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Abstract. – We examine the phase behavior of star-polymer–colloid mixtures for star-to-
colloid size ratios smaller than unity, by employing recently derived effective interactions be-
tween the constituent particles. Tuning the arm number of the star-polymers provides a natural
bridge between the well-known borderline models of colloid-polymer and binary hard-sphere
mixtures. By canonically tracing out the star-polymers, we derive accurate effective depletion
potentials between the colloids and examine the stability of the demixing transition with re-
spect to the crystallization of the colloids. We find that the former is metastable with respect
to freezing for arm numbers f � 10 at all size ratios.

Introduction. – Typical soft-matter systems are always found in solution and in the form
of multicomponent mixtures. Two of the most common models of this type, that have received
a lot of attention recently, are mixtures of hard spheres (colloids) and free, nonadsorbing chains
on the one hand, and the binary hard-sphere mixture (BHS) of two species with a variable
size ratio on the other. The theoretical investigations of the colloid-polymer (CP) mixture
have been based mostly on the Asakura-Oosawa (AO) model [1,2], in which the polymers are
figured as penetrable spheres experiencing in addition a hard-sphere (HS) interaction with the
colloids. A number of theoretical investigations on the AO model [3–6] have revealed that the
system displays a demixing transition which accompanies the usual crystallization transition
of the hard colloids. However, the former becomes metastable with respect to the latter
for polymer-to-colloid size ratios q ≤ qc

∼= 0.45 [5]. Hence, for size ratios q > qc, the system
displays three phases: a colloid-poor/polymer-rich and colloid-rich/polymer-poor fluid, as well
as a solid phase, in which the colloids form a fcc-crystalline arrangement with the polymers
diffusing freely in it. However, for q < qc, only a single, mixed fluid and a crystal phase exist.
These findings are in semi-quantitative agreement with experimental results [7]. In the BHS
system, the first indication of a demixing transition in the fluid phase was offered in the work
of Biben and Hansen [8]. The issue of the stability of this transition remained open for quite a
while; recent simulations [9] established that a BHS mixture does not phase-separate because
either the demixing transition in the fluid phase is metastable with respect to crystallization
or it is completely absent, depending on the size ratio [10].

A theoretical understanding of these features is provided by the so-called depletion potential
that effectively acts between the larger components of the mixture when the smaller ones are
thermodynamically traced out [11]. The general mechanism of depletion arises from the fact
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that the small components have more free space available to them when two large particles are
brought close to contact than when they are far apart. Consequently, an entropic attraction
appears between the colloids. The effective interactions arising in the AO model are purely
attractive; in the BHS case, correlation effects cause the depletion potential to develop also
repulsive parts and an oscillatory behavior [12, 13]. Hence, free polymers are more efficient
depleting agents for hard spheres than smaller hard spheres themselves.

In this paper, we provide a bridge between these two extremes: we consider star-polymers
with a number f of polymer chains attached on a common center as depleting agents between
hard spheres. The arm number or functionality f turns out to be the physical parameter
that controls the polymer-polymer interaction, so that for small f we obtain the limiting
CP case and for large f the BHS case. Starting from a full, two-component description of
the model in terms of effective interactions, we derive depletion potentials between the hard
spheres, mediated by the stars, and trace out the phase diagrams of the mixture for various
combinations of functionalities and size ratios. We find that already above f ∼= 10, the generic
behavior of the BHS model with an absence of a demixing transition is reached.

The model and the depletion potential. – Our system consists of Nc colloidal hard spheres
and Ns star-polymers enclosed in the macroscopic volume V , defining in this way the partial
densities ρc = Nc/V and ρs = Ns/V . The colloids have diameter σc and interact by means of
the HS interaction, Vcc(r) = ∞ for r < σc and 0 otherwise. The star-polymers are character-
ized experimentally by their radius of gyration Rg which is directly measurable in small-angle
neutron scattering (SANS) experiments [14]. Accordingly, we define the size ratio of the two
components as q ≡ σg/σc, with the diameter of gyration σg = 2Rg of the stars. For the
theoretical description of the various effective interactions, it turns out to be more convenient
to introduce a different length scale, the so-called corona diameter σs of the stars. It was
shown that regardless of the functionality f , the relation σs

