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Decoration lattices of colloids adsorbed on stripe-patterned substrates
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The equilibrium structure of decoration lattices composed of colloidal particles adsorbed on periodic stripe-
patterned substrates is calculated as a function of the stripe width and separation and for different interparticle
interactions. Due to a competition of length scales, a wealth of different stable decoration lattices occurs such
as triangular, quadratic, rhombic, kitelike, and sheared honeycomb lattices, triangular slices as well as triangle
superlattices. This is of relevance for constructing templates that enforce crystal growth of unusual solid
structures.
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I. INTRODUCTION simple, the decoration can be fascinatingly complex so that a
wide range of decoration structures can be generated in a
Recent advances in microfabrication have allowed to precontrolled and simple way. Even for a single stripe, periodic
pare chemically or topographically patterned substrates in gecoration structures as buckled alternating superlattices
controlled way by using e.g., lithographic printing or other With a unit cell involving a large triangle of particles and
etching technique$l,2]. There is a profound influence of finite slices of a triangular bulk lattice may become stable.
such a substrate pattern on wett{rd-10], on adsorption of For a periodic stripe pattern, there are even more stable deco-
soft matter[11,12 and biological macromoleculdd3,14), ration lattices, involving triangular, quadratic, rhombic, kite-
on crystal nucleatiofil 5], and on bulk phase transitions such like, and sheared honeycomb lattices.
as freezing 16,17 and fluid-fluid phase separatiph8]. Pat- The paper is organized as follows: We describe the model
terned substrates have also been used in so-called microfllit Sec. Il and outline our theory in Sec. lll. Results are
idics in order to control chemical reactions on a microscalePresented in Sec. IV, and we conclude in Sec. V.
or nanoscale[19,20. For this purpose, one-dimensional
channels are considered that carry the reacting material.
These channels can either be attractive stripes or topographi-
cal groves. We consider a periodically stripe-patterned smooth sur-
In this paper we study the adsorption of colloidal particlesface, shown schematically in Fig. 1. The width of the sticky
on a sticky periodic stripelike pattern. Our motivation to do stripes isd, while the distance between neighboring stripes is
so is first coming from experiments where decorations weré, so that the structure is periodic in a direction perpendicular
obtained by adsorbing colloidal spheres on a patterned sulte the stripes with periodicity length+d. This patterned
strate mask11,21-29, or in an external laser fiel0], for  surface is exposed to a suspension of spherical colloidal par-
arecent review see R¢B1]. Such a decorated substrate mayticles with hard-core diameter aggregating onto the pat-
be offered as a template to other mobile colloidal particles inern. An aggregated sphere exhibits a point contact with the
order to nucleate further colloidal crystalline sheets and taubstrate gaining a potential energye<0, provided the
grow “exotic” colloidal bulk crystals[16,32,33. The colloi-  contact point is inside a sticky stripe. We assume strongly
dal particles can both be sterically stabiliZg8#] or charge  attractive substrates, such thais much larger than the ther-
stabilized. In the former case, the pattern can be prepared by

a different chemical coating while in the latter the surface

pattern is dictated by the inhomogeneous surface charge den-
sity [13,35,38. Another experimental system to observe X
structure formation near interfaces is magnetic bubble arrays
with periodic line pinning37]. While much experience has >

Il. THE MODEL

been accumulated in how to prepare the substrate in order to
realize a prescribed mask, a more systematic theoretical un-
derstanding of possible decoration structures as induced by
an underlying sticky periodic pattern is missing. In this paper
we investigate this problem for a periodic stripe pattern d X )
within a simple model calculation including both attractive

and repulsive effective interparticle interactions. In equilib- b
rium, we discover a wealth of possible stable decoration lat-
tices. Hence although the substrate pattern is relatively

FIG. 1. Model of hard spheres of diameteron an attractive
stripe patterr{dark gray of width d and interstripe distande The
*Email address: harreis@thphy.uni-duesseldorf.de sphere center&crossesare constrained to lie inside the stripes.
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mal energykgT. Aggregation on the interstripe regions is while u, couples to the number of sphere contacts. Decisive
neglected. Aggregation occurs from a dilute bulk solution offor phase behavior is the competition between optimization
colloids. Here, we do not discuss the dynamics of aggregasf packing and kissing, where the ratig /e is a control

