ + 2Bγ 2 + 3Cγ 3), r < |Rc − Rp|
−(1 + γ )

∑
i

τcp,i x
i , |Rc − Rp| � r � |Rc + Rp|

0, otherwise,

(83)
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where the only non-vanishing coefficients are

τcp,−1 = −3γ

32
(1 − q)2[3 + q + 3γ (1 + q)]2,

τcp,0 = 1
2 {2 + γ [7 + 3γ (5 + 3γ ) + 9γ q2 + (1 + 3γ )2q3 + 3q(1 + q)]},

τcp,1 = −3γ

4
[5 + 3γ (4 + 3γ ) + 2q + 6γ q + (q + 3γ q)2],

τcp,3 = γ

2
(1 + 3γ )2.

(84)

In the limit ηc → 0 the colloid–polymer direct correlation function reduces to the colloid–
polymer Mayer function fcp(r), i.e.

c(2)
cp (ηc → 0; r) =

{
−1, r < Rc + Rp

0, otherwise.
(85)

Simpler expressions are obtained in the special case q = 1, where only a single length scale
is present, and one can use c(2)∗ = ∂

∂ηc
c(2)

hs (ηc; r) and c(2)
cp = c(2)

hs (ηc; r). It follows that

c(2)
∗ (ηc; r) = −�(σc − r)

(1 − ηc)5

∑
i

τ ∗
i x i , (86)

where the only non-vanishing coefficients are

τ ∗
0 = 4(2 + ηc)(1 + 2ηc),

τ ∗
1 = − 3

2 (2 + ηc)[2 + ηc(9 + ηc)],
τ ∗

3 = 1
2 (1 + 2ηc)[1 + ηc(9 + 2ηc)].

(87)

In order to illustrate the variation with r and ηc, we plot the various functions, for q = 0.6,
in figure 3. c(2)

hs (r) is shown in figure 3(a) with ηc in the range 0–0.4. This is the contribution to
c(2)

cc arising solely from the ‘bare’ colloids. The polymers generate an (additive) contribution
ηpc(2)∗ (r), where the function c(2)∗ (r), plotted in figure 3(b), has a similar form to c(2)

hs (r).
Changing the size ratio q does not dramatically alter the shape; it merely changes the vertical
scale of the plot. Finally, figure 3(c) shows c(2)

cp (r) for the same values of ηc. This function is
constant for r < |Rc − Rp| = 0.2σc and vanishes for r > |Rc + Rp| = 0.8σc, for the present
size ratio. All three functions become more negative in the core region as ηc is increased. Note
that the polymer density ηp only enters c(2)

cc through the linear dependence in equation (75).
Summarizing, we find it remarkable that the direct correlation functions for the AO model,

which is characterized by two thermodynamic variablesηc and ηp, can be described by relatively
simple analytic expressions and that all relevant information, for a given size ratio q , can be
condensed into as few as three plots.

3.4. Structure factors and criticality

The total pair correlation functions hi j (r) = gi j(r) − 1, where gi j(r) are pair correlation
functions, are related to the direct correlation functions c(2)

i j (r)via the mixture OZ relations [41].
These simplify in Fourier space:

hcc(k) = c(2)
cc (k) + ρp[(c(2)

cp (k))2 − c(2)
cc (k)c(2)

pp (k)]

D(k)
(88)

hpp(k) = c(2)
pp (k) + ρc[(c(2)

cp (k))2 − c(2)
cc (k)c(2)

pp (k)]

D(k)
(89)

hcp(k) = c(2)
cp (k)

D(k)
, (90)
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Figure 3. Pair direct correlation functions for ηc = 0, 0.1, 0.2, 0.3, 0.4 (from top to bottom)
obtained for the AO model with size ratio q = 0.6: (a) colloid contribution c(2)

hs (r) to c(2)
cc (r);

(b) polymer contribution c(2)∗ (r) to c(2)
cc (r); (c) full colloid–polymer direct correlation function

c(2)
cp (r). These results are obtained from equations (78), (80), (83).

where hi j(k) is the three-dimensional Fourier transform of hi j(r) and the common denominator
is given by

D(k) = [1 − ρcc(2)
cc (k)][1 − ρpc(2)

pp (k)] − ρcρp[c(2)
cp (k)]2. (91)

