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Phase Behavior of Columnar DNA Assemblies
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The interaction between two stiff parallel DNA molecules depends not only on the distance between
their axes but also on their azimuthal orientation. The positional and orientational order in columnar
B-DNA assemblies in solution is investigated, on the basis of the electrostatic pair potential that takes
into account DNA helical symmetry and the amount and distribution of adsorbed counterions. A phase
diagram obtained by lattice sums predicts a variety of positionally and azimuthally ordered phases and
bundling transitions strongly depending on the counterion adsorption patterns.
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DNA is a polyelectrolyte molecule and it disassociates
in aqueous solution: Its cations go into solution, leaving
behind negative charges on the phosphates of the DNA
backbone. A considerable fraction of the cations con-
denses in a Bjerrum layer around the molecular surface
[1], but if there are ions in the solution that specifically
adsorb onto DNA, its surface could be almost fully neu-
tralized [2] or even overcharged [3]. Far from their axes,
DNA molecules can be apprehended as charged cylinders.
If charges were smeared continuously along the cylinders,
two such molecules would repel each other electrostati-
cally (with the repulsion exponentially screened by the
electrolyte). However, the net charge distribution on the
molecules is not homogeneous and this changes dramati-
cally the interaction potential at intermediate distances. In-
deed, in order to condense DNA in an aggregate, one has
either to apply osmotic stress [4] or use condensing agents,
such as salts with Mn21, Cd21, spermidin, protamine, or
cobalt hexammine [5] cations. These cations are known to
specifically adsorb on DNA, predominantly into the DNA
grooves [6]. Other counterions, such as, e.g., Ca21 or
Mg21, that have strong affinity to phosphates and adsorb
preferentially on the strands do not induce DNA aggrega-
tion. The adsorbing counterions reduce the net charge on
the DNA. Had that been their only effect, it would have
been hard to explain the sensitivity of DNA aggregation
[5] and of the mesomorphism of the resulting aggregates
[7] to the sort of counterions.

Recently, a new explanation of the features of DNA ag-
gregation was suggested [8], resting on a Debye-Bjerrum
theory of electrostatic interaction between parallel heli-
cal macromolecules, such as, e.g., double stranded B and
A forms of DNA [9,10]. Various patterns of adsorbed
counterions, including those spiraling through DNA major
and minor grooves, were considered. Thus, the effect of
helically structured separation between negative and posi-
tive charges on each molecule was rationalized, explain-
ing, e.g., a stronger DNA-DNA attraction in the presence
of the counterions that adsorb preferentially into the major
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groove. Consequences of the theory [10] proved to be in
line with experiments. The properties of the calculated
interaction potential were verified by computer simula-
tions [11].

A remarkable effect of DNA double strandedness is a
peculiar dependence of the interaction potential u�R, f� on
the mutual azimuthal orientation angle, f (see Fig. 1) [9]:
u�R, f� �C�R� 2A�R� cosf 1 B�R� cos2f, where A�R�,
B�R�,C�R� . 0 depend on the parameters of DNA struc-
ture and distribution of adsorbed ions, and A�R� . B�R� at
large interaxial separations R. This potential has two sym-
metric azimuthal minima at f̂6 fi 0 for distances smaller
than a critical one at which A�R� � 2B�R�, and one mini-
mum at f̂ � 0 for larger R. Thus the problem of sta-
tistical properties of columnar aggregates of long rigid
DNA molecules [13] can be mapped on a 2D problem of
XY spins interacting via this unusual potential with domi-
nant nearest neighbor interactions, as A�R� and B�R� ex-
ponentially decrease with R. While the f̂ � 0 case is
compatible with a hexagonal lattice, f̂ fi 0 results in frus-
trations of positional and orientational order [14]. Because
of the “R 2 f coupling” in the interaction potential, one
may expect peculiar positional and “spin” structures in the
aggregate, a feature known as the mesomorphism of DNA
assemblies [7].
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FIG. 1 (color online). A plane perpendicular to the parallel
axes of two DNA molecules separated by vector R hits the DNA
strands denoted by the white circles; 2f̃s is the azimuthal width
of the minor groove. The vectors joining the axes with the points
where the 50 2 30 strand [12] hits the plane may be formally
called “spins.” The angle f between the two spins characterizes
mutual azimuthal orientation of the molecules.
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In this work, we analyze the statistical properties of such
assemblies in aqueous solutions. We calculate the ground
state phase diagrams [15] that depend on the DNA and salt
concentrations, and on the counterion adsorption pattern.
To investigate the stability of various phases, we calculate
lattice sums for interacting DNA molecules and supple-
ment them with the entropic and cohesive contributions
from the ions of the solution. The so-obtained variational
Helmholtz free energy is finally minimized among the can-
didate phases.