tion or deposition38], but rather focus on the equilibrium parameter. In practice, we start with different candidate lat-
structure present after relaxation of the adsorption processices for the colloids, calculatefor each one in order to find
Typical pair potentiald/(r) as a function of separation dis- the optimal lattice that minimizas The choice of candidates
tancer between colloids have an inner hard core and a shortis motivated by mathematical packing and includes rhombic,
ranged tail. By addition of nonadsorbing polymers or saltsquare, triangular, kite, and other structures involving super-
ions to the bulk solution, both attractive or repulsive tails canattices. We disregard the disordered fluid phase, as tempera-
be realized39]. For simplicity, we use a square-well/square- ture is zero. We have not considered nonperiodic structures

shoulder potential, as quasicrystalp45], that are expected to be unfavorable for
a one-component colloidal system, but could become rel-
» for r<o, evant for binary and ternary mixtures. A similar zero-
V(r)={ vo for o<r<o(1+9), (1)  temperature calculation on structured substrates can be found

in Ref. [44], for quadratic substrate patterns and Lennard-
Jones interparticle interactions. We further remark that simi-
. i~ : lar crystalline lattice structures were obtained in R46] for
with a small positive(reduced range 5. Depending on the ) ) . i

b & d rang b 9 a different physical system, namely, flux lattices in layered

sign of vg, the tail is either repulsivev>0) or attractive . :
(v4<0). Thermodynamics of this system in bulk has beensuperconductors. In contrast to the short-range interactions
O .

studied in detail, see e.g., Ref#d0-43 and references gmplqyed in the present paper, the interaction between flux
therein. Here, we expose the model to an inhomogeneodg]es is long ranged.

surface, and restrict ourselves to zero temperature, i.e., to the

classical ground stafd4]. Let A be the area of the surfads, IV. RESULTS

be thg num_ber of adsorbed particle&, N/A denote the A. Single stripe

(two-dimensional number density, andy= wpa?/4 the cor- , )
responding area fraction. The whole system is characterized 0" P/o>1+4, the spheres adsorbed on neighboring
by four reduced parameters, namely, the reduced vdith stripes are decoupled and the problem reduces to that of ad-

of the attractive stripe, the reduced interstripe wikithr, the ~ SOTPtion onto a single stripe. For simplicity, we -0 and
range of the potentiad, and the ratias, /e of colloid-colloid ~ Vo=0, SO that we deal with sticky hard spheres. Geometrical
to substrate-colloid interaction. considerations as well as numerically checking other struc-

tures makes it possible for us to restrict the actually realized
candidates to twan-layered crystals, namelgi) triangular
lattices (1A), and(ii) supertrianglestructures KS), see Fig.
For zero temperature the energetically most favorablé for illustrations.nA is a portion of the triangulatbulk)
configurations of the adsorbate will be attained. Technicallylattice. ThenS crystal consists of a buckled superlattice of
we need to minimize the total potential energyper sub-  alternating close-packed triangles.
strate area\. One may decompose=U/A=u;+ U,, where The relevant properties of both candidates are the follow-
u, stems from substrate-particle attraction, amgl from  ing. Forn close-packed layers on a stripe of widthwe find
particle-particle interactions. These contributions are

0 else,

Ill. THEORY

n

U]_:_Ep, (2) pAZE! (5)
B NN I nn+1)
WL=AT12 2 VOO, 3 PS= GoTin=1)7 2 cosal ®)

where @ €[ 0,77/3) is the mismatch angle between adjacent
supertriangles, see Fig. 2. For close-packed statds, re-
lated tod via

wherer®) denote(two-dimensional particle positions on the

surface. It will prove useful to rewritel, in terms of the

kissing numbers K (of particlei), that equal the number of

touching spheregi.e., |[r)—r)|=¢) for particlei. If we a(d)=arcsifd— y3(n—1)/2]. @

assume absence of hard-core overlap, and all particle sepa-

rationsr being either at contacr ¢ o), or outside the range Note that fora=0 (no mismatch, nA coincides withns,

of interaction[r>o(1+ 6)], we can write and trivially p,=ps. These configurations define the close-

N packed area fractiony., plotted in Fig. 3a) as a function of
Vo i stripe widthd. For the average kissing number, we obtain via

U2=5A .Zl k=vopkl2, “) coupnting of sphere contactg, ’

wherek=N"13N k() is the(over systemaveraged kissing =6 4 ®

number. Note thau, favors optimal packing of spheres, AT n’
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1S