The corresponding partial structure factors Si j(k) then can be obtained via [41]

Si j (k) = δi j + (ρiρ j )
1/2hi j(k). (92)

It is sometimes useful to describe the like–like structure factors by means of the OZ relation

Sii (k) = 1/(1 − ρi c
(2),eff
ii (k)), (93)

that has the same formal structure as the OZ relation for a one-component system, and that
employs an effective direct correlation function given by

c(2),eff
ii (k) = c(2)

ii (k) +
ρ j c

(2)
i j (k)2

1 − ρ j c
(2)
j j (k)

. (94)

It is straightforward to show that equations (93) and (94) are completely equivalent to the
standard mixture formulation of equations (88)–(92). So far all is general but now we note
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that in the present approximation c(2)
pp = 0, see equation (77). This leads to rather simple

expressions for the effective direct correlation functions:

c(2),eff
cc (k) = c(2)

cc (k) + ρpc(2)
cp (k)2, (95)

c(2),eff
pp (k) = ρcc(2)

cp (k)2

1 − ρcc(2)
cc (k))

. (96)

In particular, equation (96) with (93) allows us to understand why Spp can be significantly
different from unity, the ideal gas result, even though c(2)

pp = 0. Results for Si j(k) and gi j(r)

were presented in an earlier letter [31]. We found that for q = 0.15, ηc = 0.3 and ηp = 0.05 all
three partial pair correlation functions were close to the corresponding PY results. The latter
were obtained numerically [8]. For q = 0.1, ηc = 0.25, ηp = 0.107 we compared our results
for Scc(k) and gcc(r) with those of simulation (for this small size ratio there is an exact mapping
to an effective one-component colloid system for which simulations are easily performed [5]).
The overall agreement was reasonable, although the structure factor was a little out of phase
and the results of the DFT strongly underestimated the very high contact value gcc(σc) and
violated (weakly) the core condition gcc(r) = 0, r < σc.

In the present study, we are concerned with less extreme size ratios where the effective
(depletion) potential between colloids is longer ranged and less deep near contact than the cases
investigated earlier and we expect the DFT to fare somewhat better. An important advantage
of the present DFT approach (over most integral equation theories) is that the thermodynamic
and structural routes to the spinodal, binodal and, therefore, the critical point are consistent.
In particular, the spinodal line, equation (73), can equally well be found by considering the
locus of divergence of Si j(k), i.e. the vanishing of D(k) in equation (91). This consistency is
especially important in the vicinity of the critical point.

The location of the critical point in the ηc, ηp,r plane can be obtained by tracing the
coexistence densities towards smallηp,r, but careful numerical work is needed to obtain accurate
results. In the present case, the critical point can be obtained in a simpler way: starting
from the spinodal in the system representation, equation (73), we switch to the reservoir
representation using equations (72), (69), and obtain the spinodal polymer reservoir density
as a function of colloid density, η

spin
p,r (ηc). As the critical point is at the minimum of this

function, finding the minimum is a stable and numerically trivial operation. For states slightly
removed from criticality we expect OZ behaviour: Si j (k) = Si j (0)/[1 + ξ2k2 + O(k4)], where
the correlation length ξ is the same for all pairs i j . This general result is a direct consequence
of the OZ relations for a mixture (88)–(90) and follows from the fact that D(k) is the common
denominator for all pairs, equation (91). As the Si j(k) are given analytically in the present
theory, we can confirm explicitly the OZ behaviour. We find that the common correlation length
diverges with the mean-field exponent ν = 1/2 and on a path at fixed ηc = ηcrit

c we define the
amplitude ξ0 via ξ = ξ0/(η

crit
p − ηp)

1/2. ξ0/σc depends only on the size ratio q . It is roughly
proportional to the mean of the colloid and polymer diameters and is conveniently expressed as
ξ0 = 1