To model the interaction, we envision the molecules as
long cylinders, carrying helical, continuous line charges
on their surfaces. Each DNA duplex carries the nega-
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tive charge of phosphates with surface charge density s �
16.8 mC�cm2 plus a compensating positive charge coming
from the adsorbed counterions. Let 0 , u , 1 be the de-
gree of charge compensation, f1, f2, and f3 the fractions
of condensed counterions in the minor and major grooves,
and on the two strands, respectively (f1 1 f2 1 f3 � 1).
The mobile counterions in solution screen the Coulomb in-
teractions between the helices, causing at large separations
an exponential decay of the latter with the Debye screen-
ing length k21. The solvent is accounted for by its dielec-
tric constant ´. The structural parameters of B-DNA are
f̃s � 0.4p, pitch H � 34 Å (g � 2p�H), and hard-core
radius a � 9 Å. For the pair interaction potential, we take
the following form [8] (R . 2a):
u�R, f�
u0

�
X̀

n�2`

�f1u 1 �21�nf2u 2 �1 2 f3u� cos�nf̃s��2 �21�n cos�ngDz�K0�knR� 2 Vn,n�knR, kna�
�kn�k�2�K 0

n�kna��2 , (1)
where Dz is a vertical displacement, equivalent to a “spin
angle” f � gDz. Here, u0 � 8ps2�´k2 (�2.9kBT�Å
at physiological ionic strength), and kn �

p
k2 1 n2g2.

Vn,m�x, y� is given by

Vn,m�x, y� �
X̀
j�2`

∑
Kn2j�x�Kj2m� y�

I 0j� y�
K 0
j� y�

∏
, (2)

with the modified Bessel functions Kn�x� and Ij� y�. The
primes denote derivatives. The f dependence is affected
by the distributions fi , i � 1, 2, 3 of the condensed coun-
terions [8]. Keeping only the n � 0 term in the sum of
Eq. (1) returns a pair potential of homogeneously charged
cylinders, depending on R only. The approximation
u�R, f� � C�R� 2 A�R� cosf 1 B�R� cos2f results from
truncating the sum at jnj � 2. Because of rapid conver-
gence of the sum, truncation at jnj � 5 suffices.

For all cases studied in this work, the pair potential is
greater than kBT , thus we focus on the ground state analy-
sis of the basic structures of the assembly. To this end,
we considered the five two-dimensional Bravais lattices,
i.e., the hexagonal (HEX), square (SQ), rectangular (REC),
rhombic (RHO), and oblique (OBL) lattices. In order to
explore the ordered spin structures, we constructed a cer-
tain spin pattern on the elementary plaquette of every lat-
tice and repeated it along the lattice directions. Without
spin-spin interactions beyond the elementary plaquette of
the lattice, the exact ground state can be obtained as fol-
lows. The energy of the plaquette must be minimized with
respect to the spin angles, and the optimized spin pattern
of the plaquette repeated throughout the lattice. We have
kept interactions of higher-order neighbors but the nearest-
neighbor interactions dominate due to the exponential de-
cay of the R-dependent prefactors.