1A
2A
ametero on a stripe of widthd as a function ofd/o for nA (sym-
bols) and nS (lines structures, as well as for the bulk triangular
lattice (dashed lines (a) Area packing fraction. (b) Kissing num-
FIG. 2. Crystal structuresA andnS of hard spheres sticking to  ber density per unit areao?k/2.
a single stripe of widthd for n=1,2,3. The stripe widtll increases

from left to right. « €[0,7/3) is the mismatch angle between adja- jnswer: A  transition nS—(n+1)A is located atd

cent supertriangles. Spheres building equilatesapejtriangles are =n 2o in n f ThenA — nsS transition i
shaded to guide the eye. For largethe sequence continues in an Iess(\tf\fiza)lailvedggéir?em vole. Thend—nstransition is

analogous way.
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FIG. 3. Relevant densities for close-packed hard spheres of di-

(elvg)—2+n~1]°

8 —(n— _
ko= 2 © d=(n 1)(@/2)a+a\/1 Le/vo)—3+2nl

(10

Although in the limit a—0 the structures themselves be-
come identicalks does not approadk, smoothly, but jumps
at «=0. Relevant for the potential enerfigg. (4)] is not the

kissing number alone, buyik/2, that is plotted in Fig. ®) as (10) interpolates smoothly between these limits.

a function of stripe width. The resulting phase diagram is shown in Fig. 4 as a func-

In. the limit Vo>~ maximal kissingper un.'t areade-. tion of d and expgy/e). We restrict ourselves to<4; the
termines the equilibrium structure, as the dominant contribu-

tion pk/2 [Eq. (4)] to the energy is to be maximized. Quite succession ofiS andnA continues for larged. In the limit

- . ) of broad stripesd— <) and infinitely many layersn— ),
surprisingly, in each intervah\/3c/2<d<(n+1)30/2, a T
transition nA—nS exists, that is located at/o=(n v considerd—(n—1)(y/3/2)c, that mapsd/e onto the

—1)\/§/2+ I-[(2=n"D/(3—2n" %, where large k [0,1] interval and obtain the universah{independentre-

In the limiting cases, fow,/e=0, we recover the close-
packing structure of discs between lines, and #gre—
— the structure with maximal number of kisses. Equation

and lowp in nA are outperformed by low and highp in sult

nS. Note that asn—oo, the transition persists, and the rela-

tive phase transition pointl/o—(n—1)/3/2 approaches d—(n—1)(\3/2o— 0 /M (11)
J5/3=0.7454. [(elvg)—3]?

Putting things together, we can turn to the full energeti-
cally driven phase diagram for arbitrajy,/e|. Asking first ~ Narrow stripes with 8d<(/3/2)c constitute a special
how additional layersi—n+1 jump in, we find the simple case, because of dominance of a single phaSe(1A is
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L patible with the particle lattice. For givemd the pattern is
determined by the orientation along the stripes. This orienta-
0.8 tion may be expressed agj,k)/|A(j k)|, with suitably cho-
18 28 38 48 sen values foj,k. In order to find stripe patterns that fit the
0.6 lattice, we calculate the distancgj,k) between adjacent
£ laa 2A 3A AA 5A lattice lines(the analo:q to IaEti.cpIanesin three dimens-ior)s
20.4 that are parallel taA(j,k)/|A(j,k)|. To this end, we intro-
¢ duce a vectoB(j k), that is orthogonal td\(j,k)/|A(j k)|
0.2 as
B(j,k)=—(j+2k)a,;+(2j+k)a,. (13

0.5 1 1.5 2 2.5 3 3.5 4

d/c L - s L .
Projection of (- 1/k)a,; ontoB gives the lattice line distance

FIG. 4. Phase diagram for sticky hard spheres adsorbed on a

single sticky stripe as a function of reduced stripe widtlr, and 51. B J3a/2
the (exponentiatedratio v,/ e of interparticle versus substrate po- &j,k=———== —— > (14
tential. Lines are phase boundaries betweAnandnS structures. k|B| Victik+k