∼= 0.66σg is satisfied [15,16]. We
introduce thereby the packing fractions ηc = (π/6)ρcσ

3
c and ηs = (π/6)ρsσ

3
g of the colloids

and the stars.
The effective interaction Vss(r) between two star-polymers whose centers are held at dis-

tance r apart results after a canonical trace of the monomer degrees of freedom. In good
solvent conditions, the form of this interaction for f � 10 was derived by theoretical scaling
arguments and was confirmed by comparison with SANS data [17] and simulation [15]. It
reads as
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with Boltzmann’s constant kB and the absolute temperature T ; β = (kBT )−1 from now
on. Many-body forces [18] were shown to become significant only above the star overlap den-
sity [19], thus we omit them here and use the density-independent corona diameter σs. Recent
simulations for small arm numbers, f � 10, revealed that in this case the Yukawa-type decay
of the interaction must be replaced by a Gaussian form, whereas the logarithmic repulsion for
overlapping stars remains [16]. Hence, for f � 10, the star-star interaction reads as
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Table I – The numerical values of the parameters appearing in the interactions of eqs. (2) and (3),
as obtained by comparison with simulations [16, 20].

f Λ(f) κσs τσs

2 0.46 0.58 1.03

6 0.34 0.73 1.14

32 0.24 0.84 –

Here, τ(f) is a free parameter of the order of 1/Rg and is obtained by fitting to computer
simulation results [16,20], see table I. From eqs. (1) and (2), it can be seen that the function-
ality f tunes the hardness of the logarithmic repulsion: in the limit f → ∞, eq. (1) yields a
HS repulsion between the stars. On the other hand, the free polymer chains can be thought
of as star-polymers with f = 2, in which the central monomer plays the role of the star cen-
ter. There, eq. (2) yields an ultrasoft logarithmic-Gaussian interaction akin to the effective
Gaussian potential acting between the centers of mass of free polymer chains [21]. Finally,
the cross-interaction Vsc(r) is given in analytical form for q � 0.7 and reads as [16]

Vsc(r) = ΛkBTf3/2 σc
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where z = r − σc/2 is the distance from the center of the star-polymer to the surface of the
colloid. The constants are ξ1 = 1/(1 + 2κ2σ2

s ) and ξ2 =
√

πξ1
κσs

exp[κ2σ2
s ][1 − erf(κσs)]. Λ(f)

and κ(f) are fit parameters, obtained from computer simulations: κ is in order of 1/σg, and
Λ(f) of order unity, see the values in table I. Geometrical arguments yield a limit Λ∞ = 5/36
for f � 1 [16].

In ref. [20], the above-mentioned interactions were used in a two-component description of
the mixture in order to calculate the demixing binodals. The good agreement with associated
experimental results obtained there, offers additional corroboration of the accuracy of the
effective interactions. A question that has not been addressed to-date is the stability of
demixing with respect to the crystallization of the colloids. A full, two-component study
of this question is however very cumbersome and, indeed, impossible with the theoretical
techniques available. Instead of resorting to a potentially expensive simulation of the two-
component system, we employ here an equivalent but much more straightforward procedure:
we derive effective depletion potentials between the colloids by tracing out the star-polymers
and treat thereafter the mixture as an effective one-component system.

The general formalism as well as the rules to derive the depletion interaction were laid out
in detail in refs. [5] and [9]. Following these authors, we introduce an auxiliary reservoir of
star-polymers which is in thermodynamic coexistence with the star-colloid mixtures through
a membrane that allows the passage of stars but not of colloids. It follows that the chemical
potentials of the stars in the reservoir, µr

s, and in the mixture, µs, must be equal. Clearly,
this implies that the packing fractions in the reservoir, ηr

s and ηs, are not the same. In the
semigrand ensemble, our mixture is characterized by the pair (ηc, µs) = (ηc, µ

r
s). The effective

pair depletion potential between the colloids in this mixture is then identical to the pair
potential arising when two single colloids are put in the reservoir with µr

s = µs [5, 9]. Thus,
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Fig. 1 – The depletion forces for different functionalities f and size ratios q. (a) f = 2; (b) f = 6;
(c) f = 32. The symbols denote simulation results, the solid lines the force resulting from the inversion
of the RY closure and the broken lines the results of the superposition approximation. The denoted
values of the reservoir star-polymer packing fractions, ηr

s , were chosen to be close to the demixing
critical point in the fluid phase.