In Fig. 2 we show schematically the algorithms em-
ployed for the generation of the ordered spin structures.
Choosing the orientation of one of the spins as reference
(f � 0), we are left with two free orientations per pla-
quette for the HEX lattice and three for the REC and SQ
lattices. The lattice is filled by successive mirror reflec-
tions of the cells across their edges, as shown in Figs. 2(a)
and 2(b). As far as the RHO and OBL lattices are con-
cerned, the procedure involving three free spin angles per
plaquette does not generate identical plaquettes upon re-
flection: For these lattices, there is a short and a long
diagonal which exchange their roles upon reflection. We
employ two complementary algorithms for generating or-
dered magnetic structures on these lattices: First, we place
spins of orientations f1 and f2 along the cell edges and
f1 2 f2 along the long diagonal and use the successive
reflection algorithm. This guarantees that all pairs of spins
across all diagonals will have relative angles f1 2 f2 [see
Fig. 2(c)]. Alternatively, we place along the long diago-
nal a spin with an angle f1 1 f2 and, subsequently, we
increase the spin angle along the horizontal direction by
an amount of f1, and along the oblique direction by an
amount of f2 for every step. We thus generate structures
in which all spins along the short diagonals have an angle
f2 2 f1 and all spins along the long diagonals an angle
f1 1 f2, as shown in Fig. 2(d).
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FIG. 2. A schematic view of generating candidate ordered spin
phases of the system. (a) For the HEX lattice; (b) for the REC
and SQ lattices; (c),(d) for the RHO and OBL lattices.
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Using Eq. (1), the interaction between two stiff
molecules is Lpu�R, f�, with the persistence length
Lp � 500 Å. It was found that the energy needed to
destroy the translational or orientational order must be
more than several kBT at room temperature; hence,
the lattice-sum calculations provide the representative
thermodynamic states. The 2D DNA concentration r was
varied within 0 # ra2 # 1��2

p
3 �, the upper limit being

the close-packed configuration in a HEX lattice [16]. For
every density, minimizations of the lattice energy were
carried out, with respect to the plaquette sets �fi	, the size
ratios b�c (for the REC lattice), and/or the geometrical
angle v (RHO and OBL lattices) (Fig. 2). The optimized
lattice-sum energy, UX�F, r�, was obtained, where X
stands for the lattice type and F � �f1,f2, . . . , fN� de-
notes the configuration of the N spins in the system. The
low-density 2D fluid was taken into account as follows:
For every k, the pair potential of Eq. (1) for f � 0 was
mapped onto an effective hard-disk one, by means of the
Barker-Henderson rule [17]. Using the effective hard-disk
diameter d�k� and the known result �p�4�rmd2 � 0.691
for the melting density of hard-disk systems [18], the
melting line was estimated [see Fig. 4(a) (below)].

To access the full thermodynamics of the DNA
solution-salt mixture, we have to add the contributions to
the free energy from the counter- and co-ions (numbers
N6 and concentrations c6, respectively). These degrees
of freedom contribute an extensive term to the free energy
of the system [19], Fc � F0

1 1 F0
2 1 Fcoh, where

F0
6 � N6kBT�ln�c6L3

6� 2 1� are the ideal-gas contribu-
tions (where L6 are the thermal de Broglie wavelengths
of the counter- and co-ions) and

Fcoh � 2
1
2

∑
2Na�Ze�2k

´Lp�1 1 ka�
1

kBTV �c1 2 c2�2

c1 1 c2

∏
,

(3)

is a cohesive term. In Eq. (3), e is the electron charge,
Zjej � 2paLps�1 2 u� is the uncompensated DNA
charge, c1 � Zr�Lp 1 ns and c2 � ns, with the salt
concentration ns. Finally, V is the volume of the system
and k �

p
4p�Zr�Lp 1 2ns�e2��´kBT� for monovalent

salt ions. The Helmholtz free energy is UX 1 Fc.
When counterions are condensed on strands, i.e., f1 �

f2 � 0 and f3 � 1, the DNA-DNA interaction is purely
repulsive. The system is found to crystallize into the
HEX lattice at all DNA densities but a large variety of
orientational (magnetic) structures occurs, as a result of
the frustration of the system. The structures are shown
in Fig. 3 and the phase diagram of the DNA-salt mix-
ture in Fig. 4(a). The FM phase is ferromagnetic: All
DNA molecules have the same azimuthal orientation. The
phase denoted AFI displays antiferromagnetic-Ising order-
ing, with half of the DNA molecules having one azimuthal
orientation on one of the sublattices and a different on the
other. The AFP phase has a three-state antiferromagnetic
018303-3
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FIG. 3 (color online). The four stable “magnetic” phases. The
arrows indicate the azimuthal orientations of DNA molecules.
The acronyms, using magnetic terminology, stand for ferromag-
netic (FM), antiferromagnetic Ising (AFI), antiferromagnetic
Potts (AFP), and antiferromagnetic Heisenberg (AFH).