The 1A phase is a vertical line at/o=0. o 5 5
Upon varyingj andk, the argumenj<+ jk+k* generates a

squeezed to a vertical line dt=0.) The reason for this be- (Seemingly irregular when sortedequence of integer num-
havior is that A and 1S possess equal kissing numbers, P€rS, namely, 1,3,4,7,9,12,13,16,19,21,25,27,28,31,36,37,
This is in contrast tm>1, wherek, > k. 39,43,48,49. . . Expre33|0n(1_4) gives the lattice I|ne. dis-
Two remarks are in order: First, the supertriangular phase@NCe for an orientation of lattice linésarallel to the stripgs
nS are the two-dimensional analog of three-dimensionaf€fined byj,k. Assuming thab-+d and the lattice structure
prism phase$47] found for hard spheres confined betweené(J,K) have the.samt'e perIQdICIty, a'trlangular .Iatt|cg fits,
parallel hard plates. A similar cascade of phases has bedi1€never the stripe widt (with the stripe orientation given
found there, although this is interrupted by other additionaby A(j.k)/|A(j,k)|) and the interstripe distanck have
phases such as a rhombic struct[#8,49. Second, in con- periodicity &(j k), j.keZ,
trast to the bulk problerfb0,51], we are not aware of a strict ]
mathematical proof for close-packed configurations, nor of b+d=&(j k). (15
any other numerical investigation of the packing problem of_ = ) ) , ) ,
discs between lines. Other confining geometries such as theiS introduces a linear relationship between stripe wilth
square[52-54, triangles[55,56, and the circle[57—59 and |nterstr|pe_d|§tancb. In the b-d plane, .Ilnes joining
have been treated in a rigorous way. (_5,0) and _(og) indicate regions where the tnangu_lar lattice
fits the stripe pattern. For smaller valueséotthese lines get

increasingly dense and finally converge into the origin.
The assumption ob+d periodicity is not mandatory.
For b/o<1+ 6, particles on adjacent stripes interact. We Rather, we could let the structure be periodic aftelattice

limit ourselves to the hard sphere cade; 0, and hence deal spacingsé(j,k), and after stripe spacingsi(+d). This re-

with a packing problem. To break possible degeneracy ofation reads

close-packed states, we considgre— 0", favoring sphere

contacts.

B. Coupled stripes

m
b+d=£(j.k), (16)
1. Triangular lattice

We focus on the close-packed triangular lattice, of whichwheremandl must be undivisible integers, in order to avoid
is known that there is no denser structure in bulk. If wereédundances. The periodicity brings about a set of inequali-
succeed to identify patterns that are compatitalk lattice ties to be sgtisfied, (_axpressing the condition that no sphere
sites lie on sticky stripeswith the triangular lattice, we have May lie outside a stripe,
then provedthat there is no denser decoration lattice. The

task is to determine théd(d) regimes in which the triangular 1E(). k) =<j(b+d)\vié(j.k)=j(b+d)+b, (17
lattice i tricall ible. Let the latti it f
tiangular lattice be | T ST Bhat is to be fulfilled for allij. Solving this leads to the
relation
A(j k) =ja+kay, jk=0x1%2..., (12 (m—1)b=d. (18)

wherea, = (0,0),a,=(c/2,/35/2) are basis vectors. In the If we assume equality and use H@6), we can solve for the
following, we imagine the lattice to be fixed on the surfaceminimal stripe widthd,,, and simultaneous maximal inter-
and attempt to determine those stripe patterns that are corstripe distancé,,,. These are
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1 . a)l.z2 . . . . . . .
bmale_ (] k), (19 ) m=1]=1
1r m=4l=] e 1
(m—1) 0.8 . .
dminzl—E(J lk)l (20) _%06 T
0.4 :
and fulfill the relation 02 |
M—1)brax= dmin - 21 0 S —
(M= 1)Brmax= A @) 15 2 25 3 35 4
Hence the triangular regimes are lines from &)0,to d/o
(bmax.dmin)- The above casflines from (0§) to (£,0)] is
recovered fom=I=1. For each combination @f andl we b)12 ——

thus get a one-dimensional regime, where the triangular lat-
tice fits. Variation ofj and k, at fixedm and |, then gives
additional lines, shifted on the axis with their length being
reduced. This is illustrated in Fig.(&, wherej andk are
varied withm=1 andl=1 fixed (solid lineg as well asm S
=4 andl=1 fixed (dashed lines The shift of the lines is
according to Eq(21), their upper end points lying on a line
defined by Eq.19), whose slope changes with. In Fig.
5(b), the lattice line distanceg(j,k) are fixed viaj=0k
=1 (solid lineg, j=0k=2 (dotted line§;, and j=1k=2
(dash-dotted lings while m and | are varied. Figure (B)
illustrates that {,k) for a given combination ofr,l) deter-

mine the height and position of one line, with other combi- C) 1.2 R R
nations of (n,l) producing replicas that are shifted on tthe

axis. Figure &) covers the full rangérelevant for the scale 1r 1
of the plo of valuesj,k,m,l. Note how the lines get denser 038 \ \ )
for b—0, and ultimately approach stripe-free bulk packing. )