it is possible to derive depletion potentials by taking the limit ηc → 0 in a two-component
mixture. The procedure generates inadvertently higher-order forces between the colloids [5,9].
As shown in refs. [5, 9], however, these play only a minor role, thus we truncate the series at
the pair potential level. As there is a one-to-one correspondence between µr

s and ηr
s that can

be obtained by considering the pure star-polymer system, in what follows we work with the
reservoir packing fraction ηr

s.
By definition, the depletion potential Vdep(r; ηr

s) is associated with the radial distribution
function of the colloids, gcc(r; ηc, η

r
s) in the low-colloid density limit through [22]

βVdep(r; ηr
s) = − lim

ηc−→0
ln

[
gcc(r; ηc, η

r
s)

]
. (4)

We have solved the Rogers-Young (RY) closure [23] for a two-component system, using a single
consistency parameter to ensure equality of the “virial” and “fluctuation” compressibilities.
Taking the limit ηc → 0, we used eq. (4) to obtain depletion potentials. An alternative
approach is to employ the so-called superposition approximation (SA) [24], in which the density
profile of the stars induced by the presence of two colloids at separation r is approximated by
the product of the two star-density profiles surrounding a single colloidal sphere. The latter is
proportional to the star-colloid radial distribution function, limηc→0 gsc(r; ηc, η

r
s), also readily

available from the solution of the RY closure.
To test these approximations, we also performed standard NV T Monte Carlo computer

simulations placing two colloids in a reservoir of stars and measuring the expectation value of
the depletion force 	Fdep(r) = −	∇Vdep(r). The results are shown in fig. 1. The inversion of the
RY closure yields excellent agreement with simulation and that the SA is in semi-quantitative
agreement with simulation but clearly inferior to the RY inversion procedure. For the case
f = 2 we obtain forces that are almost purely attractive, a feature very similar to the AO
model; there exists, however, a tiny repulsive part that can be discerned for the case q = 0.6.
As f grows, oscillations in the depletion force start to appear, stemming from the increased
repulsions and more pronounced correlations between the stars. This is a feature similar to
the depletion potential arising in the BHS system [13]. This feature is most pronounced for
the case f = 32, see fig. 1(c). There, it can also be seen that the discrepancies between the
SA and the simulation result become significant: the depth of the depletion force at contact
and the phase of the oscillations are not reproduced correctly by the SA; the RY inversion
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Fig. 2 – The phase diagrams of star-polymer–colloid mixtures for size ratio q = 0.5 and different star
functionalities. (a) f = 2; (b) f = 6; (c) f = 32. The solid lines denote stable phase transitions and
the broken ones metastable demixing binodals. For f = 2 the demixing transition in the fluid phase
is stable, resulting in three distinct phases: gas (G), liquid (L) and solid (S). For f = 6 and f = 32
the freezing transition preempts demixing, resulting in two stable phases: fluid (F) and solid (S).

remains reliable, though. Hence, we have employed in what follows the depletion potentials
obtained from the latter procedure.

Phase diagrams. – We now employ the effective one-component picture in order to draw
the phase diagram of the system in the (ηc, η

r
s)-plane for different (f, q)-combinations. An ac-

curate but computationally expensive way to calculate the Helmholtz free energy F (Nc, V, ηr
s)

is to perform thermodynamical integration by MC simulation, using the hard-sphere system
as reference [5, 9]:

F (Nc, V, ηr
s) = F0(Nc, V, ηr

s = 0) +
∫ 1

0

dλ

〈
Ns∑
i<j

Vdep(r)

〉
Nc,V,ηr

s ,λ

, (5)

while using an auxiliary effective interaction V λ
eff(r) between the star-polymers and colloids:

V λ
eff(r) = Vcc(r) + λVdep(r). (6)

Here, 0 ≤ λ ≤ 1 is a coupling parameter interpolating between the hard-sphere reference
interaction (λ = 0) and the effective potential Veff(r). For the free energy of the hard-sphere
reference system F0(Nc, V, ηr

s = 0), we use the Carnahan-Starling expressions [25] for the fluid
and the equation of state proposed by Hall [26] for the solid phase. The calculation for every
point on the free energy curve was performed with Ns = 108 particles starting with a face-
centered-cubic (fcc) configuration. After fitting polynomials to f = F/V a common tangent
construction was employed to obtain the coexistence points.