2 (σc + σp)/K (q), where typical values are K (q) = 3.00, 2.36,
√

5, for q = 0.4, 0.8,∞,
respectively. Note that σp = 2Rp. Figure 4 displays the partial structure factors calculated for
q = 0.6 and a fixed value of ηc, equal to the critical point value ηcrit

c = 0.1843. Results are
presented for four values of ηp,r , corresponding to the critical ‘isochore’ in figure 1(a). For
ηp,r = 0 (no polymer) Scc(k) is simply the (PY) HS structure factor for ηc = 0.1843. Upon
increasing ηp,r , Scc(k) develops a maximum at k = 0, OZ behaviour ensues and then, at the
critical value ηcrit

p,r = 0.4943, Scc(0) → +∞. Spp(k) has a somewhat different variation. This
function develops its leading maximum at k = 0 for very small polymer fractions and Spp(0)

is very large even for ηp,r = 0.36, well away from the critical point. As ηp,r → ηcrit
p,r , Spp(0)
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Figure 4. Partial structure factors Scc, Scp, Spp for size ratio q = 0.6 at fixed colloid fraction
ηc = ηcrit

c = 0.1843, and increasing (indicated by arrows) polymer reservoir density ηp,r =
0, 0.2, 0.36, ηcrit

p,r = 0.4943. On approaching the critical point, along a vertical path in the phase
diagram of figure 1(a), Scc(k) and Spp(k) become increasingly positive and Scp(k) increasingly
negative at small wavenumbers k. Note that for ηp,r = 0, Scc(k) corresponds to the pure HS
structure factor.

diverges in the same fashion as Scc(0). By contrast, Scp(0) becomes increasingly negative and
diverges to −∞ on approaching the critical point. Similar features are found for other size
ratios.

The form of Spp(k) is particularly striking and has repercussions for the distribution of
polymer in the mixture. Note that similar shapes of Spp(k) were found in PY calculations [7, 8]
for the AO mixture.

3.5. Asymptotic decay of correlations: Fisher–Widom line

The pair correlation functions gi j(r) should exhibit qualitatively different asymptotic decay
at different points in the phase diagram. In the neighbourhood of the critical point gi j(r) will
decay monotonically, as befits OZ behaviour, whereas for small values of ηp,r the mixture is
HS-like and the gi j(r) should exhibit damped oscillatory decay as r → ∞. Thus upon varying
the thermodynamic parameters ηp,r and ηc the ultimate decay of gi j(r) should change from
being oscillatory to purely monotonic [42–45]. The line in the phase diagram separating the two
types of decay is termed the FW line [42] after the authors who introduced the concept. This
is not a line of thermodynamic singularity. Rather it indicates crossover to different structural
regimes. Although the FW line is defined by considering the decay of bulk pair correlation
functions, it plays a key role in inhomogeneous situations since the asymptotic decay into bulk
of one-body density profiles is determined by the same physical considerations. Thus it is
relevant for several interfacial phenomena [32, 43, 44, 46].

In order to calculate the FW line, we again exploit the fact that our partial structure factors
are given analytically. Since the asymptotic decay of gi j(r) is determined by the singularities of
the Si j(k) in the complex plane our strategy is to trace the locations of these. We denote these
singularities k = a1 + ia0. Oscillatory behaviour, hi j (r → ∞) ∝ cos(a1r) exp(−a0r)/r ,
stems from poles with non-zero real part a1, whereas monotonic behaviour, h(r → ∞) ∝
exp(−a0r)/r , stems from poles residing on the imaginary axis, a1 = 0. The ultimate decay
is governed by the pole with the smallest imaginary part a0 [44]. We obtain the location of
the singularities by finding the roots of 1/|Si j(k)| = 0 numerically, taking appropriate starting
values. This is equivalent to finding the zeros of D(k), equation (91), in the complex plane.
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Figure 5. FW lines for size ratios q = 0.4, 0.6, 0.8, 1 plotted in scaled variables. The FW lines
are denoted by solid curves; the dotted extensions are metastable, i.e. they lie inside the binodal.
The intersections of the FW lines and the binodal are crosses joined by a dashed curve. (a) Scaled
reservoir representation with ηc/η

crit
c and ηp,r/η

crit
p,r ; (b) scaled system representation with ηc/η

crit
c

and ηp/η
crit
p . For each q, increasing ηp,r or ηp at fixed ηc leads to crossover from monotonic to

oscillatory decay at the FW line.