Although we cannot prove that the triangular lattice does §O.6 - 1
fit any other parts in the phase diagram, we find that quite

likely. 0.4

The geometrical features of the regimes are visually quite 0.2 AR
striking and may be unexpected from the outset. It is, how- FRREBIRE RN
ever, known that competition of length scales may induce
fractal structureg§60]. One simple tool to analyze these is
box counting[61]. In a two-dimensional situation, one cov- d/o
ers the struc'Fure under consideration with a rectangular mesh 5 5 Regions of stability of the triangular latti¢énes). (a)
with mesh widthW, and counts the number of boxd, that |, | kept constantas indicatey andj,k varied.(b) i,j kept con-
touch (or are completely insidethe structure. This is per- gtant(as indicatei andm, | varied. (c) Full range ofj,k,m,! (rel-
formed successive times on smaller length scilles-or a  eyant for the scale of the plot
fractal, a scaling lavBo<W™ 7 holds, where the dimension
is not an integer. We have carried out such an analysis anﬁowever, give rise to special lattices. Fblo=1, the
could confirm quite well power law scaling with a noninteger pheres from different stripes can touch and the stable phase
exponent. A precise determination of however, tumed out s getermined by the equilibrium structure on the stripes,
to be subtle. We have restricted ourselves to a phys'ca"¥ogether with the degeneracy breaking conditigre— 0~
reasonable lower cutoi>10 30."Form:I:1, we obtain  \ye thys getquadratic ordering in the interstripe region. A
a y=1.5. Superimposing “fence” patterns by varyimg,|  re quadratic lattice is stable only in one poitor=d and
over a broad range of values changes the dimensiop 10 §_ For lowerb andd=0 it gets distorted to a lattice of
=1.6. Such an increase seems reasonable, as apparently, gl{%rnating rhombi, as illustrated in Fig.(s. For d

structurg gets denser. We leave a more thorough investigatiog\/aﬂ2 the situation is sketched in Figs(bs—6(d) for de-

to possible future research. creasing values ob. Figure 6(b) shows 1S structures on

decoupled stripes forming kite-structures in a periodic stripe

arrangement. The kite structure of Figbg however, is de-
We will approach the general case by considering intergenerated with respect to an arbitrary relative shift of two

acting stripes that are themselves densely packed. Results aiagle stripe patterns. Upon approach and coupling of the

known forb/o>1, periodic arrangement of the stripes will, stripes a honeycomiHC) in Fig. 6(c), and eventually a

0" S
0 05 1 15 2 25 3 35 4

2. More general cases
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FIG. 7. Crystal structures for infinitely thin stripeléo=0 and
decreasing values di/o: (a) hexagonal lattice lf/ o= \/§/2); (b)
centered rectangular (O8/o<+/3/2); (c) hexagonal lattice
(b/o=0.5); (d) centered rectangulab(c<0.5).

FIG. 6. Crystal structures fat/ o< J3/2.(3) Alternating rhom-
bic for d=0 and+/3/2<b/o<1; in (b)—(d) the situation is shown . . . L
for 0<d/a<3/2 for decreasing values of the interstripe width d€coration lattices as a function bfo- andd/o in Fig. 10.
b/o; (b) 18 structures on decoupled stripes giving rise to kite struc-1ne States between the lines of stability of the triangular
tures in a periodic stripe arrangemeftt) honeycomb(1HO); (d) lattice are unexplored in our study. We leave those to future
sheared honeycomisheared 1HE (e) and (f): squeezed 1HC for work.
b/o=1, with d/c<0.5 andd/o>0.5, respectively. Solid lines in- Figures 9 and 10 prove that even though our model is
dicate unit cells. relatively simple, competition of different length scales leads

o _ to quite different stable decoration lattice structures. On the
sheared honeycomb, shown in Figdf emerge. For still  pasis of Figs. 9 and 10 one can tailor the attractive stripe

smallerb, we expect another alternating rhombic phase, agattern in order to produce a given decoration lattice. This is

shown in Fig. 6a), but with finited>0, to be stable. ~ of direct importance for further crystal growth on top of the
For infinitely thin stripes, the situation for decreasing in-

terstripe distanced is sketched in Fig. 7. A sequence of
triangular lattices and centered rectangular lattices arises
Similar structures were observed in recent experiments
[29,33.