Potts [20] type of ordering, with 1�3 of the spins point-
ing in a reference direction f � 0, 1�3 in the angle f0,
and 1�3 in the angle 2f0, where f0 grows with DNA con-
centration. Finally, the AFH phase has the orientational
ordering of the two-dimensional antiferromagnetic Heisen-
berg model, with spins residing in the three sublattices of
the hexagonal lattice having mutual orientational angles of
120o to one another. The transition between the FM and
the AFP phases is second order, but the AFP ! AFI and
AFI ! AFH transitions are first order with very narrow
density gaps [21]. The FM phase is stable at low DNA con-
centrations [see Fig. 4(a)]. For such average intermolecu-
lar separations, the optimal azimuthal angle between the
molecules is zero. The nontrivial phases arise at higher
densities of the aggregates, as a result of the frustrated
character of the f dependence of the pair potential. Simi-
lar mesophases were found recently within the framework
of a phenomenological Landau theory [23].

When counterions condense in grooves, an attraction
between the DNA molecules arises, since the positively
charged sections of one molecule can approach the
negatively charged sections of the other through an appro-
priate mutual orientation [8]. This leads to broad phase-
coexistence lines between dense DNA aggregates and
DNA-free solutions. This is demonstrated in Fig. 4(b) for
the case f1 � 0.3, f2 � 0.7, and f3 � 0 for u � 0.7.
Increasing u to 0.9 results in DNA-aggregate coexistence
with DNA-free solutions at all salt concentrations [see
Fig. 4(c)]. The oblique tielines result from the require-
ment that the electrolyte chemical potentials be equal
at both coexisting phases. In the one-phase region, a
rhombic phase shows up for moderate to high densities
and a HEX crystal appears at very high DNA concentra-
tions. A strong qualitative difference in the macroscopic
behavior of columnar DNA assemblies arises, depending
on whether the counterions condense on strands or in
018303-3



VOLUME 89, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 1 JULY 2002
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

πρa
2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

 2.0

n s
[m

ol
/li

te
r]

FM
AFP

AFI

AFH(a)

2d-fluid

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

πρa
2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

 2.0

n s
[m

ol
/li

te
r]

HEX
AFP

RHO
AFI

HEX
FM

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

πρa
2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

 2.0

n s
[m

ol
/li

te
r]

HEX
AFP

RHO
AFI

(c)

FIG. 4. Phase diagrams of DNA-salt mixtures: (a) u � 0.9, f3 � 1; the lattice here is HEX. (b) u � 0.7, f1 � 0.3, f2 � 0.7;
(c) u � 0.9, f1 � 0.3, f2 � 0.7. Dashed lines denote second-order magnetic transitions, solid lines first-order ones. The geometrical
transitions between different lattices in (b) and (c) are second order; the straight lines are tielines between coexisting phases. The
phase diagrams are plotted as a function of the electrolyte concentration in the aggregate. Taking into account the Donnan equilibrium
[22], the diagrams, recalculated as a function of the salt in the reservoir, are qualitatively the same as the ones shown.
grooves. In the former case, all transitions are in the azi-
muthal variables. In the latter, DNA bundling in rhombic
structures takes place. Holding f1 � 0.3 and increasing
f2 at the cost of f3, the crossover to bundling topology
occurs, e.g., for u � 0.7 at �f2, f3� � �0.63, 0.07�.

The predictions of the theory ask for experimental veri-
fication. Such a task is not easy, since the reliable data
until now refer only to highly concentrated phases [24],
where the number of the basic assumptions inherent to
the form of the pair potential may be questioned (the
Debye-Bjerrum approximation, independence of solvent
dielectric constant on the aggregate density, effects of non-
local polarizabilty, etc.). The increase of experimental
resolution in x-ray diffraction could open the way for the
study of less dense aggregates. The predicted specific ef-
fect of cation adsorption on the phase diagram is particu-
larly challenging. Since the adsorption isotherms and the
distributions of the adsorbed ions are poorly known, one
should concentrate here on qualitative effects, i.e., the
(dis)appearance of mesophases triggered by different DNA
condensing counterions.
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