Alternatively, we have also employed a simple first-order perturbation theory based on the
Gibbs-Bogolyubov inequality. The reference potential is the HS interaction. The Helmholtz
free energy of the perturbed system in first order is given by [22]

βF

N
=

βF0

N
+

1
2
βρ

∫
d3r g0(r)Vdep(r), (7)

where F0 and g0(r) are the free energy and radial pair correlation function of the reference
system. For the pair distribution functions g0(r) we employ the expressions of Verlet and
Weis [27] for the fluid phase and Kincaid and Weis [28] for the solid. In comparing the results



138 EUROPHYSICS LETTERS

0 0.25 0.5 0.75
ηc

0.0

0.2

0.4

0.6

0.8

1.0

ηs

r

G L S

(a)

0 0.25 0.5 0.75
ηc

0.0

0.2

0.4

0.6

ηs

r

(b)

G L S

0 0.25 0.5 0.75
ηc

0.00

0.05

0.10

0.15

0.20

0.25

ηs

r

(c)

F S

Fig. 3 – Same as fig. 2 but for size ratio q = 0.6. Now we obtain a stable demixing binodal for f = 6
as well.

of the perturbation theory with selected ones obtained from the thermodynamic integration
in simulations, we found that the former overestimates the Helmholtz free energy, as it should.
However, a significant quantitative difference between the fluid and the solid phases arises: in
the fluid phase, the perturbation theory results are significantly higher than the simulation
ones, yielding consequently demixing binodals that are seriously inaccurate. This discrepancy
can be traced to the fact that the radial distribution function g(r) of the system is significantly
different than that of the reference fluid g0(r), which is free of attractions. The situation is
different in the solid phase: here, the results from perturbation theory are only infinitesimally
different from Monte Carlo, a feature pointing to the fact that in the solid phase the radially-
averaged distribution function g(r) is very similar to the reference function g0(r). Hence, we
have calculated fluid free energies by applying the thermodynamic integration technique of
eq. (5) and solid free energies from the perturbation theory, eq. (7). We limited the candidate
crystal structures to the fcc lattice.

For q = 0.2 we obtain no stable demixing transitions for any of the three functionalities
f = 2, 6, and 32 that we checked. The results for q = 0.5 and q = 0.6 are shown in figs. 2
and 3. For f = 2 we obtain phase diagrams that are very similar to the ones obtained for the
AO model [5]. In particular, the size ratio q = 0.5 brings about a demixing binodal that is
only slightly stable, a result in agreement with that of ref. [5] in which it was found qc

∼= 0.45.
Increasing the size ratio to 0.6 makes now the demixing binodal for f = 6 stable, see figs. 2(b)
and 3(b). For the case f = 32 we obtain demixing binodals that are always metastable with
respect to freezing, in the domain q ≤ 0.7 in which the pair potentials are reliable. The results
show a clear trend from the AO-type behavior, valid for f = 2, to the BHS behavior, valid for
f = 32. In view of the fact that the critical value qc for f = 6 seems to lie slightly below 0.6
and is growing with f , we anticipate that star-polymers with f � 10 will not be able to bring
about stable demixing transitions in a star-polymer–colloid mixture.

Conclusions. – To summarize, we have worked out the fluid-solid phase diagram of
star-polymer–colloid mixtures, establishing the limits of stability of the demixing binodals.
We have taken advantage of the hybrid colloid/polymer nature of star-polymers in order to
interpolate between the common colloid-polymer and colloid-colloid mixtures. All our findings
can be experimentally checked by carefully preparing mixtures of index-matched hard-sphere
colloids with monodisperse star-polymers in good solvents [20]. The representation of the
phase diagrams into the (ηc, ηs) plane as well as a mapping of the system into a picture of
non-additive mixtures [10,29,30] are the subjects of current investigations.
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