For large d>/30/2, a squeezed honeycomb structure
[Fig. 8(@] that can also be shearféig. 8b)] appears. More
complex crystal unit cells involving two supertriangular hon-
eycomb structures, both sheargelg. 8(c)] and unsheared
[Fig. 8d)] occur for even larged.

The resulting phase diagram of possible decoration lat-°)
tices as a function ob/o and d/o is depicted in Fig. 9.
While for b/o>1 supertriangles are stalleompare Fig. %

a cascade of sheared honeycomb phases consisting of supe
triangles occurs fob/o<1 and increasingl. Along coexist-
ence lines(dashed lines in Fig.)9 these sheared supertri-
angle honeycomb phases degenerate into different specit
cases: square latticed{foc=0)b/c=0), unsheared honey-
comb, squeezed honeyconpbee Figs. &) and f)], and FIG. 8. Crystal structures fof3/2<d/o< 3 andb/o=<1: (a)
alternating rhombic. 2A-square hybrid; (b) sheared A-square hybrid; (c) two-

We combine the main results of this investigation with thehoneycomb structuréHC); (d) sheared two-honeycomisheared
regions of stability of the undistorted triangular latti&®ec.  2HC). Spheres building equilateral triangles are shaded to guide the
IVB1) and display the whole phase diagram of possiblesye. Solid lines indicate unit cells.

a)
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T T T 13

' S Y
2A 3A 12 ¢ 1S (kite) 28 (kite) 38
1S (kite) 6b) 28 (kite) 35 112 (kite)
2 (kite) 3 1.1 1 sheared:
1HC 6¢) 8a) 2HC 8¢) * |
square ¢-3queezed LHC }{x \x squeezed 2HC }{x 1 _ sheared 1HC ) sheared ZHC {3HC
3 & = 0.8 N0 i
& Sheared ><rhombi
£l t sheared 1HC 6d) / sheared 2HC 8d) i3HC {09 6 o r ombIe
é < PR 8b) / 1082 06 f -
2 "\ rthombic ! ’ N
% SF \\‘ \‘\\ // 1 0.7 04 P \
g SERNN4 106
3ot j0s
= A
BN \ 0
. . . 0.4
0 05 ) L5 N 0 0.5 1 1.5 2
d/o dfc

FIG. 9. Phase diagram of attractive hard spheres in a periodic /G- 10- Phase diagram of attractive hard spheres in a periodic
arrangement of sticky stripes with stripe widthand interstripe  arangement of sticky stripes with stripe widthand interstripe
separatiorb. Dashed lines indicate two-phase coexistence. Variou$€Paratiorb. Solid lines indicate triangular regimes, dashed lines
crystals are stable, as displayed in Figs. 6—8. indicate two-phase coexistence.

decoration lattice used as a temp|ate_ One can e){ﬂ@t ration lattices are expected. Second, the effect of finite tem-
that quite exotic bulk crystalline structures can be aggregateBerature and longer ranged and more realistic particle-
on top of such a templat82]. This is of relevance for the particle and particle-wall interaction should be investigated.
construction of optical band-gap materials such as photoni@ti“ we think that the main pOSSIbIlIty of decoration lattices
crystals[62]. will be very similar to the results obtained for the more sim-
plistic interactions. Also, the nonequilibrium problem of par-
ticle deposition can produce even much richer nonequilib-
V- CONCLUSION rium fractal and random closed-packing structur@3—66
In conclusion, we have systematically investigated andhat have not been considered in the present equilibrium
predicted decoration lattices composed of colloidal particlestudy. Finally, proving rigorously the different structures to
adsorbed on an attractive stripe-patterned substrate. Our rbe close packed should be an interesting problem in math-
sults show, that due to a competition of various length scalegmatical geometry.
a wealth of different decoration lattices can be stable. This
knowledge can be exploited to generate exotic lattice struc-
tures by a tailored surface pattern that could be of relevance
for fabricating photonic crystals grown on such templates. We thank A. Esztermann, C. N. Likos, and C. von Ferber
Our work can be extended into several directions: First, othefor helpful remarks. This work was supported by the DFG
periodic patterns such as alternating triangular or chessboaggithin the wetting priority program under Contract No. LO
patterns can be studied, where even more complicated decé18/5-3.
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