Note that all partial structure factors possess the same singularities, because of the common
denominator D(k). That is why all the hi j(r) exhibit the same exponential decay length a−1

0
and, when oscillatory, the same wavelength 2π/a1, and why there is a single FW line that
characterizes the crossover in a mixture. In practice we chose Scc(k) and calculated the pole
with the smallest a0 residing on the imaginary axis and also the pole with the smallest a0 but
with a1 > 0. At fixed ηc, we varied ηp until the imaginary parts a0 of both poles were identical,
giving a point on the FW line. Following this procedure for all ηc maps out the complete FW
line for a given size ratio. In figure 1 we plot the FW line for q = 0.6 in both the reservoir and
system representations. The FW line intersects the binodal on the colloid-rich side (liquid) and
is bounded at high ηp,r by the liquid spinodal. For this size ratio the overall shape and location
of the FW line appears similar to that found [43, 45] for simple fluids, whose interatomic pair
potential is of finite range and which exhibit liquid–gas phase separation, once we recall that
ηp,r is equivalent to inverse temperature. Figure 2 displays the intersection of the FW line with
the binodal for several values of size ratio q . As q increases the intersection occurs further
from the critical point, exposing a larger range of monotonic decay along the liquid side of the
binodal. In figure 5 we plot the FW lines in terms of the scaled variables ηc/η

crit
c and ηp,r/η

crit
p,r

(or ηp/η
crit
p ) for four values of q . As q increases we observe that a larger portion of the scaled

phase diagram lies on the monotonic side of the FW line. For q = 0.4 the FW line lies just
below the critical point and most of the single-phase portion of the scaled phase diagram now
falls on the oscillatory side. This might reflect the fact that for q = 0.4 (and smaller values of q)
the FW line exhibits a minimum when plotted in the reservoir representation, figure 5(a). The
presence of the minimum implies that on increasing ηc at an appropriate fixed ηp,r the decay of
correlation functions should change from monotonic to oscillatory to monotonic and, finally,
to oscillatory. Whether such behaviour reflects the fact that the fluid–fluid phase separation
should be close to becoming metastable (w.r.t. fluid–solid) for these small values of q can only
be ascertained by more sophisticated treatments. What is probably more relevant for a real
colloid–polymer mixture is figure 5(b) which shows that in the system representation there
is a maximum in the FW line for all four values of q . Thus increasing ηc at a sufficiently
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Figure 6. Absolute value of the colloid–colloid structure factor |Scc| in the complex plane for size
ratio q = 0.6 at fixed colloid fraction ηc = ηcrit

c = 0.1843, and four values of polymer reservoir
density ηp,r : (a) pure HS, ηp,r = 0 (ηp = 0); (b) ηp,r = 0.2 (ηp = 0.07161) in the oscillatory
regime; (c) on the FW line, ηp,r = 0.36 (ηp = 0.1290); (d) at the critical point, ηp,r = 0.4943
(ηp = 0.1770). Arrows indicate the (smallest) purely imaginary pole. This pole lies at the origin
in (d). Bright (dark) colour indicates large (small) values. Note that these statepoints are the same
as in figure 4.

small fixed polymer fraction ηp should lead to crossover from monotonic to oscillatory back
to monotonic decay of correlations (see also figure 1(b)). Finally, we remark that in the limit
ηp,r → 0, the FW line smoothly approaches the origin, ηc = 0. This is to be expected, since
for pure HS g(r) exhibits oscillatory decay for all non-zero values of the packing fraction.
Such behaviour is equivalent to that found for simple fluids in the limit T → ∞ [45]. We
can summarize and visualize much of what is described in this subsection by analysing the
behaviour of the structure factors in the complex plane, and in figure 6 we report results for
|Scc(k)| with q = 0.6, taken along the same critical ‘isochore’, ηc = ηcrit

c , as in figure 4.
Pure HS (figure 6(a)) do not possess a pole on the imaginary axis so the two maxima

correspond to complex poles; the dominant one corresponds to a1σc ∼ 2π . Upon increasing
the polymer reservoir density to ηp,r = 0.2 (figure 6(b)), a pole appears on the imaginary
axis and this moves downwards with ηp,r, until its value equals that of the imaginary part of
the neighbouring complex pole (figure 6(c)) defining a point on the FW line. At the critical
point, the pole on the imaginary axis reaches the origin (figure 6(d)). This pole leads to the
divergence of the physical structure factors, Si j(k → 0), at the critical point. Figure 4 displays
the physical structure factors at the same statepoints.

3.6. Effective interaction between colloids: depletion potential

In their original study Asakura and Oosawa [1] determined the effective potential, VAO(r; zp),
between two HS colloids (or macroparticles) in a sea of ideal polymer of fugacity zp. Their
celebrated potential is attractive in the range 2Rc < r < 2(Rc + Rp) and vanishes for larger
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separations r . The attraction arises from the depletion effect whereby polymer is excluded
or depleted from the region between the colloids when the separation of their surfaces is
<2Rp. More formally, VAO describes the two-body contribution to the effective one-component
Hamiltonian, H eff , obtained by integrating out the polymer degrees of freedom in the binary
AO mixture. For a homogeneous system H eff is given by [5]

β H eff({Ri}; zp) = V zp(−1 + ηc(1 + q)3) + β
∑
i< j

VAO(|Ri − R j |; zp) + higher body terms,

(97)

where the first term is independent of the colloid coordinates {Ri}. The pair potential is

βVAO({Ri}; zp) = βVcc(|Ri − R j |) − zp

∫
d3r fcp(Ri − r) fcp(R j − r), (98)

where Vcc is the direct colloid–colloid (HS) interaction and fcp is the colloid–polymer Mayer
function. The second term in equation (98) is called the depletion potential. Another
interpretation of VAO comes from considering the pair correlation functions gi j(r) in a dilute
(in colloid) binary AO mixture. In the limit ηc → 0, gcc(r) ≈ exp(−βVAO(r; zp)).

Clearly, any exact treatment of the mixture should yield this exact result. Note that
this is equivalent to requiring the effective colloid–colloid direct correlation function, see
equation (94), to reduce to

c(2),eff
cc (r) ≈ exp(−βVAO(r; zp)) − 1 (99)

for ηc → 0. It is well known that the PY closure for the AO mixture (and, indeed, for
highly asymmetric HS mixtures where VAO should be replaced by the HS depletion potential)
does not yield the correct limiting behaviour. Rather one finds that for low colloid fractions
gcc(r) ∼ 1 − βVAO(r; zp) for r > 2Rc, which implies the PY results for the contact value
gcc(2R+

c ) are too small [8, 47, 48]. Given that our present DFT bears a close resemblance to
the PY approximation we might expect to observe similar failings [31]. The advantage here is
that we have explicit, analytic results for c(2)

i j so it is straightforward to analyse the behaviour
of correlations in the low ηc limit. From equations (75), (78), (80), (82) we can ascertain
the limiting behaviour of c(2),eff

cc (r) given by the Fourier transform of equation (95). Since
c(2)

cc (ηp; r) = 0 for r > 2Rc and c(2)
cp (ηc → 0; r) = fcp(r) it follows that DFT predicts, for

ηc → 0,

c(2),eff
cc (r) = −βVAO(r; zp), r > 2Rc, (100)

where we used the fact that zp = ρp,r = ρp in the limit ηc → 0. Thus our DFT does not yield
the exact limiting result (99); the latter only reduces to (100) in the limit zp → 0. The present
approach, via the OZ route to the pair correlation functions, suffers from the same failing as
the PY approximation. Clearly both approximation schemes fail to incorporate the physical
ingredients which are required to exponentiate −βVAO.

However, we must not infer that the present DFT fails to incorporate the depletion effect
which is, after all, the crucial feature of colloid–polymer mixtures. We have already seen in
section 3.1 that the bulk free energy of the mixture acquires an attractive contribution; this
contribution can only arise from the depletion effect. Moreover, the theory does generate an
attractive contribution in c(2),eff

cc , equation (100), albeit one that is too weak.
Within DFT the OZ route is not the only one to pair correlation functions. The alternative

is the test particle route, whereby one fixes a particle of species i at the origin and determines
the inhomogeneous one-body density profile ρ j (r) arising from the external potential Vi j(r)

exerted by the fixed particle. It follows that gi j(r) = ρ j(r)/ρ j (∞). In applying the test
particle prescription one solves the Euler–Lagrange equations for the one-body densities so all
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that is required are the one-body direct correlation functions c(1)

i (r); these involve only a first
derivative of Fexc, see equation (60). One can show that in the limit ηc → 0, the test particle
route for the present DFT yields the exact result gcc(r) ≈ exp(−βVAO(r; zp)). An instructive
way of obtaining this result is to implement the procedure developed by Roth et al [38] for
calculating the depletion potential. The latter is given by

−βVdep(r; zp) = lim
zc→0

[c(1)
c (r) − c(1)

c (∞)], (101)

where c(1)
c (r) refers to the situation where a colloid, fixed at the origin, exerts its field on the

polymer and on a (test) colloid inserted at r [38]. c(1)
c (r) is easily calculated for the present

DFT (the calculation mimics that for the binary HS functional given in [38]) and in the limit
where the colloid density vanishes we find that βVdep is proportional to the convolution of two
Mayer functions, i.e. it reduces precisely to the second term in equation (98). That the analysis
can be performed analytically and the result is much simpler than that for HS mixtures simply
reflects the fact that fpp(r) = 0 in the AO model.

With hindsight it is, perhaps, not too surprising that geometrically based DFT should
describe correctly the depletion potential; the latter is merely a manifestation of excluded
volume effects. Nevertheless, this excercise does indicate that the test particle route to gcc(r)

is likely to be much more accurate than the OZ route, especially for situations where ηc is low
and ηp,r is high so that the depletion potential is strongly attractive and contact values gcc(2R+

c )

are very large. The test particle route also has the advantage that it guarantees that gcc(r) = 0
for r < 2Rc and gcp(r) = 0 for r < Rc + Rp.

4. Discussion

We have derived a DFT for the binary AO mixture based on geometrical information about
the hard and ideal spheres which constitute the AO model. Our FMT approach follows the
strategy which was employed successfully for other model systems. Imposing the correct
dimensional crossover on the functional, section 2, appears to provide a systematic procedure
for deriving approximate DFTs. Whether the procedure can be implemented explicitly depends
on the particular model. In the present case, as for penetrable spheres [25], the Widom–
Rowlinson model [26], a needle–sphere model [28], a model amphiphilic mixture [29] and a
ternary mixture of colloids, polymers and needles [30], the procedure is tractable and leads
to a relatively simple functional. An alternative derivation, section 2.6, which corresponds to
linearizing the Rosenfeld functional for a binary HS system w.r.t. the density of one of the
species, yielded the identical functional. Multi-component mixtures can also be treated by
our procedures. For example, if a three-component mixture of HS of two different sizes plus
polymer were required one would take the Rosenfeld HS functional for a ternary mixture of
HS and linearize in one of the densities which is then identified as (ideal) polymer. Similarly,
if a three-component mixture of HS plus two polymer species were required one would simply
linearize the ternary HS functional w.r.t. two densities. The corresponding functionals are again
identical to those obtained from application of the recipe outlined in section 2.4, where the
generating zero-dimensional free energy F0d is replaced by that for the corresponding ternary
mixture. In fact the free energy for the ternary system is simply equation (14) with colloid
(polymer) packing fraction replaced by the sum of packing fractions of colloid (polymer)
species. In section 2.7 we described the concept of integrating out degrees of freedom within
the context of DFT. The present functional affords a valuable example because the Euler–
Lagrange equations decouple in this case and c(1)

p (r) is a functional of the colloid profile
alone. It is important to emphasize, however, that the mapping to an effective one-component
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fluid of colloids that is implicit within the approximate DFT treatment is not equivalent to
that which is obtained by an explicit and exact integrating out of polymer coordinates in the
partition function. Recall that this latter route yields an effective Hamiltonian containing only
one- and two-body contributions when q < 0.1547. This particular size ratio has no special
significance within our approximate DFT.

Our present paper focuses on the properties of bulk fluid phases. We found that the
bulk free energy of the AO mixture is identical to that derived from the free-volume theory of
Lekkerkerker et al [4] and we pointed out some of the connections between the two approaches
(see section 3.1), emphasizing that both impose linearity of the free energy in the polymer
density. Since the two theories yield the same free energy, they predict identical fluid–fluid
phase separation, i.e. the same binodal and spinodal. The latter can be determined analytically
from equation (73), which is particularly useful for critical point studies. How accurate is the
free-volume theory for the phase separation curve? When we completed our paper there were
no systematic studies of the full binary AO model for the range of size ratios q where fluid–
fluid phase separation occurs. Published studies consider either the effective one-component
Hamiltonian (97) keeping only pair potential [5], which is strictly valid for q < 0.1547, or
a lattice polymer version [6]. It is well known that treating highly asymmetric mixtures by
brute force simulation is beset by ergodicity problems and slow equilibration when the packing
fraction of the smaller species is large. A new study by Dijkstra [47] indicates that for q = 1
the fluid–fluid binodal does lie rather close to the free-volume result. This also seems to be
the case for other values of q [50] and the current indications are that free-volume theory (and,
therefore, our present DFT) does provide a reasonable account of the location of the fluid–fluid
binodal in the ηc, ηp,r plane for those values of q(> 0.35) where fluid–fluid phase separation
is stable w.r.t. fluid–solid. We have not considered solid phases in the present study. These
could be investigated within the framework of the present DFT which would enable us to
calculate the full phase diagram. Existing studies [4, 5] based on free-volume ideas employ
the expression of Hall [49] for the Helmholtz free-energy density of the HS solid entering
equation (71) and the same expression for the free-volume fraction α(ρc) as used for fluid
phases. It would be interesting to compare DFT predictions for the (rich) fluid–solid phase
equilibria in this model with those from other approximate theories and with simulation. Note
that the tensor contribution, which depends on the weight function ŵi

m2(r), entering �3 in
equation (31) is crucially important for the inhomogeneous solid phase [21, 22] but makes no
contribution to the free energy of a homogeneous fluid phase.

An important feature of our present DFT is that pair correlation functions of the bulk fluid
can be obtained very easily via the OZ route (sections 3.3 and 3.4). Thus the theory is much
easier to implement than the PY integral equation theory for the AO mixture which can only
be solved numerically [7, 8]. The pair direct correlation functions and the partial structure
factors Si j (k) are given analytically, as is the case in the PY approximation for HS mixtures.
What is remarkable here is that the AO mixture exhibits pure entropically driven fluid–fluid
phase separation so that the Si j(k) display a divergence at a spinodal line which is identical
to that obtained from the bulk free energy. This type of consistency is, of course, a direct
consequence of the DFT approach. Having analytical results for the Si j(k) also enabled us
to obtain directly the FW line (section 3.5), describing the line of crossover from monotonic
to oscillatory asymptotic decay of the total pair correlation functions hi j(r). To the best of
our knowledge this is the first time the FW line has been investigated in detail for this type
of system. One intriguing feature, which warrants further attention, is the nature and location
of the FW line as q becomes smaller and the fluid–fluid critical point shifts to lower ηp and
higher ηc (figure 2). For q = 0.4 the monotonic regime, where hi j(r) exhibit OZ-like decay
at large r , is restricted to a narrow portion of the phase diagram near the critical point—see
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figure 5. This might be a structural indicator that the fluid–fluid phase separation is becoming
metastable w.r.t. fluid–solid.

We expect the accuracy of the hi j(r) and Si j(k) obtained from the OZ route to be
comparable with that of the PY approximation for the AO mixture. As remarked in section 3.6,
both approximations fail to reproduce the correct limiting behaviour of gcc(r) as ηc → 0.
This is particularly significant for small size ratios at states with low ηc and high values of
ηp,r where the depletion potential is very deep and very short ranged. Neither PY nor the
present theory can be expected to yield accurate pair correlation functions in this regime. The
DFT has the additional drawback of not enforcing the core conditions gcc(r < 2Rc) = 0
and gcp(r < Rc + Rp) = 0. These core conditions constitute implicit (hidden) constraints
when viewed from the perspective of taking functional derivatives to obtain c(2)

i j (r) and then
inverting to obtain gi j(r). In principle, one might exploit the core conditions in order to
derive (more sophisticated) approximations for the free-energy functional. In practice, such a
procedure would be extremely difficult to implement. (In this context it appears remarkable
that Rosenfeld’s HS functional does yield gi j(r) that fulfill the core conditions. Of course, it is
by virtue of the fact that the c(2)

i j generated from the Rosenfeld functional are those of PY that
the resulting gi j(r) do satisfy the core condition.) DFT provides an alternative route to gi j(r),
namely the test-particle procedure, and we have argued that this is likely to yield significantly
better results than the OZ route, especially for situations where the depletion attraction is very
strong. Once again systematic comparisons with simulation results are required in order to
assess further the degree of consistency and, therefore, the reliability of the DFT. Note that the
OZ and test particle routes do yield identical results for the decay length a−1

0 and wavelength
2π/a1, characterizing the asymptotic decay of the pair correlation functions. It follows that
the FW lines calculated from both routes are identical.

The experience gleaned from the present study of bulk properties gives us confidence in
applying our DFT to inhomogeneous fluids where the spatial variation of the density profiles
arises from the imposition of external fields. Since the DFT incorporates fluid–fluid phase
separation it has been applied [9, 32] to

(i) the planar interface between coexisting colloid-rich and colloid-poor phases—the density
profiles of both colloid and polymer exhibit oscillations on the colloid-rich (liquid) side
of the interface provided the bulk liquid lies on the oscillatory side of the FW line—and

(ii) the study of wetting phenomena for the mixture adsorbed at a hard wall. The interface
between the wall and the colloid-poor phase is partially wetted by the colloid-rich phase
at high ηp,r but is completely wet at low ηp,r (> ηcrit

p,r ).

A novel sequence of layering transitions accompanies the transition to complete wetting. It was
argued [32] that the surface phase behaviour reflects the presence of many-body contributions
to the effective one-component Hamiltonian for the colloids. Such contributions are included
implicitly in the DFT. Other adsorption problems which can be tackled by our DFT include
possible wall-induced crystallization (depletion at a hard wall leads to a very high contact
density for colloids [13]) and wetting of the wall–fluid interface by the crystalline phase.
Mixtures confined by planar walls or in other geometries are readily tackled which means that
phenomena such as capillary condensation can be investigated in detail. Sedimentation in a
gravitational field, behaviour in laser fields and the properties of solid–fluid interfaces are also
topics ripe for investigation.
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Appendix A. Weight functions in Fourier space

For completeness we list the (three-dimensional) Fourier transforms of the first six weight
functions listed in equations (17)–(22):

wi
3(k) = −4π

k3
[k Ri cos(k Ri ) − sin(k Ri)], (A.1)

wi
2(k) = 4π Ri

k
sin(k Ri), (A.2)

wi
1(k) = sin(k Ri )

k
, (A.3)

wi
0(k) = sin(k Ri )

Ri k
, (A.4)

wi
v2(k) = 4π

k2
[k Ri cos(k Ri ) − sin(k Ri)]

k

k
, (A.5)

wi
v1(k) = k Ri cos(k Ri) − sin(k Ri )

k2 Ri

k

k
, (A.6)

where k = |k|.

Appendix B. Density functional in two dimensions

In the following we present the DF for the two-dimensional AO model obtained from the route
described in section 2.6 starting from the two-dimensional Rosenfeld hard disc functional
(see e.g. [20]). The excess free energy Fexc has the general structure, equation (15) of a
two-dimensional integral over a free-energy density. The weighted densities are obtained by
two-dimensional convolutions

ni
ν(x) =

∫
d2r ρi (r)wi

ν(x − r), (B.1)

of the four two-dimensional weight functions

wi
d(r) = �(Ri − r), (B.2)

wi
1(r) = δ(Ri − r), (B.3)

wi
v1(r) = δ(Ri − r)r/r, (B.4)

wi
0(r) = δ(Ri − r)/(2πr), (B.5)

where r in equations (B.2)–(B.5) denotes the two-dimensional position vector. The free-energy
density is

� = −(nc
0 + np

0) ln(1 − nc
d) +

nc
0np

d

1 − nc
d

+
nc

1nc
1 − nc

v1 · nc
v1

4π

[
1

1 − nc
d

+
np

d

(1 − nc
d)

2

]

+
np

1nc
1 − n

p
v1 · nc

v1

2π(1 − nc
d)

. (B.6)
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